Datasets:

Languages:
English
ArXiv:
License:
Gabi00 commited on
Commit
4bd48fe
1 Parent(s): ad86684

Upload sesge.py

Browse files
Files changed (1) hide show
  1. sesge.py +120 -0
sesge.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import csv
2
+ import os
3
+ import json
4
+
5
+ import datasets
6
+ from datasets.utils.py_utils import size_str
7
+ from tqdm import tqdm
8
+
9
+ from scipy.io.wavfile import read, write
10
+ import io
11
+
12
+ #from .release_stats import STATS
13
+
14
+ _CITATION = """\
15
+ @inproceedings{demint2024,
16
+ author = {Pérez-Ortiz, Juan Antonio and
17
+ Esplà-Gomis, Miquel and
18
+ Sánchez-Cartagena, Víctor M. and
19
+ Sánchez-Martínez, Felipe and
20
+ Chernysh, Roman and
21
+ Mora-Rodríguez, Gabriel and
22
+ Berezhnoy, Lev},
23
+ title = {{DeMINT}: Automated Language Debriefing for English Learners via {AI}
24
+ Chatbot Analysis of Meeting Transcripts},
25
+ booktitle = {Proceedings of the 13th Workshop on NLP for Computer Assisted Language Learning},
26
+ month = october,
27
+ year = {2024},
28
+ url = {https://aclanthology.org/volumes/2024.nlp4call-1/},
29
+ }
30
+ """
31
+
32
+ class SesgeConfig(datasets.BuilderConfig):
33
+ def __init__(self, name, version, **kwargs):
34
+ self.language = kwargs.pop("language", None)
35
+ self.release_date = kwargs.pop("release_date", None)
36
+ """
37
+ description = (
38
+ f"Common Voice speech to text dataset in {self.language} released on {self.release_date}. "
39
+ f"The dataset comprises {self.validated_hr} hours of validated transcribed speech data "
40
+ f"out of {self.total_hr} hours in total from {self.num_speakers} speakers. "
41
+ f"The dataset contains {self.num_clips} audio clips and has a size of {self.size_human}."
42
+ )
43
+ """
44
+
45
+ super(SesgeConfig, self).__init__(
46
+ name=name,
47
+ **kwargs,
48
+ )
49
+
50
+ class Sesge():
51
+
52
+ BUILDER_CONFIGS = [
53
+ SesgeConfig(
54
+ name="sesge",
55
+ version=1.0,
56
+ language='eng',
57
+ release_date="2024-10-8",
58
+ )
59
+ ]
60
+
61
+ def _info(self):
62
+ total_languages = 1
63
+ total_valid_hours = 1
64
+ description = (
65
+ "Common Voice is Mozilla's initiative to help teach machines how real people speak. "
66
+ f"The dataset currently consists of {total_valid_hours} validated hours of speech "
67
+ f" in {total_languages} languages, but more voices and languages are always added."
68
+ )
69
+ features = datasets.Features(
70
+ {
71
+ "audio": datasets.features.Audio(sampling_rate=48_000),
72
+ "sentence": datasets.Value("string"),
73
+ }
74
+ )
75
+
76
+ def _generate_examples(self, local_extracted_archive_paths, archives, meta_path, split):
77
+ archives = os.listdir(archives)
78
+ print(archives)
79
+ metadata = {}
80
+ with open(meta_path, encoding="utf-8") as f:
81
+ reader = csv.DictReader(f, delimiter=";", quoting=csv.QUOTE_NONE)
82
+ for row in tqdm(reader):
83
+ metadata[row["file_name"]] = row
84
+ #print(metadata)
85
+ for i, path in enumerate(archives):
86
+ #for path, file in audio_archive:
87
+ _, filename = os.path.split(path)
88
+ file = os.path.join("data", split, filename)
89
+ #print(filename)
90
+ if file in metadata:
91
+ result = dict(metadata[file])
92
+ print("Result: ", result)
93
+ with open(os.path.join(local_extracted_archive_paths, filename), 'rb') as wavfile:
94
+ input_wav = wavfile.read()
95
+
96
+ rate, data = read(io.BytesIO(input_wav))
97
+
98
+ # data is a numpy ND array representing the audio data. Let's do some stuff with it
99
+ reversed_data = data[::-1] #reversing it
100
+
101
+ #then, let's save it to a BytesIO object, which is a buffer for bytes object
102
+ bytes_wav = bytes()
103
+ byte_io = io.BytesIO(bytes_wav)
104
+ write(byte_io, rate, reversed_data)
105
+
106
+ output_wav = byte_io.read()
107
+ # set the audio feature and the path to the extracted file
108
+ path = os.path.join(local_extracted_archive_paths[i], path)
109
+ result["audio"] = {"path": path, "bytes": data}
110
+ result["path"] = path
111
+ yield path, result
112
+ else:
113
+ print("No file found")
114
+ yield None, None
115
+
116
+ if __name__ == '__main__':
117
+ data = Sesge()
118
+ gen = data._generate_examples("/Users/rafael/Desktop/TFM/Transformes/Demint/Base de datos/COnver/datos/", "/Users/rafael/Desktop/TFM/Transformes/Demint/Base de datos/COnver/datos/", "/Users/rafael/Desktop/TFM/Transformes/Demint/Base de datos/COnver/metadata.csv", "train")
119
+
120
+ print(next(gen))