Commit
·
9b3cf37
0
Parent(s):
Update files from the datasets library (from 1.0.2)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.0.2
- .gitattributes +27 -0
- dataset_infos.json +1 -0
- dummy/age_classification/1.0.0/dummy_data.zip +3 -0
- dummy/qa/1.0.0/dummy_data.zip +3 -0
- dummy/summarization/1.0.0/dummy_data.zip +3 -0
- dummy/topic_classification/1.0.0/dummy_data.zip +3 -0
- matinf.py +183 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"age_classification": {"description": "MATINF is the first jointly labeled large-scale dataset for classification, question answering and summarization.\nMATINF contains 1.07 million question-answer pairs with human-labeled categories and user-generated question \ndescriptions. Based on such rich information, MATINF is applicable for three major NLP tasks, including classification, \nquestion answering, and summarization. We benchmark existing methods and a novel multi-task baseline over MATINF to \ninspire further research. Our comprehensive comparison and experiments over MATINF and other datasets demonstrate the \nmerits held by MATINF.\n", "citation": "@inproceedings{xu-etal-2020-matinf,\n title = \"{MATINF}: A Jointly Labeled Large-Scale Dataset for Classification, Question Answering and Summarization\",\n author = \"Xu, Canwen and\n Pei, Jiaxin and\n Wu, Hongtao and\n Liu, Yiyu and\n Li, Chenliang\",\n booktitle = \"Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.acl-main.330\",\n pages = \"3586--3596\",\n}\n\n", "homepage": "https://github.com/WHUIR/MATINF", "license": "", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "description": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["0-1\u5c81", "1-2\u5c81", "2-3\u5c81"], "names_file": null, "id": null, "_type": "ClassLabel"}, "id": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "matinf", "config_name": "age_classification", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 33901977, "num_examples": 134852, "dataset_name": "matinf"}, "test": {"name": "test", "num_bytes": 9616194, "num_examples": 38318, "dataset_name": "matinf"}, "validation": {"name": "validation", "num_bytes": 4869685, "num_examples": 19323, "dataset_name": "matinf"}}, "download_checksums": {}, "download_size": 0, "post_processing_size": null, "dataset_size": 48387856, "size_in_bytes": 48387856}, "topic_classification": {"description": "MATINF is the first jointly labeled large-scale dataset for classification, question answering and summarization.\nMATINF contains 1.07 million question-answer pairs with human-labeled categories and user-generated question \ndescriptions. Based on such rich information, MATINF is applicable for three major NLP tasks, including classification, \nquestion answering, and summarization. We benchmark existing methods and a novel multi-task baseline over MATINF to \ninspire further research. Our comprehensive comparison and experiments over MATINF and other datasets demonstrate the \nmerits held by MATINF.\n", "citation": "@inproceedings{xu-etal-2020-matinf,\n title = \"{MATINF}: A Jointly Labeled Large-Scale Dataset for Classification, Question Answering and Summarization\",\n author = \"Xu, Canwen and\n Pei, Jiaxin and\n Wu, Hongtao and\n Liu, Yiyu and\n Li, Chenliang\",\n booktitle = \"Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.acl-main.330\",\n pages = \"3586--3596\",\n}\n\n", "homepage": "https://github.com/WHUIR/MATINF", "license": "", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "description": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 