Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 19,218 Bytes
7158a4f
908855b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7158a4f
908855b
 
 
 
 
 
 
 
7158a4f
908855b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7158a4f
908855b
 
74e4b2c
908855b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7158a4f
908855b
74e4b2c
908855b
 
 
 
 
 
7158a4f
908855b
 
 
74e4b2c
908855b
74e4b2c
908855b
 
 
74e4b2c
908855b
74e4b2c
908855b
 
 
74e4b2c
908855b
74e4b2c
908855b
7158a4f
74e4b2c
 
 
7158a4f
908855b
 
1fee472
908855b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7158a4f
908855b
1fee472
908855b
 
 
 
 
 
7158a4f
908855b
 
 
1fee472
908855b
1fee472
908855b
 
 
1fee472
908855b
1fee472
908855b
 
 
1fee472
908855b
1fee472
908855b
 
1fee472
 
 
7158a4f
908855b
 
8520f9e
908855b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8520f9e
908855b
 
 
 
 
 
 
 
 
 
8520f9e
908855b
8520f9e
908855b
 
 
8520f9e
908855b
8520f9e
908855b
 
 
8520f9e
908855b
8520f9e
908855b
 
8520f9e
 
 
908855b
7158a4f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
{
    "adversarialQA": {
        "description": "AdversarialQA is a Reading Comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles using an adversarial model-in-the-loop.\nWe use three different models; BiDAF (Seo et al., 2016), BERT-Large (Devlin et al., 2018), and RoBERTa-Large (Liu et al., 2019) in the annotation loop and construct three datasets; D(BiDAF), D(BERT), and D(RoBERTa), each with 10,000 training examples, 1,000 validation, and 1,000 test examples.\nThe adversarial human annotation paradigm ensures that these datasets consist of questions that current state-of-the-art models (at least the ones used as adversaries in the annotation loop) find challenging.\n",
        "citation": "@article{bartolo2020beat,\n    author = {Bartolo, Max and Roberts, Alastair and Welbl, Johannes and Riedel, Sebastian and Stenetorp, Pontus},\n    title = {Beat the AI: Investigating Adversarial Human Annotation for Reading Comprehension},\n    journal = {Transactions of the Association for Computational Linguistics},\n    volume = {8},\n    number = {},\n    pages = {662-678},\n    year = {2020},\n    doi = {10.1162/tacl_a_00338},\n    URL = { https://doi.org/10.1162/tacl_a_00338 },\n    eprint = { https://doi.org/10.1162/tacl_a_00338 },\n    abstract = { Innovations in annotation methodology have been a catalyst for Reading Comprehension (RC) datasets and models. One recent trend to challenge current RC models is to involve a model in the annotation process: Humans create questions adversarially, such that the model fails to answer them correctly. In this work we investigate this annotation methodology and apply it in three different settings, collecting a total of 36,000 samples with progressively stronger models in the annotation loop. This allows us to explore questions such as the reproducibility of the adversarial effect, transfer from data collected with varying model-in-the-loop strengths, and generalization to data collected without a model. We find that training on adversarially collected samples leads to strong generalization to non-adversarially collected datasets, yet with progressive performance deterioration with increasingly stronger models-in-the-loop. Furthermore, we find that stronger models can still learn from datasets collected with substantially weaker models-in-the-loop. When trained on data collected with a BiDAF model in the loop, RoBERTa achieves 39.9F1 on questions that it cannot answer when trained on SQuAD\u2014only marginally lower than when trained on data collected using RoBERTa itself (41.0F1). }\n}\n",
        "homepage": "https://adversarialqa.github.io/",
        "license": "",
        "features": {
            "id": {
                "dtype": "string",
                "_type": "Value"
            },
            "title": {
                "dtype": "string",
                "_type": "Value"
            },
            "context": {
                "dtype": "string",
                "_type": "Value"
            },
            "question": {
                "dtype": "string",
                "_type": "Value"
            },
            "answers": {
                "feature": {
                    "text": {
                        "dtype": "string",
                        "_type": "Value"
                    },
                    "answer_start": {
                        "dtype": "int32",
                        "_type": "Value"
                    }
                },
                "_type": "Sequence"
            },
            "metadata": {
                "split": {
                    "dtype": "string",
                    "_type": "Value"
                },
                "model_in_the_loop": {
                    "dtype": "string",
                    "_type": "Value"
                }
            }
        },
        "builder_name": "adversarial_qa",
        "dataset_name": "adversarial_qa",
        "config_name": "adversarialQA",
        "version": {
