# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ShARC: A Conversational Question Answering dataset focussing on question answering from texts containing rules.""" import json import os import datasets _CITATION = """\ @misc{saeidi2018interpretation, title={Interpretation of Natural Language Rules in Conversational Machine Reading}, author={Marzieh Saeidi and Max Bartolo and Patrick Lewis and Sameer Singh and Tim Rocktäschel and Mike Sheldon and Guillaume Bouchard and Sebastian Riedel}, year={2018}, eprint={1809.01494}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _DESCRIPTION = """\ ShARC is a Conversational Question Answering dataset focussing on question answering from texts containing rules. \ The goal is to answer questions by possibly asking follow-up questions first. It is assumed assume that the question is often underspecified, \ in the sense that the question does not provide enough information to be answered directly. However, an agent can use the supporting rule text to \ infer what needs to be asked in order to determine the final answer. """ _URL = "https://sharc-data.github.io/data/sharc1-official.zip" class Sharc(datasets.GeneratorBasedBuilder): """ShARC: A Conversational Question Answering dataset focussing on question answering from texts containing rules.""" VERSION = datasets.Version("1.0.1") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="sharc", version=datasets.Version("1.0.1")), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "utterance_id": datasets.Value("string"), "source_url": datasets.Value("string"), "snippet": datasets.Value("string"), "question": datasets.Value("string"), "scenario": datasets.Value("string"), "history": [ {"follow_up_question": datasets.Value("string"), "follow_up_answer": datasets.Value("string")} ], "evidence": [ {"follow_up_question": datasets.Value("string"), "follow_up_answer": datasets.Value("string")} ], "answer": datasets.Value("string"), "negative_question": datasets.Value("bool_"), "negative_scenario": datasets.Value("bool_"), } ), supervised_keys=None, homepage="https://sharc-data.github.io/index.html", citation=_CITATION, ) def _split_generators(self, dl_manager): extracted_path = dl_manager.download_and_extract(_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"data_dir": os.path.join(extracted_path, "sharc1-official"), "split": "train"}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"data_dir": os.path.join(extracted_path, "sharc1-official"), "split": "dev"}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"data_dir": os.path.join(extracted_path, "sharc1-official"), "split": "test"}, ), ] def _generate_examples(self, data_dir, split): with open( os.path.join(data_dir, "negative_sample_utterance_ids", "sharc_negative_scenario_utterance_ids.txt"), encoding="utf-8", ) as f: negative_scenario_ids = f.readlines() negative_scenario_ids = [id_.strip() for id_ in negative_scenario_ids] with open( os.path.join(data_dir, "negative_sample_utterance_ids", "sharc_negative_question_utterance_ids.txt"), encoding="utf-8", ) as f: negative_question_ids = f.readlines() negative_question_ids = [id_.strip() for id_ in negative_question_ids] data_file = os.path.join(data_dir, "json", f"sharc_{split}.json") with open(data_file, encoding="utf-8") as f: examples = json.load(f) for i, example in enumerate(examples): example.pop("tree_id") example["negative_question"] = example["utterance_id"] in negative_question_ids example["negative_scenario"] = example["utterance_id"] in negative_scenario_ids example["id"] = example["utterance_id"] # the keys are misspelled for one of the example in dev set # fix it here for evidence in example["evidence"]: if evidence.get("followup_answer") is not None: evidence["follow_up_answer"] = evidence.pop("followup_answer") if evidence.get("followup_question") is not None: evidence["follow_up_question"] = evidence.pop("followup_question") yield example["id"], example