18, "names": ["\u4ea7\u8925\u671f\u4fdd\u5065", "\u513f\u7ae5\u8fc7\u654f", "\u52a8\u4f5c\u53d1\u80b2", "\u5a74\u5e7c\u4fdd\u5065", "\u5a74\u5e7c\u5fc3\u7406", "\u5a74\u5e7c\u65e9\u6559", "\u5a74\u5e7c\u671f\u5582\u517b", "\u5a74\u5e7c\u8425\u517b", "\u5b55\u671f\u4fdd\u5065", "\u5bb6\u5ead\u6559\u80b2", "\u5e7c\u513f\u56ed", "\u672a\u51c6\u7236\u6bcd", "\u6d41\u4ea7\u548c\u4e0d\u5b55", "\u75ab\u82d7\u63a5\u79cd", "\u76ae\u80a4\u62a4\u7406", "\u5b9d\u5b9d\u4e0a\u706b", "\u8179\u6cfb", "\u5a74\u5e7c\u5e38\u89c1\u75c5"], "names_file": null, "id": null, "_type": "ClassLabel"}, "id": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "matinf", "config_name": "topic_classification", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 153326538, "num_examples": 613036, "dataset_name": "matinf"}, "test": {"name": "test", "num_bytes": 43877443, "num_examples": 175363, "dataset_name": "matinf"}, "validation": {"name": "validation", "num_bytes": 21834951, "num_examples": 87519, "dataset_name": "matinf"}}, "download_checksums": {}, "download_size": 0, "post_processing_size": null, "dataset_size": 219038932, "size_in_bytes": 219038932}, "summarization": {"description": "MATINF is the first jointly labeled large-scale dataset for classification, question answering and summarization.\nMATINF contains 1.07 million question-answer pairs with human-labeled categories and user-generated question \ndescriptions. Based on such rich information, MATINF is applicable for three major NLP tasks, including classification, \nquestion answering, and summarization. We benchmark existing methods and a novel multi-task baseline over MATINF to \ninspire further research. Our comprehensive comparison and experiments over MATINF and other datasets demonstrate the \nmerits held by MATINF.\n", "citation": "@inproceedings{xu-etal-2020-matinf,\n title = \"{MATINF}: A Jointly Labeled Large-Scale Dataset for Classification, Question Answering and Summarization\",\n author = \"Xu, Canwen and\n Pei, Jiaxin and\n Wu, Hongtao and\n Liu, Yiyu and\n Li, Chenliang\",\n booktitle = \"Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.acl-main.330\",\n pages = \"3586--3596\",\n}\n\n", "homepage": "https://github.com/WHUIR/MATINF", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "id": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "matinf", "config_name": "summarization", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 181245403, "num_examples": 747888, "dataset_name": "matinf"}, "test": {"name": "test", "num_bytes": 51784189, "num_examples": 213681, "dataset_name": "matinf"}, "validation": {"name": "validation", "num_bytes": 25849900, "num_examples": 106842, "dataset_name": "matinf"}}, "download_checksums": {}, "download_size": 0, "post_processing_size": null, "dataset_size": 258879492, "size_in_bytes": 258879492}, "qa": {"description": "MATINF is the first jointly labeled large-scale dataset for classification, question answering and summarization.\nMATINF contains 1.07 million question-answer pairs with human-labeled categories and user-generated question \ndescriptions. Based on such rich information, MATINF is applicable for three major NLP tasks, including classification, \nquestion answering, and summarization. We benchmark existing methods and a novel multi-task baseline over MATINF to \ninspire further research. Our comprehensive comparison and experiments over MATINF and other datasets demonstrate the \nmerits held by MATINF.\n", "citation": "@inproceedings{xu-etal-2020-matinf,\n title = \"{MATINF}: A Jointly Labeled Large-Scale Dataset for Classification, Question Answering and Summarization\",\n author = \"Xu, Canwen and\n Pei, Jiaxin and\n Wu, Hongtao and\n Liu, Yiyu and\n Li, Chenliang\",\n booktitle = \"Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.acl-main.330\",\n pages = \"3586--3596\",\n}\n\n", "homepage": "https://github.com/WHUIR/MATINF", "license": "", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "id": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "matinf", "config_name": "qa", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 188047511, "num_examples": 747888, "dataset_name": "matinf"}, "test": {"name": "test", "num_bytes": 53708532, "num_examples": 213681, "dataset_name": "matinf"}, "validation": {"name": "validation", "num_bytes": 26931809, "num_examples": 106842, "dataset_name": "matinf"}}, "download_checksums": {}, "download_size": 0, "post_processing_size": null, "dataset_size": 268687852, "size_in_bytes": 268687852}}