            "version_str": "1.0.0",
            "major": 1,
            "minor": 0,
            "patch": 0
        },
        "splits": {
            "train": {
                "name": "train",
                "num_bytes": 27858686,
                "num_examples": 30000,
                "dataset_name": null
            },
            "validation": {
                "name": "validation",
                "num_bytes": 2757092,
                "num_examples": 3000,
                "dataset_name": null
            },
            "test": {
                "name": "test",
                "num_bytes": 2919479,
                "num_examples": 3000,
                "dataset_name": null
            }
        },
        "download_size": 5301049,
        "dataset_size": 33535257,
        "size_in_bytes": 38836306
    },
    "dbidaf": {
        "description": "AdversarialQA is a Reading Comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles using an adversarial model-in-the-loop.\nWe use three different models; BiDAF (Seo et al., 2016), BERT-Large (Devlin et al., 2018), and RoBERTa-Large (Liu et al., 2019) in the annotation loop and construct three datasets; D(BiDAF), D(BERT), and D(RoBERTa), each with 10,000 training examples, 1,000 validation, and 1,000 test examples.\nThe adversarial human annotation paradigm ensures that these datasets consist of questions that current state-of-the-art models (at least the ones used as adversaries in the annotation loop) find challenging.\n",
        "citation": "@article{bartolo2020beat,\n    author = {Bartolo, Max and Roberts, Alastair and Welbl, Johannes and Riedel, Sebastian and Stenetorp, Pontus},\n    title = {Beat the AI: Investigating Adversarial Human Annotation for Reading Comprehension},\n    journal = {Transactions of the Association for Computational Linguistics},\n    volume = {8},\n    number = {},\n    pages = {662-678},\n    year = {2020},\n    doi = {10.1162/tacl_a_00338},\n    URL = { https://doi.org/10.1162/tacl_a_00338 },\n    eprint = { https://doi.org/10.1162/tacl_a_00338 },\n    abstract = { Innovations in annotation methodology have been a catalyst for Reading Comprehension (RC) datasets and models. One recent trend to challenge current RC models is to involve a model in the annotation process: Humans create questions adversarially, such that the model fails to answer them correctly. In this work we investigate this annotation methodology and apply it in three different settings, collecting a total of 36,000 samples with progressively stronger models in the annotation loop. This allows us to explore questions such as the reproducibility of the adversarial effect, transfer from data collected with varying model-in-the-loop strengths, and generalization to data collected without a model. We find that training on adversarially collected samples leads to strong generalization to non-adversarially collected datasets, yet with progressive performance deterioration with increasingly stronger models-in-the-loop. Furthermore, we find that stronger models can still learn from datasets collected with substantially weaker models-in-the-loop. When trained on data collected with a BiDAF model in the loop, RoBERTa achieves 39.9F1 on questions that it cannot answer when trained on SQuAD\u2014only marginally lower than when trained on data collected using RoBERTa itself (41.0F1). }\n}\n",
        "homepage": "https://adversarialqa.github.io/",
        "license": "",
        "features": {
            "id": {
                "dtype": "string",
                "_type": "Value"
            },
            "title": {
                "dtype": "string",
                "_type": "Value"
            },
            "context": {
                "dtype": "string",
                "_type": "Value"
            },
            "question": {
                "dtype": "string",
                "_type": "Value"
            },
            "answers": {
                "feature": {
                    "text": {
                        "dtype": "string",
                        "_type": "Value"
                    },
                    "answer_start": {
                        "dtype": "int32",
                        "_type": "Value"
                    }
                },
                "_type": "Sequence"
            },
            "metadata": {
                "split": {
                    "dtype": "string",
                    "_type": "Value"
                },
                "model_in_the_loop": {
                    "dtype": "string",
                    "_type": "Value"
                }
            }
        },
        "builder_name": "adversarial_qa",
        "dataset_name": "adversarial_qa",
        "config_name": "dbidaf",
        "version": {
            "version_str": "1.0.0",
            "major": 1,
            "minor": 0,
            "patch": 0
        },
        "splits": {
            "train": {
                "name": "train",
                "num_bytes": 9282482,
                "num_examples": 10000,
