Datasets:

Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Libraries:
Datasets
pandas
License:
File size: 9,782 Bytes
c5c471e
a9f3d48
 
 
 
 
 
 
 
 
 
 
 
 
 
c5c471e
48d8034
c5c471e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48d8034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f48f9db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
753cba5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8eb009
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c157e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6db471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
794d5f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d79054c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5c471e
 
 
 
 
48d8034
 
 
 
 
 
f48f9db
 
 
 
 
 
753cba5
 
 
 
d8eb009
 
 
 
 
 
c157e45
 
 
 
 
 
f6db471
 
 
 
794d5f0
 
 
 
 
 
d79054c
 
 
 
c5c471e
a9f3d48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6774368
 
 
a9f3d48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
---
license: cc-by-nd-4.0
language:
  - de
  - zh
  - tr
size_categories:
  - 10K<n<100K
multilinguality:
  - multilingual
pretty_name: M2QA
task_categories:
  - question-answering
task_ids:
  - extractive-qa
dataset_info:
- config_name: m2qa.chinese.creative_writing
  features:
  - name: id
    dtype: string
  - name: question
    dtype: string
  - name: context
    dtype: string
  - name: answers
    struct:
    - name: text
      sequence: string
    - name: answer_start
      sequence: int64
  splits:
  - name: validation
    num_bytes: 1600001
    num_examples: 1500
  download_size: 1559229
  dataset_size: 1600001
- config_name: m2qa.chinese.news
  features:
  - name: id
    dtype: string
  - name: question
    dtype: string
  - name: context
    dtype: string
  - name: answers
    struct:
    - name: text
      sequence: string
    - name: answer_start
      sequence: int64
  splits:
  - name: validation
    num_bytes: 1847465
    num_examples: 1500
  - name: train
    num_bytes: 1135914
    num_examples: 1500
  download_size: 2029530
  dataset_size: 2983379
- config_name: m2qa.chinese.product_reviews
  features:
  - name: id
    dtype: string
  - name: question
    dtype: string
  - name: context
    dtype: string
  - name: answers
    struct:
    - name: text
      sequence: string
    - name: answer_start
      sequence: int64
  splits:
  - name: validation
    num_bytes: 1390223
    num_examples: 1500
  - name: train
    num_bytes: 1358895
    num_examples: 1500
  download_size: 1597724
  dataset_size: 2749118
- config_name: m2qa.german.creative_writing
  features:
  - name: id
    dtype: string
  - name: question
    dtype: string
  - name: context
    dtype: string
  - name: answers
    struct:
    - name: text
      sequence: string
    - name: answer_start
      sequence: int64
  splits:
  - name: validation
    num_bytes: 2083548
    num_examples: 1500
  download_size: 2047695
  dataset_size: 2083548
- config_name: m2qa.german.news
  features:
  - name: id
    dtype: string
  - name: question
    dtype: string
  - name: context
    dtype: string
  - name: answers
    struct:
    - name: text
      sequence: string
    - name: answer_start
      sequence: int64
  splits:
  - name: validation
    num_bytes: 2192833
    num_examples: 1500
  - name: train
    num_bytes: 1527473
    num_examples: 1500
  download_size: 2438496
  dataset_size: 3720306
- config_name: m2qa.german.product_reviews
  features:
  - name: id
    dtype: string
  - name: question
    dtype: string
  - name: context
    dtype: string
  - name: answers
    struct:
    - name: text
      sequence: string
    - name: answer_start
      sequence: int64
  splits:
  - name: validation
    num_bytes: 1652573
    num_examples: 1500
  - name: train
    num_bytes: 1158154
    num_examples: 1500
  download_size: 1830972
  dataset_size: 2810727
- config_name: m2qa.turkish.creative_writing
  features:
  - name: id
    dtype: string
  - name: question
    dtype: string
  - name: context
    dtype: string
  - name: answers
    struct:
    - name: text
      sequence: string
    - name: answer_start
      sequence: int64
  splits:
  - name: validation
    num_bytes: 1845140
    num_examples: 1500
  download_size: 1808676
  dataset_size: 1845140
- config_name: m2qa.turkish.news
  features:
  - name: id
    dtype: string
  - name: question
    dtype: string
  - name: context
    dtype: string
  - name: answers
    struct:
    - name: text
      sequence: string
    - name: answer_start
      sequence: int64
  splits:
  - name: validation
    num_bytes: 2071770
    num_examples: 1500
  - name: train
    num_bytes: 1362485
    num_examples: 1500
  download_size: 2287668
  dataset_size: 3434255
- config_name: m2qa.turkish.product_reviews
  features:
  - name: id
    dtype: string
  - name: question
    dtype: string
  - name: context
    dtype: string
  - name: answers
    struct:
    - name: text
      sequence: string
    - name: answer_start
      sequence: int64
  splits:
  - name: validation
    num_bytes: 1996826
    num_examples: 1500
  download_size: 1958662
  dataset_size: 1996826
configs:
- config_name: m2qa.chinese.creative_writing
  data_files:
  - split: validation
    path: m2qa.chinese.creative_writing/validation-*
- config_name: m2qa.chinese.news
  data_files:
  - split: validation
    path: m2qa.chinese.news/validation-*
  - split: train
    path: m2qa.chinese.news/train-*
- config_name: m2qa.chinese.product_reviews
  data_files:
  - split: validation
    path: m2qa.chinese.product_reviews/validation-*
  - split: train
    path: m2qa.chinese.product_reviews/train-*
- config_name: m2qa.german.creative_writing
  data_files:
  - split: validation
    path: m2qa.german.creative_writing/validation-*
- config_name: m2qa.german.news
  data_files:
  - split: validation
    path: m2qa.german.news/validation-*
  - split: train
    path: m2qa.german.news/train-*
- config_name: m2qa.german.product_reviews
  data_files:
  - split: validation
    path: m2qa.german.product_reviews/validation-*
  - split: train
    path: m2qa.german.product_reviews/train-*
- config_name: m2qa.turkish.creative_writing
  data_files:
  - split: validation
    path: m2qa.turkish.creative_writing/validation-*
- config_name: m2qa.turkish.news
  data_files:
  - split: validation
    path: m2qa.turkish.news/validation-*
  - split: train
    path: m2qa.turkish.news/train-*
- config_name: m2qa.turkish.product_reviews
  data_files:
  - split: validation
    path: m2qa.turkish.product_reviews/validation-*
---

