File size: 7,468 Bytes
64e932e
 
 
eb449d2
64e932e
eb449d2
64e932e
eb449d2
64e932e
eb449d2
64e932e
eb449d2
64e932e
eb449d2
64e932e
eb449d2
64e932e
eb449d2
 
64e932e
eb449d2
64e932e
 
eb449d2
 
 
 
 
 
 
 
64e932e
 
 
 
cedcbae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64e932e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1519c7
64e932e
 
 
eb449d2
64e932e
 
 
 
 
 
 
 
 
 
 
 
e1519c7
64e932e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb449d2
64e932e
 
 
 
 
 
 
 
 
 
eb449d2
64e932e
 
e1519c7
 
 
eb449d2
 
 
 
e1519c7
eb449d2
e1519c7
 
4dcc17f
e1519c7
eb449d2
e1519c7
64e932e
e1519c7
eb449d2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
---
annotations_creators: []
language:
- en
language_creators:
- found
license:
- mit
multilinguality:
- monolingual
paperswithcode_id: acronym-identification
pretty_name: acl-ocl-corpus
size_categories:
- 10K<n<100K
source_datasets:
- original
tags:
- research papers
- acl
task_categories:
- token-classification
task_ids: []
train-eval-index:
- col_mapping:
    labels: tags
    tokens: tokens
  config: default
  splits:
    eval_split: test
  task: token-classification
  task_id: entity_extraction
---

# Dataset Card for ACL Anthology Corpus

[![License](https://img.shields.io/badge/License-CC%20BY--NC%204.0-lightgrey.svg)](https://creativecommons.org/licenses/by-nc-sa/4.0/)

This repository provides full-text and metadata to the ACL anthology collection (80k articles/posters as of September 2022) also including .pdf files and grobid extractions of the pdfs.

## How is this different from what ACL anthology provides and what already exists?

- We provide pdfs, full-text, references and other details extracted by grobid from the PDFs while [ACL Anthology](https://aclanthology.org/anthology+abstracts.bib.gz) only provides abstracts.
- There exists a similar corpus call [ACL Anthology Network](https://clair.eecs.umich.edu/aan/about.php) but is now showing its age with just 23k papers from Dec 2016.


```python
>>> import pandas as pd
>>> df = pd.read_parquet('acl-publication-info.74k.parquet')
>>> df
         acl_id                                           abstract                                          full_text  corpus_paper_id                                  pdf_hash  ...  number volume journal editor  isbn
0      O02-2002  There is a need to measure word similarity whe...  There is a need to measure word similarity whe...         18022704  0b09178ac8d17a92f16140365363d8df88c757d0  ...    None   None    None   None  None
1      L02-1310                                                                                                                8220988  8d5e31610bc82c2abc86bc20ceba684c97e66024  ...    None   None    None   None  None
2      R13-1042  Thread disentanglement is the task of separati...  Thread disentanglement is the task of separati...         16703040  3eb736b17a5acb583b9a9bd99837427753632cdb  ...    None   None    None   None  None
3      W05-0819  In this paper, we describe a word alignment al...  In this paper, we describe a word alignment al...          1215281  b20450f67116e59d1348fc472cfc09f96e348f55  ...    None   None    None   None  None
4      L02-1309                                                                                                               18078432  011e943b64a78dadc3440674419821ee080f0de3  ...    None   None    None   None  None
...         ...                                                ...                                                ...              ...                                       ...  ...     ...    ...     ...    ...   ...
73280  P99-1002  This paper describes recent progress and the a...  This paper describes recent progress and the a...           715160  ab17a01f142124744c6ae425f8a23011366ec3ee  ...    None   None    None   None  None
73281  P00-1009  We present an LFG-DOP parser which uses fragme...  We present an LFG-DOP parser which uses fragme...          1356246  ad005b3fd0c867667118482227e31d9378229751  ...    None   None    None   None  None
73282  P99-1056  The processes through which readers evoke ment...  The processes through which readers evoke ment...          7277828  924cf7a4836ebfc20ee094c30e61b949be049fb6  ...    None   None    None   None  None
73283  P99-1051  This paper examines the extent to which verb d...  This paper examines the extent to which verb d...          1829043  6b1f6f28ee36de69e8afac39461ee1158cd4d49a  ...    None   None    None   None  None
73284  P00-1013  Spoken dialogue managers have benefited from u...  Spoken dialogue managers have benefited from u...         10903652  483c818c09e39d9da47103fbf2da8aaa7acacf01  ...    None   None    None   None  None

[73285 rows x 21 columns]
```



## Table of Contents

- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
- [Dataset Creation](#dataset-creation)
  - [Source Data](#source-data)
- [Additional Information](#additional-information)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Repository:** https://github.com/shauryr/ACL-anthology-corpus
- **Point of Contact:** [email protected]

### Dataset Summary

Dataframe with extracted metadata (table below with details) and full text of the collection for analysis : **size 489M**

### Languages

en, zh and others

## Dataset Structure

Dataframe

### Data Instances

Each row is a paper from ACL anthology

### Data Fields

|  **Column name**  |        **Description**        |
| :---------------: | :---------------------------: |
|     `acl_id`      |         unique ACL id         |
|    `abstract`     | abstract extracted by GROBID  |
|    `full_text`    | full text extracted by GROBID |
| `corpus_paper_id` |      Semantic Scholar ID      |
|    `pdf_hash`     |     sha1 hash of the pdf      |
|   `numcitedby`    |  number of citations from S2  |
|       `url`       |      link of publication      |
|    `publisher`    |               -               |
|     `address`     |     Address of conference     |
|      `year`       |               -               |
|      `month`      |               -               |
|    `booktitle`    |               -               |
|     `author`      |        list of authors        |
|      `title`      |        title of paper         |
|      `pages`      |               -               |
|       `doi`       |               -               |
|     `number`      |               -               |
|     `volume`      |               -               |
|     `journal`     |               -               |
|     `editor`      |               -               |
|      `isbn`       |               -               |

## Dataset Creation

The corpus has all the papers in ACL anthology - as of September'22

### Source Data

- [ACL Anthology](aclanthology.org)
- [Semantic Scholar](semanticscholar.org)

# Additional Information

### Licensing Information

The ACL OCL corpus is released under the [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/). By using this corpus, you are agreeing to its usage terms.

### Citation Information

If you use this corpus in your research please use the following BibTeX entry:

    @Misc{acl-ocl,
        author =       {Shaurya Rohatgi, Yanxia Qin, Benjamin Aw, Niranjana Unnithan, Min-Yen Kan},
        title =        {The ACL OCL Corpus: advancing Open science in Computational Linguistics},
        howpublished = {arXiv},
        year =         {2022},
        url =          {https://huggingface.co/datasets/ACL-OCL/ACL-OCL-Corpus}
    }

### Acknowledgements

We thank Semantic Scholar for providing access to the citation-related data in this corpus.

### Contributions

Thanks to [@shauryr](https://github.com/shauryr), [Yanxia Qin](https://github.com/qolina) and [Benjamin Aw](https://github.com/Benjamin-Aw-93) for adding this dataset.