File size: 12,357 Bytes
5a28b58 cef953d 5a28b58 0a735a1 637a1b2 5a28b58 637a1b2 5a28b58 637a1b2 5a28b58 637a1b2 cef953d 637a1b2 4eb3e64 637a1b2 0a735a1 637a1b2 92f6e66 cef953d 637a1b2 5a28b58 637a1b2 5a28b58 637a1b2 bdf5f78 637a1b2 5a28b58 cef953d 637a1b2 4eb3e64 637a1b2 0a735a1 637a1b2 5a28b58 637a1b2 5a28b58 637a1b2 5a28b58 637a1b2 bdf5f78 637a1b2 bdf5f78 637a1b2 5a28b58 cef953d 5a28b58 637a1b2 4eb3e64 637a1b2 0a735a1 637a1b2 5a28b58 637a1b2 5a28b58 637a1b2 bdf5f78 637a1b2 5a28b58 cef953d 637a1b2 4eb3e64 637a1b2 0a735a1 637a1b2 0a735a1 637a1b2 5a28b58 637a1b2 5a28b58 637a1b2 e72b290 03ad94d 637a1b2 bdf5f78 637a1b2 03ad94d 637a1b2 03ad94d 637a1b2 03ad94d 5a28b58 66b5d3b 5a28b58 66b5d3b 4ae7884 66b5d3b c87f461 66b5d3b 05e5f66 66b5d3b 05e5f66 66b5d3b 05e5f66 66b5d3b 05e5f66 66b5d3b df23a7a 05e5f66 df23a7a 66b5d3b d5ae9e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
---
configs:
- config_name: ConditionalQA-corpus
data_files:
- split: test
path: ConditionalQA/corpus/*
- config_name: ConditionalQA-corpus_coref
data_files:
- split: test
path: ConditionalQA/corpus_coref/*
- config_name: ConditionalQA-docs
data_files:
- split: test
path: ConditionalQA/docs/*
- config_name: ConditionalQA-keyphrases
data_files:
- split: test
path: ConditionalQA/keyphrases/*
- config_name: ConditionalQA-qrels
data_files:
- split: train
path: ConditionalQA/qrels/train.parquet
- split: dev
path: ConditionalQA/qrels/dev.parquet
- split: test
path: ConditionalQA/qrels/test.parquet
- config_name: ConditionalQA-queries
data_files:
- split: train
path: ConditionalQA/queries/train.parquet
- split: dev
path: ConditionalQA/queries/dev.parquet
- split: test
path: ConditionalQA/queries/test.parquet
- config_name: Genomics-corpus
data_files:
- split: test
path: Genomics/corpus/*
- config_name: Genomics-corpus_coref
data_files:
- split: test
path: Genomics/corpus_coref/*
- config_name: Genomics-docs
data_files:
- split: test
path: Genomics/docs/*
- config_name: Genomics-keyphrases
data_files:
- split: test
path: Genomics/keyphrases/*
- config_name: Genomics-qrels
data_files:
- split: test
path: Genomics/qrels/test.parquet
- config_name: Genomics-queries
data_files:
- split: test
path: Genomics/queries/test.parquet
- config_name: MIRACL-corpus
data_files:
- split: test
path: MIRACL/corpus/*
- config_name: MIRACL-corpus_coref
data_files:
- split: test
path: MIRACL/corpus_coref/*
- config_name: MIRACL-docs
data_files:
- split: test
path: MIRACL/docs/*
- config_name: MIRACL-keyphrases
data_files:
- split: test
path: MIRACL/keyphrases/*
- config_name: MIRACL-qrels
data_files:
- split: train
path: MIRACL/qrels/train.parquet
- split: dev
path: MIRACL/qrels/dev.parquet
- split: test
path: MIRACL/qrels/test.parquet
- config_name: MIRACL-queries
data_files:
- split: train
path: MIRACL/queries/train.parquet
- split: dev
path: MIRACL/queries/dev.parquet
- split: test
path: MIRACL/queries/test.parquet
- config_name: MSMARCO-corpus
data_files:
- split: test
path: MSMARCO/corpus/*
- config_name: MSMARCO-corpus_coref
data_files:
- split: test
path: MSMARCO/corpus_coref/*
- config_name: MSMARCO-docs
data_files:
- split: test
path: MSMARCO/docs/*
- config_name: MSMARCO-keyphrases
data_files:
- split: test
path: MSMARCO/keyphrases/*
- config_name: MSMARCO-qrels
data_files:
- split: train
path: MSMARCO/qrels/train.parquet
- split: dev
path: MSMARCO/qrels/dev.parquet
- split: test
path: MSMARCO/qrels/test.parquet
- config_name: MSMARCO-queries
data_files:
- split: train
path: MSMARCO/queries/train.parquet
- split: dev
path: MSMARCO/queries/dev.parquet
- split: test
path: MSMARCO/queries/test.parquet
- config_name: NaturalQuestions-corpus
data_files:
- split: test
path: NaturalQuestions/corpus/*
- config_name: NaturalQuestions-corpus_coref
data_files:
- split: test
path: NaturalQuestions/corpus_coref/*
- config_name: NaturalQuestions-docs
data_files:
- split: test
path: NaturalQuestions/docs/*
