Benjamin Aw
Add updated pkl file v3
6fa4bc9
{
"paper_id": "S13-2000",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T15:41:56.851465Z"
},
"title": "",
"authors": [],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "",
"pdf_parse": {
"paper_id": "S13-2000",
"_pdf_hash": "",
"abstract": [],
"body_text": [
{
"text": "Building on the momentum generated by the spectacular success of the Joint Conference on Lexical and Computational Semantics (*SEM) in 2012, bringing together the ACL SIGLEX and ACL SIGSEM communities, we are delighted to bring to you the second edition of the conference, as a top-tier showcase of the latest research in computational semantics. We accepted 14 papers (11 long and 3 short) for publication at the conference, out of a possible 45 submissions (a 31% acceptance rate). This is on par with some of the most competitive conferences in computational linguistics, and we are confident will set the stage for a scintillating conference.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction to *SEM 2013",
"sec_num": null
},
{
"text": "This year, we started a tradition that we intend to maintain in all future iterations of the conference in integrating a shared task into the conference. The shared task was selected by an independent committee comprising members from SIGLEX and SIGSEM, based on an open call for proposals, and revolved around Semantic Textual Similarity (STS). The task turned out to be a huge success with 34 teams participating, submitting a total of 103 system runs.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction to *SEM 2013",
"sec_num": null
},
{
"text": "Day One, June 13th: Day Two, June 14th:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "*SEM 2013 features a number of highlight events:",
"sec_num": null
},
{
"text": "\u2022 A",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "*SEM 2013 features a number of highlight events:",
"sec_num": null
},
{
"text": "\u2022 In the morning, a keynote address by David Forsyth from the Computer Science Department at the University of Illinois at Urbana Champagne on issues of Vision and Language. It promises to be an extremely stimulating speech, and is not to be missed.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "*SEM 2013 features a number of highlight events:",
"sec_num": null
},
{
"text": "\u2022 In the early afternoon, a panel on the relation between and future of *SEM, the *SEM Shared Task, SemEval and other events on computational semantics. In this panel, we will attempt to clarify and explain as well as devise plans for these different entities.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "*SEM 2013 features a number of highlight events:",
"sec_num": null
},
{
"text": "\u2022 Finally, at the end of the day, an award ceremony for the Best Long Paper and Best Short Paper.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "*SEM 2013 features a number of highlight events:",
"sec_num": null
},
{
"text": "iii As always, *SEM 2013 would not have been possible without the considerable efforts of our area chairs and an impressive assortment of reviewers, drawn from the ranks of SIGLEX and SIGSEM, and the computational semantics community at large. We would also like to acknowledge the generous support for the STS Task from the DARPA Deft Program.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "*SEM 2013 features a number of highlight events:",
"sec_num": null
},
{
"text": "The Semantic Evaluation (SemEval) series of workshops focus on the evaluation and comparison of systems that can analyse diverse semantic phenomena in text with the aim of extending the current state-of-the-art in semantic analysis and creating high quality annotated datasets in a range of increasingly challenging problems in natural language semantics. SemEval provides an exciting forum for researchers to propose challenging research problems in semantics and to build systems/techniques to address such research problems.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction to SemEval",
"sec_num": null
},
{