                "dataset_name": null
            },
            "validation": {
                "name": "validation",
                "num_bytes": 917907,
                "num_examples": 1000,
                "dataset_name": null
            },
            "test": {
                "name": "test",
                "num_bytes": 946947,
                "num_examples": 1000,
                "dataset_name": null
            }
        },
        "download_size": 2721341,
        "dataset_size": 11147336,
        "size_in_bytes": 13868677
    },
    "dbert": {
        "description": "AdversarialQA is a Reading Comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles using an adversarial model-in-the-loop.\nWe use three different models; BiDAF (Seo et al., 2016), BERT-Large (Devlin et al., 2018), and RoBERTa-Large (Liu et al., 2019) in the annotation loop and construct three datasets; D(BiDAF), D(BERT), and D(RoBERTa), each with 10,000 training examples, 1,000 validation, and 1,000 test examples.\nThe adversarial human annotation paradigm ensures that these datasets consist of questions that current state-of-the-art models (at least the ones used as adversaries in the annotation loop) find challenging.\n",
        "citation": "@article{bartolo2020beat,\n    author = {Bartolo, Max and Roberts, Alastair and Welbl, Johannes and Riedel, Sebastian and Stenetorp, Pontus},\n    title = {Beat the AI: Investigating Adversarial Human Annotation for Reading Comprehension},\n    journal = {Transactions of the Association for Computational Linguistics},\n    volume = {8},\n    number = {},\n    pages = {662-678},\n    year = {2020},\n    doi = {10.1162/tacl_a_00338},\n    URL = { https://doi.org/10.1162/tacl_a_00338 },\n    eprint = { https://doi.org/10.1162/tacl_a_00338 },\n    abstract = { Innovations in annotation methodology have been a catalyst for Reading Comprehension (RC) datasets and models. One recent trend to challenge current RC models is to involve a model in the annotation process: Humans create questions adversarially, such that the model fails to answer them correctly. In this work we investigate this annotation methodology and apply it in three different settings, collecting a total of 36,000 samples with progressively stronger models in the annotation loop. This allows us to explore questions such as the reproducibility of the adversarial effect, transfer from data collected with varying model-in-the-loop strengths, and generalization to data collected without a model. We find that training on adversarially collected samples leads to strong generalization to non-adversarially collected datasets, yet with progressive performance deterioration with increasingly stronger models-in-the-loop. Furthermore, we find that stronger models can still learn from datasets collected with substantially weaker models-in-the-loop. When trained on data collected with a BiDAF model in the loop, RoBERTa achieves 39.9F1 on questions that it cannot answer when trained on SQuAD\u2014only marginally lower than when trained on data collected using RoBERTa itself (41.0F1). }\n}\n",
        "homepage": "https://adversarialqa.github.io/",
        "license": "",
        "features": {
            "id": {
                "dtype": "string",
                "_type": "Value"
            },
            "title": {
                "dtype": "string",
                "_type": "Value"
            },
            "context": {
                "dtype": "string",
                "_type": "Value"
            },
            "question": {
                "dtype": "string",
                "_type": "Value"
            },
            "answers": {
                "feature": {
                    "text": {
                        "dtype": "string",
                        "_type": "Value"
                    },
                    "answer_start": {
                        "dtype": "int32",
                        "_type": "Value"
                    }
                },
                "_type": "Sequence"
            },
            "metadata": {
                "split": {
                    "dtype": "string",
                    "_type": "Value"
                },
                "model_in_the_loop": {
                    "dtype": "string",
                    "_type": "Value"
                }
            }
        },
        "builder_name": "adversarial_qa",
        "dataset_name": "adversarial_qa",
        "config_name": "dbert",
        "version": {
            "version_str": "1.0.0",
            "major": 1,
            "minor": 0,
            "patch": 0
        },
        "splits": {
            "train": {
                "name": "train",
                "num_bytes": 9345521,
                "num_examples": 10000,
                "dataset_name": null
            },
            "validation": {
                "name": "validation",
                "num_bytes": 918156,
                "num_examples": 1000,
                "dataset_name": null
            },
            "test": {