- config_name: NaturalQuestions-keyphrases
data_files:
- split: test
path: NaturalQuestions/keyphrases/*
- config_name: NaturalQuestions-qrels
data_files:
- split: dev
path: NaturalQuestions/qrels/dev.parquet
- split: test
path: NaturalQuestions/qrels/test.parquet
- config_name: NaturalQuestions-queries
data_files:
- split: dev
path: NaturalQuestions/queries/dev.parquet
- split: test
path: NaturalQuestions/queries/test.parquet
- config_name: default
data_files:
- split: test
path: MIRACL/corpus/test-*
- config_name: nq-hard
data_files:
- split: test
path: NaturalQuestions/nq-hard/*
dataset_info:
features:
- name: _id
dtype: string
- name: text
dtype: string
- name: title
dtype: string
- name: doc_id
dtype: string
- name: paragraph_no
dtype: int64
- name: total_paragraphs
dtype: int64
- name: is_candidate
dtype: bool
splits:
- name: test
num_bytes: 14839651493
num_examples: 32893221
download_size: 8123799300
dataset_size: 14839651493
---
# DAPR: Document-Aware Passage Retrieval
This datasets repo contains the queries, passages/documents and judgements for the data used in the [DAPR](https://arxiv.org/abs/2305.13915) paper.
## Overview
For the DAPR benchmark, it contains 5 datasets:
| Dataset | #Queries (test) | #Documents | #Passages
| --- | --- | --- | --- |
| [MS MARCO](https://microsoft.github.io/msmarco/) | 2,722 | 1,359,163 | 2,383,023* |
| [Natural Questions](https://ai.google.com/research/NaturalQuestions) | 3,610 | 108,626 | 2,682,017|
| [MIRACL](https://project-miracl.github.io/) | 799 | 5,758,285 |32,893,221|
| [Genomics](https://dmice.ohsu.edu/trec-gen/) | 62 | 162,259 |12,641,127|
| [ConditionalQA](https://haitian-sun.github.io/conditionalqa/) | 271 | 652 |69,199|
And additionally, NQ-hard, the hard subset of queries from Natural Questions is also included (516 in total). These queries are hard because understanding the document context (e.g. coreference, main topic, multi-hop reasoning, and acronym) is necessary for retrieving the relevant passages.
> Notes: for MS MARCO, its documents do not provide the gold paragraph segmentation and we only segment the document by keeping the judged passages (from the MS MARCO Passage Ranking task) standing out while leaving the rest parts surrounding these passages. These passages are marked by `is_candidate==true`.
> For Natural Questions, the training split is not provided because the duplidate timestamps cannot be compatible with the queries/qrels/corpus format. Please refer to https://public.ukp.informatik.tu-darmstadt.de/kwang/dapr/data/NaturalQuestions/ for the training split.
## Load the dataset
### Loading the passages
One can load the passages like this:
```python
from datasets import load_dataset
dataset_name = "ConditionalQA"
passages = load_dataset("UKPLab/dapr", f"{dataset_name}-corpus", split="test")
for passage in passages:
passage["_id"] # passage id
passage["text"] # passage text
passage["title"] # doc title
passage["doc_id"]
passage["paragraph_no"] # the paragraph number within the document
passage["total_paragraphs"] # how many paragraphs/passages in total in the document
passage["is_candidate"] # is this passage a candidate for retrieval
```
Or strem the dataset without downloading it beforehand:
```python
from datasets import load_dataset
dataset_name = "ConditionalQA"
passages = load_dataset(
"UKPLab/dapr", f"{dataset_name}-corpus", split="test", streaming=True
)
for passage in passages:
passage["_id"] # passage id
passage["text"] # passage text
passage["title"] # doc title
passage["doc_id"]
passage["paragraph_no"] # the paragraph number within the document
passage["total_paragraphs"] # how many paragraphs/passages in total in the document
passage["is_candidate"] # is this passage a candidate for retrieval
```
### Loading the qrels
The qrels split contains the query relevance annotation, i.e., it contains the relevance score for (query, passage) pairs.
