RonanKMcGovern commited on
Commit
5a223ff
·
1 Parent(s): a47738e

data set complete

Browse files
Files changed (4) hide show
  1. README.md +6 -3
  2. create_dataset.py +60 -0
  3. test.csv +0 -0
  4. train.csv +0 -0
README.md CHANGED
@@ -1,5 +1,8 @@
1
 
2
  # Data source
3
- ---
4
- license: mit
5
- ---
 
 
 
 
1
 
2
  # Data source
3
+ Downloaded via Andrej Karpathy's nanogpt repo from this [link](https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt)
4
+
5
+ # Data Format
6
+ - The entire dataset is split into train (90%) and test (10%).
7
+ - All rows are at most 1024 tokens, using the Llama 2 tokenizer.
8
+ - All rows are split cleanly so that sentences are whole and unbroken.
create_dataset.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import csv
2
+ from transformers import AutoTokenizer
3
+
4
+ # Initialize the tokenizer
5
+ tokenizer = AutoTokenizer.from_pretrained("TheBloke/Yarn-Llama-2-7B-128K-GPTQ", use_fast=True)
6
+
7
+ # Read the input data
8
+ with open('input.txt', 'r') as f:
9
+ data = f.readlines()
10
+
11
+ # Initialize variables
12
+ train_data = []
13
+ test_data = []
14
+ current_row = ""
15
+ current_token_count = 0
16
+ carry_over = ""
17
+
18
+ # Iterate over each line and add to train or test data
19
+ for i, line in enumerate(data):
20
+ line_to_add = carry_over + line.strip()
21
+ carry_over = ""
22
+
23
+ # Tokenize the line to count tokens
24
+ tokens = tokenizer(line_to_add)['input_ids']
25
+ num_tokens = len(tokens)
26
+
27
+ # Check if adding the line would exceed the token limit
28
+ if current_token_count + num_tokens > 1024:
29
+ # Find the last period followed by a space in the current row
30
+ last_period_idx = current_row.rfind('. ')
31
+
32
+ if last_period_idx != -1:
33
+ # Carry over the content after the last period
34
+ carry_over = current_row[last_period_idx+2:].strip() + "\n"
35
+ current_row = current_row[:last_period_idx+1]
36
+
37
+ if i < len(data) * 0.9:
38
+ train_data.append(current_row.strip())
39
+ else:
40
+ test_data.append(current_row.strip())
41
+
42
+ current_row = carry_over
43
+ current_token_count = len(tokenizer(current_row.strip())['input_ids'])
44
+
45
+ # Add the line to the current row
46
+ current_row += (line_to_add + "\n") if current_row else (line_to_add + "\n")
47
+ current_token_count += num_tokens
48
+
49
+ # Save as train.csv and test.csv
50
+ with open('train.csv', 'w', newline='') as f:
51
+ writer = csv.writer(f)
52
+ writer.writerow(['Text'])
53
+ for row in train_data:
54
+ writer.writerow([row])
55
+
56
+ with open('test.csv', 'w', newline='') as f:
57
+ writer = csv.writer(f)
58
+ writer.writerow(['Text'])
59
+ for row in test_data:
60
+ writer.writerow([row])
test.csv ADDED
The diff for this file is too large to render. See raw diff
 
train.csv ADDED
The diff for this file is too large to render. See raw diff