|
dummy/age_classification/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3fa3c4b0a93e7baa6d6db03cbe0fe36896c9012fd32c3f84dff5ecbe733abe3d
|
3 |
+
size 6107
|
dummy/qa/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3fa3c4b0a93e7baa6d6db03cbe0fe36896c9012fd32c3f84dff5ecbe733abe3d
|
3 |
+
size 6107
|
dummy/summarization/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3fa3c4b0a93e7baa6d6db03cbe0fe36896c9012fd32c3f84dff5ecbe733abe3d
|
3 |
+
size 6107
|
dummy/topic_classification/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3fa3c4b0a93e7baa6d6db03cbe0fe36896c9012fd32c3f84dff5ecbe733abe3d
|
3 |
+
size 6107
|
matinf.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import absolute_import, division, print_function
|
2 |
+
|
3 |
+
import csv
|
4 |
+
import os
|
5 |
+
|
6 |
+
import six
|
7 |
+
|
8 |
+
import datasets
|
9 |
+
|
10 |
+
|
11 |
+
_CITATION = """\
|
12 |
+
@inproceedings{xu-etal-2020-matinf,
|
13 |
+
title = "{MATINF}: A Jointly Labeled Large-Scale Dataset for Classification, Question Answering and Summarization",
|
14 |
+
author = "Xu, Canwen and
|
15 |
+
Pei, Jiaxin and
|
16 |
+
Wu, Hongtao and
|
17 |
+
Liu, Yiyu and
|
18 |
+
Li, Chenliang",
|
19 |
+
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
|
20 |
+
month = jul,
|
21 |
+
year = "2020",
|
22 |
+
address = "Online",
|
23 |
+
publisher = "Association for Computational Linguistics",
|
24 |
+
url = "https://www.aclweb.org/anthology/2020.acl-main.330",
|
25 |
+
pages = "3586--3596",
|
26 |
+
}
|
27 |
+
|
28 |
+
"""
|
29 |
+
|
30 |
+
_DESCRIPTION = """\
|
31 |
+
MATINF is the first jointly labeled large-scale dataset for classification, question answering and summarization.
|
32 |
+
MATINF contains 1.07 million question-answer pairs with human-labeled categories and user-generated question
|
33 |
+
descriptions. Based on such rich information, MATINF is applicable for three major NLP tasks, including classification,
|
34 |
+
question answering, and summarization. We benchmark existing methods and a novel multi-task baseline over MATINF to
|
35 |
+
inspire further research. Our comprehensive comparison and experiments over MATINF and other datasets demonstrate the
|
36 |
+
merits held by MATINF.
|
37 |
+
"""
|
38 |
+
|
39 |
+
|
40 |
+
class MatinfConfig(datasets.BuilderConfig):
|
41 |
+
"""BuilderConfig for MATINF."""
|
42 |
+
|
43 |
+
def __init__(
|
44 |
+
self,
|
45 |
+
text_features,
|
46 |
+
label_column,
|
47 |
+
label_classes=None,
|
48 |
+
**kwargs,
|
49 |
+
):
|
50 |
+
"""BuilderConfig for MATINF.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
text_features: `dict[string, string]`, map from the name of the feature
|
54 |
+
dict for each text field to the name of the column in the tsv file
|
55 |
+
label_column: `string`, name of the column in the tsv file corresponding
|
56 |
+
to the label
|
57 |
+
label_classes: `list[string]`, the list of classes if the label is
|
58 |
+
categorical. If not provided, then the label will be of type
|
59 |
+
`datasets.Value('float32')`.
|
60 |
+
**kwargs: keyword arguments forwarded to super.
|
61 |
+
"""
|
62 |
+
super(MatinfConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
|
63 |
+
self.text_features = text_features
|
64 |
+
self.label_column = label_column
|
65 |
+
self.label_classes = label_classes
|
66 |
+
|
67 |
+
|
68 |
+
class Matinf(datasets.GeneratorBasedBuilder):
|
69 |
+
VERSION = datasets.Version("1.0.0")
|
70 |
+
|
71 |
+
BUILDER_CONFIGS = [
|
72 |
+
MatinfConfig(
|
73 |