```python
from datasets import load_dataset
dataset_name = "ConditionalQA"
qrels = load_dataset("UKPLab/dapr", f"{dataset_name}-qrels", split="test")
for qrel in qrels:
qrel["query_id"] # query id (the text is available in ConditionalQA-queries)
qrel["corpus_id"] # passage id
qrel["score"] # gold judgement
```
We present the NQ-hard dataset in an extended format of the normal qrels with additional columns:
```python
from datasets import load_dataset
qrels = load_dataset("UKPLab/dapr", "nq-hard", split="test")
for qrel in qrels:
qrel["query_id"] # query id (the text is available in ConditionalQA-queries)
qrel["corpus_id"] # passage id
qrel["score"] # gold judgement
# Additional columns:
qrel["query"] # query text
qrel["text"] # passage text
qrel["title"] # doc title
qrel["doc_id"]
qrel["categories"] # list of categories about this query-passage pair
qrel["url"] # url to the document in Wikipedia
```
## Retrieval and Evaluation
The following shows an example, how the dataset can be used to build a semantic search application.
> This example is based on [clddp](https://github.com/kwang2049/clddp/tree/main) (`pip install -U cldpp`). One can further explore this [example](https://github.com/kwang2049/clddp/blob/main/examples/search_fiqa.sh) for convenient multi-GPU exact search.
```python
# Please install cldpp with `pip install -U cldpp`
from clddp.retriever import Retriever, RetrieverConfig, Pooling, SimilarityFunction
from clddp.dm import Separator
from typing import Dict
from clddp.dm import Query, Passage
import torch
import pytrec_eval
import numpy as np
from datasets import load_dataset
# Define the retriever (DRAGON+ from https://arxiv.org/abs/2302.07452)
class DRAGONPlus(Retriever):
def __init__(self) -> None:
config = RetrieverConfig(
query_model_name_or_path="facebook/dragon-plus-query-encoder",
passage_model_name_or_path="facebook/dragon-plus-context-encoder",
shared_encoder=False,
sep=Separator.blank,
pooling=Pooling.cls,
similarity_function=SimilarityFunction.dot_product,
query_max_length=512,
passage_max_length=512,
)
super().__init__(config)
# Load data:
passages = load_dataset("UKPLab/dapr", "ConditionalQA-corpus", split="test")
queries = load_dataset("UKPLab/dapr", "ConditionalQA-queries", split="test")
qrels_rows = load_dataset("UKPLab/dapr", "ConditionalQA-qrels", split="test")
qrels: Dict[str, Dict[str, float]] = {}
for qrel_row in qrels_rows:
qid = qrel_row["query_id"]
pid = qrel_row["corpus_id"]
rel = qrel_row["score"]
qrels.setdefault(qid, {})
qrels[qid][pid] = rel
# Encode queries and passages: (refer to https://github.com/kwang2049/clddp/blob/main/examples/search_fiqa.sh for multi-GPU exact search)
retriever = DRAGONPlus()
retriever.eval()
queries = [Query(query_id=query["_id"], text=query["text"]) for query in queries]
passages = [
Passage(passage_id=passage["_id"], text=passage["text"]) for passage in passages
]
query_embeddings = retriever.encode_queries(queries)
with torch.no_grad(): # Takes around a minute on a V100 GPU
passage_embeddings, passage_mask = retriever.encode_passages(passages)
# Calculate the similarities and keep top-K:
similarity_scores = torch.matmul(
query_embeddings, passage_embeddings.t()
) # (query_num, passage_num)
topk = torch.topk(similarity_scores, k=10)
topk_values: torch.Tensor = topk[0]
topk_indices: torch.LongTensor = topk[1]
topk_value_lists = topk_values.tolist()
topk_index_lists = topk_indices.tolist()
# Run evaluation with pytrec_eval:
retrieval_scores: Dict[str, Dict[str, float]] = {}
for query_i, (values, indices) in enumerate(zip(topk_value_lists, topk_index_lists)):
query_id = queries[query_i].query_id
retrieval_scores.setdefault(query_id, {})
for value, passage_i in zip(values, indices):
passage_id = passages[passage_i].passage_id
retrieval_scores[query_id][passage_id] = value
evaluator = pytrec_eval.RelevanceEvaluator(
query_relevance=qrels, measures=["ndcg_cut_10"]
)
query_performances: Dict[str, Dict[str, float]] = evaluator.evaluate(retrieval_scores)
ndcg = np.mean([score["ndcg_cut_10"] for score in query_performances.values()])
print(ndcg) # 0.21796083196880855
```
## Note
This dataset was created with `datasets==2.15.0`. Make sure to use this or a newer version of the datasets library.
## Citation
If you use the code/data, feel free to cite our publication [DAPR: A Benchmark on Document-Aware Passage Retrieval](https://arxiv.org/abs/2305.13915):
```bibtex
@article{wang2023dapr,
title = "DAPR: A Benchmark on Document-Aware Passage Retrieval",
author = "Kexin Wang and Nils Reimers and Iryna Gurevych",
journal= "arXiv preprint arXiv:2305.13915",
year = "2023",
url = "https://arxiv.org/abs/2305.13915",
}
```
|