                "name": "test",
                "num_bytes": 971290,
                "num_examples": 1000,
                "dataset_name": null
            }
        },
        "download_size": 2689032,
        "dataset_size": 11234967,
        "size_in_bytes": 13923999
    },
    "droberta": {
        "description": "AdversarialQA is a Reading Comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles using an adversarial model-in-the-loop.\nWe use three different models; BiDAF (Seo et al., 2016), BERT-Large (Devlin et al., 2018), and RoBERTa-Large (Liu et al., 2019) in the annotation loop and construct three datasets; D(BiDAF), D(BERT), and D(RoBERTa), each with 10,000 training examples, 1,000 validation, and 1,000 test examples.\nThe adversarial human annotation paradigm ensures that these datasets consist of questions that current state-of-the-art models (at least the ones used as adversaries in the annotation loop) find challenging.\n",
        "citation": "@article{bartolo2020beat,\n    author = {Bartolo, Max and Roberts, Alastair and Welbl, Johannes and Riedel, Sebastian and Stenetorp, Pontus},\n    title = {Beat the AI: Investigating Adversarial Human Annotation for Reading Comprehension},\n    journal = {Transactions of the Association for Computational Linguistics},\n    volume = {8},\n    number = {},\n    pages = {662-678},\n    year = {2020},\n    doi = {10.1162/tacl_a_00338},\n    URL = { https://doi.org/10.1162/tacl_a_00338 },\n    eprint = { https://doi.org/10.1162/tacl_a_00338 },\n    abstract = { Innovations in annotation methodology have been a catalyst for Reading Comprehension (RC) datasets and models. One recent trend to challenge current RC models is to involve a model in the annotation process: Humans create questions adversarially, such that the model fails to answer them correctly. In this work we investigate this annotation methodology and apply it in three different settings, collecting a total of 36,000 samples with progressively stronger models in the annotation loop. This allows us to explore questions such as the reproducibility of the adversarial effect, transfer from data collected with varying model-in-the-loop strengths, and generalization to data collected without a model. We find that training on adversarially collected samples leads to strong generalization to non-adversarially collected datasets, yet with progressive performance deterioration with increasingly stronger models-in-the-loop. Furthermore, we find that stronger models can still learn from datasets collected with substantially weaker models-in-the-loop. When trained on data collected with a BiDAF model in the loop, RoBERTa achieves 39.9F1 on questions that it cannot answer when trained on SQuAD\u2014only marginally lower than when trained on data collected using RoBERTa itself (41.0F1). }\n}\n",
        "homepage": "https://adversarialqa.github.io/",
        "license": "",
        "features": {
            "id": {
                "dtype": "string",
                "_type": "Value"
            },
            "title": {
                "dtype": "string",
                "_type": "Value"
            },
            "context": {
                "dtype": "string",
                "_type": "Value"
            },
            "question": {
                "dtype": "string",
                "_type": "Value"
            },
            "answers": {
                "feature": {
                    "text": {
                        "dtype": "string",
                        "_type": "Value"
                    },
                    "answer_start": {
                        "dtype": "int32",
                        "_type": "Value"
                    }
                },
                "_type": "Sequence"
            },
            "metadata": {
                "split": {
                    "dtype": "string",
                    "_type": "Value"
                },
                "model_in_the_loop": {
                    "dtype": "string",
                    "_type": "Value"
                }
            }
        },
        "builder_name": "adversarial_qa",
        "dataset_name": "adversarial_qa",
        "config_name": "droberta",
        "version": {
            "version_str": "1.0.0",
            "major": 1,
            "minor": 0,
            "patch": 0
        },
        "splits": {
            "train": {
                "name": "train",
                "num_bytes": 9270683,
                "num_examples": 10000,
                "dataset_name": null
            },
            "validation": {
                "name": "validation",
                "num_bytes": 925029,
                "num_examples": 1000,
                "dataset_name": null
            },
            "test": {
                "name": "test",
                "num_bytes": 1005242,
                "num_examples": 1000,
                "dataset_name": null
            }
        },
        "download_size": 2815452,
        "dataset_size": 11200954,
        "size_in_bytes": 14016406
    }
}