"text": "SemEval-2013 is the seventh workshop in the series. The first three workshops, SensEval-1 (1998), SensEval-2 (2001) , and SensEval-3 (2004), were focused on word sense disambiguation, each time growing in the number of languages offered in the tasks and in the number of participating teams. ",
"cite_spans": [
{
"start": 98,
"end": 115,
"text": "SensEval-2 (2001)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction to SemEval",
"sec_num": null
},
{
"text": "v",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction to SemEval",
"sec_num": null
},
{
"text": "About 100 teams submitted more than 300 systems for the 12 tasks of SemEval-2013. This volume contains both Task Description papers that describe each of the above tasks and System Description papers that describe the systems that participated in the above tasks. A total of 12 task description papers and 101 system description papers are included in this volume.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction to SemEval",
"sec_num": null
},
{
"text": "We are indebted to all program committee members for their high quality, elaborate and thoughtful reviews. The papers in this proceedings have surely benefited from this feedback. We are grateful to *SEM 2013 and NAACL-HLT 2013 conference organizers for local organization and the forum. We most gratefully acknowledge the support of our sponsors, the ACL Special Interest Group on the Lexicon (SIGLEX) and the ACL Special Interest Group on Computational Semantics (SIGSEM). ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction to SemEval",
"sec_num": null
}
],
"back_matter": [
{
"text": "We hope you enjoy *SEM 2013, and look forward to engaging with all of you, Mona Diab (The George Washington University, General Chair) Timothy Baldwin (The University of Mebourne, Program Committee Co-Chair) Marco Baroni (University of Trento, Program Committee Co-Chair) Program Committee for Volume 1:Nabil Abdullah (University of Windsor), Eneko Agirre (University of the Basque Country), Nicholas Asher (CNRS Institut de Recherche en Informatique de Toulouse), Eser Ayg\u00fcn, Timothy Baldwin (The University of Melbourne), Eva Banik (Computational Linguistics Ltd), Marco Baroni (University of Trento), Alberto Barr\u00f3n-Cede\u00f1o (Universitat Polit\u00e8cnica de Catalunya), Roberto Basili (University of Roma, Tor Vergata), Miroslav Batchkarov (University of Sussex), Cosmin Bejan, Sabine Bergler (Concordia University), Shane Bergsma (Johns Hopkins University), Steven Bethard (University of Colorado Boulder), Ergun Bicici (Centre for Next Generation Localisation), Chris Biemann (TU Darmstadt), Eduardo Blanco (Lymba Corporation), Gemma Boleda (The University of Texas at Austin), Francis Bond (Nanyang Technological University), Paul Buitelaar (DERI, National University of Ireland, Galway), Razvan Bunescu (Ohio University), Harry Bunt (Tilburg University), Aljoscha Burchardt (DFKI), Davide Buscaldi (LIPN, Universit\u00e9 Paris 13), Olivia Buzek (Johns Hopkins University), Nicoletta Calzolari (ILC-CNR), Annalina Caputo (Dept. ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "acknowledgement",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Wucheng Road 92",
"authors": [
{
"first": "Wang (shanxi Univ ; Xinglong",
"middle": [],
"last": "Ruibo",
"suffix": ""
},
{
"first": "Yi-Chia",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Wang",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ruibo WANG (Shanxi Univ. Wucheng Road 92, Taiyuan, Shanxi), Sai Wang (Shanxi University), Xinglong Wang, Yi-Chia Wang (Carnegie Mellon University), Bonnie Webber (University of Edinburgh), Julie Weeds (University of Sussex), Ben Wellner (The MITRE Corporation), Jan Wiebe (University of Pittsburgh),",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Eric Yeh (SRI International), Michael Yip (The Hong Kong Institute of Education)",
"authors": [
{
"first": "Theresa",
"middle": [],
"last": "Wilson",
"suffix": ""
},
{
"first": "(",
"middle": [],
"last": "Hltcoe)",
"suffix": ""
},
{
"first": "Kristian",
"middle": [],
"last": "Woodsend",
"suffix": ""
},
{