+
name="age_classification",
|
74 |
+
text_features=["question", "description"],
|
75 |
+
label_column="class",
|
76 |
+
label_classes=["0-1岁", "1-2岁", "2-3岁"],
|
77 |
+
),
|
78 |
+
MatinfConfig(
|
79 |
+
name="topic_classification",
|
80 |
+
text_features=["question", "description"],
|
81 |
+
label_column="class",
|
82 |
+
label_classes=[
|
83 |
+
"产褥期保健",
|
84 |
+
"儿童过敏",
|
85 |
+
"动作发育",
|
86 |
+
"婴幼保健",
|
87 |
+
"婴幼心理",
|
88 |
+
"婴幼早教",
|
89 |
+
"婴幼期喂养",
|
90 |
+
"婴幼营养",
|
91 |
+
"孕期保健",
|
92 |
+
"家庭教育",
|
93 |
+
"幼儿园",
|
94 |
+
"未准父母",
|
95 |
+
"流产和不孕",
|
96 |
+
"疫苗接种",
|
97 |
+
"皮肤护理",
|
98 |
+
"宝宝上火",
|
99 |
+
"腹泻",
|
100 |
+
"婴幼常见病",
|
101 |
+
],
|
102 |
+
),
|
103 |
+
MatinfConfig(
|
104 |
+
name="summarization",
|
105 |
+
text_features=["description", "question"],
|
106 |
+
label_column=None,
|
107 |
+
),
|
108 |
+
MatinfConfig(
|
109 |
+
name="qa",
|
110 |
+
text_features=["question", "answer"],
|
111 |
+
label_column=None,
|
112 |
+
),
|
113 |
+
]
|
114 |
+
|
115 |
+
@property
|
116 |
+
def manual_download_instructions(self):
|
117 |
+
return (
|
118 |
+
"To use MATINF you have to download it manually. Please fill this google form ("
|
119 |
+
"https://forms.gle/nkH4LVE4iNQeDzsc9). You will receive a download link and a password once you "
|
120 |
+
"complete the form. Please extract all files in one folder and load the dataset with: "
|
121 |
+
"`datasets.load_dataset('matinf', data_dir='path/to/folder/folder_name')`"
|
122 |
+
)
|
123 |
+
|
124 |
+
def _info(self):
|
125 |
+
features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features}
|
126 |
+
if self.config.label_classes:
|
127 |
+
features["label"] = datasets.features.ClassLabel(names=self.config.label_classes)
|
128 |
+
features["id"] = datasets.Value("int32")
|
129 |
+
return datasets.DatasetInfo(
|
130 |
+
description=_DESCRIPTION,
|
131 |
+
features=datasets.Features(features),
|
132 |
+
homepage="https://github.com/WHUIR/MATINF",
|
133 |
+
citation=_CITATION,
|
134 |
+
)
|
135 |
+
|
136 |
+
def _split_generators(self, dl_manager):
|
137 |
+
"""Returns SplitGenerators."""
|
138 |
+
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
|
139 |
+
|
140 |
+
if not os.path.exists(data_dir):
|
141 |
+
raise FileNotFoundError(
|
142 |
+
"{} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('matinf', data_dir=...)` that includes files unzipped from the MATINF zip. Manual download instructions: {}".format(
|
143 |
+
data_dir, self.manual_download_instructions
|
144 |
+
)
|
145 |
+
)
|
146 |
+
return [
|
147 |
+
datasets.SplitGenerator(
|
148 |
+
name=datasets.Split.TRAIN,
|
149 |
+
gen_kwargs={"filepath": os.path.join(data_dir, "train.csv")},
|
150 |
+
),
|
151 |
+
datasets.SplitGenerator(
|
152 |
+
name=datasets.Split.TEST,
|
153 |
+
gen_kwargs={"filepath": os.path.join(data_dir, "test.csv")},
|
154 |
+
),
|
155 |
+
datasets.SplitGenerator(
|
156 |
+
name=datasets.Split.VALIDATION,
|
157 |
+
gen_kwargs={"filepath": os.path.join(data_dir, "dev.csv")},
|
158 |
+
),
|
159 |
+
]
|
160 |
+
|
161 |
+
def _generate_examples(self, filepath):
|
162 |
+
"""Yields examples."""
|
163 |
+
label_classes = self.config.label_classes
|
164 |
+
|
165 |
+
with open(filepath, encoding="utf8") as f:
|
166 |
+
reader = csv.DictReader(f)
|
167 |
+
|
168 |
+
for n, row in enumerate(reader):
|
169 |
+
example = {feat: row[feat] for feat in self.config.text_features}
|
170 |
+
example["id"] = row["id"]
|
171 |
+
|
172 |
+
if self.config.label_column:
|
173 |
+
label = row[self.config.label_column]
|
174 |
+
if label_classes and label not in label_classes:
|
175 |
+
continue # Split age/topic classification
|
176 |
+
example["label"] = label
|
177 |
+
|
178 |
+
# Filter out corrupted rows.
|
179 |
+
for value in six.itervalues(example):
|
180 |
+
if value is None:
|
181 |
+
break
|
182 |
+
else:
|
183 |
+
yield example["id"], example
|