M2QA: Multi-domain Multilingual Question Answering
=====================================================

M2QA (Multi-domain Multilingual Question Answering) is an extractive question answering benchmark for evaluating joint language and domain transfer. M2QA includes 13,500 SQuAD 2.0-style question-answer instances in German, Turkish, and Chinese for the domains of product reviews, news, and creative writing.

This Hugging Face datasets repo accompanies our paper "[M2QA: Multi-domain Multilingual Question Answering](TODO_INSERT_ARXIV_LINK)". If you want an explanation and code to reproduce all our results or want to use our custom-built annotation platform, have a look at our GitHub repository: [https://github.com/adapter-hub/m2qa](https://github.com/adapter-hub/m2qa)


Loading & Decrypting the Dataset
-----------------

Following [Jacovi et al. (2023)](https://aclanthology.org/2023.emnlp-main.308/), we encrypt the validation data to prevent leakage of the dataset into LLM training datasets. But loading the dataset is still easy:

To load the dataset, you can use the following code:
```python
from datasets import load_dataset
from cryptography.fernet import Fernet

# Load the dataset
subset = "m2qa.german.news" # Change to the subset that you want to use
dataset = load_dataset("lenglaender/m2qa", subset) # TODO change to new repo name

# Decrypt it
fernet = Fernet(b"aRY0LZZb_rPnXWDSiSJn9krCYezQMOBbGII2eGkN5jo=")

def decrypt(example):
    example["question"] = fernet.decrypt(example["question"].encode()).decode()
    example["context"] = fernet.decrypt(example["context"].encode()).decode()
    example["answers"]["text"] = [fernet.decrypt(answer.encode()).decode() for answer in example["answers"]["text"]]
    return example

dataset["validation"] = dataset["validation"].map(decrypt)
```

The M2QA dataset is licensed under a "no derivative" agreement. To prevent contamination of LLM training datasets and thus preserve the dataset's usefulness to our research community, please upload the dataset only in encrypted form. Additionally, please use only APIs that do not utilize the data for training.


Overview / Data Splits
----------
All used text passages stem from sources with open licenses. We list the licenses here: [https://github.com/adapter-hub/m2qa/tree/main/m2qa_dataset](https://github.com/adapter-hub/m2qa/tree/main/m2qa_dataset)

We have validation data for the following domains and languages:

| Subset Name | Domain | Language | #Question-Answer instances |
| --- | --- | --- | --- |
| `m2qa.german.product_reviews` | product_reviews | German | 1500 |
| `m2qa.german.creative_writing` | creative_writing | German | 1500 |
| `m2qa.german.news` | news | German | 1500 |
| `m2qa.chinese.product_reviews` | product_reviews | Chinese | 1500 |
| `m2qa.chinese.creative_writing` | creative_writing | Chinese | 1500 |
| `m2qa.chinese.news` | news | Chinese | 1500 |
| `m2qa.turkish.product_reviews` | product_reviews | Turkish | 1500 |
| `m2qa.turkish.creative_writing` | creative_writing | Turkish | 1500 |
| `m2qa.turkish.news` | news | Turkish | 1500 |

### Additional Training Data
We also provide training data for five domain-language pairs, consisting of 1500 question-answer instances each, totalling 7500 training examples. These are the subsets that contain training data:
- `m2qa.chinese.news`
- `m2qa.chinese.product_reviews`
- `m2qa.german.news`
- `m2qa.german.product_reviews`
- `m2qa.turkish.news`

The training data is not encrypted.

Citation
----------

If you use this dataset, please cite our paper:
```
@article{englaender-etal-2024-m2qa,
    title="M2QA: Multi-domain Multilingual Question Answering",
    author={Engl{\"a}nder, Leon and
        Sterz, Hannah and
        Poth, Clifton and
        Pfeiffer, Jonas and
        Kuznetsov, Ilia and
        Gurevych, Iryna},
    journal={arXiv preprint},
    year="2024"
}
```

License
-------

This dataset is distributed under the [CC-BY-ND 4.0 license](https://creativecommons.org/licenses/by-nd/4.0/legalcode).

Following [Jacovi et al. (2023)](https://aclanthology.org/2023.emnlp-main.308/), we decided to publish with a "No Derivatives" license to mitigate the risk of data contamination of crawled training datasets.