"first": ";",
"middle": [],
"last": "",
"suffix": ""
},
{
"first": "Jian",
"middle": [],
"last": "Xu",
"suffix": ""
}
],
"year": null,
"venue": "Feiyu Xu (DFKI LT Lab)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Michael Wiegand (Saarland University), Theresa Wilson (JHU HLTCOE), Kristian Woodsend (University of Edinburgh), Dekai Wu (HKUST), Stephen Wu (Mayo Clinic), Feiyu Xu (DFKI LT Lab), Jian Xu (The Hong Kong Polytechnic University), Eric Yeh (SRI International), Michael Yip (The Hong Kong Institute of Education), Deniz Yuret (Koc University), Roberto Zamparelli (Universit\u00e0 di Trento), Fabio Massimo Zanzotto (University of Rome \"Tor Vergata\"), Luke Zettlemoyer (University of Washington), and Hermann Ziak (Know-Center GmbH).",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Kevin Cohen (Computational Bioscience Program",
"authors": [
{
"first": "Luisa",
"middle": [],
"last": "Bentivogli",
"suffix": ""
},
{
"first": ";",
"middle": [],
"last": "Alberto Diaz ;",
"suffix": ""
},
{
"first": "Qi",
"middle": [],
"last": "Han",
"suffix": ""
},
{
"first": "Sergio",
"middle": [],
"last": "Jimenez",
"suffix": ""
}
],
"year": null,
"venue": "Nikolaos Malandrakis (Signal Analysis and Interpretation Laboratory (SAIL)",
"volume": "2",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Program Committee for Volume 2: Ameeta Agrawal (York University), Itziar Aldabe (University of the Basque Country (UPV/EHU)), Marianna Apidianaki (LIMSI-CNRS), Pedro Balage Filho (University of S\u00e3o Paulo), Alexandra Balahur (European Commission Joint Research Centre), Timothy Baldwin (The University of Melbourne), Marco Baroni (University of Trento), Osman Baskaya (Koc University), Emanuele Bastianelli (University of Roma, Tor Vergata), Wesley Baugh (University of North Texas), Lee Becker (Avaya Labs), Satyabrata Behera (IIT Bombay), Luisa Bentivogli (Fondazione Bruno Kessler), Steven Bethard (University of Colorado Boulder), Ergun Bicici (Centre for Next Generation Localisation), Jari Bj\u00f6rne (University of Turku), Tamara Bobic (Fraunhofer SCAI), Lorna Byrne (University College Dublin), Marine Carpuat (National Research Council), Giuseppe Castellucci (University of Roma, Tor Vergata), Tawunrat Chalothorn (University of Northumbria at Newcastle), Nate Chambers (US Naval Academy), Angel Chang (Stanford University), Karan Chawla (Indian Institute of Technology Bombay), Colin Cherry (NRC), Md. Faisal Mahbub Chowdhury (University of Trento, Italy and FBK-irst, Italy), Sam Clark (Swarthmore College), Kevin Cohen (Computational Bioscience Program, U. Colorado School of Medicine), Paul Cook (The University of Melbourne), Francisco M Couto (University of Lisbon), Leon Derczynski (University of Sheffield), Mohamed Dermouche (AMI Software R&D / Universit\u00e9 de Lyon, ERIC (Lyon 2)), ALBERTO DIAZ (Universidad Complutense de Madrid), Myroslava Dzikovska (University of Edinburgh), Michele Filannino (University of Manchester), Jo\u00e3o Filgueiras (INESC-ID), Bj\u00f6rn Gamb\u00e4ck (Norwegian University of Science and Technology), Martin Gleize (LIMSI-CNRS), Yvette Graham (The University of Melbourne, Centre for Next Generation Localisation), Tobias G\u00fcnther (University of Gothenburg), Yoan Guti\u00e9rrez (University of Matanzas), Hussam Hamdan (AMU), Qi Han (IMS, University of Stuttgart), Viktor Hangya (University of Szeged), Mike Heilman (Educational Testing Service), David Hope (University of Sussex), Diana Inkpen (University of Ottawa), Harshit Jain (International Institute of Information Technology, Hyderabad), Sergio Jimenez (National University of Colombia), David Jurgens (University of California, Los Angeles), Ioannis Klapaftis, Nadin K\u00f6kciyan (Bogazici University), Oleksandr Kolomiyets (KU Leuven), Ioannis Korkontzelos (National Centre for Text Mining, The University of Manchester), Milen Kouylekov (CELI S.R.L.), Amitava Kundu (Jadavpur University), Man Lan (ECNU), Natsuda Laokulrat (The University of Tokyo), Alberto Lavelli (FBK-irst), Els Lefever (LT3, Hogeschool Gent), Clement Levallois (Erasmus University Rotterdam), Omer Levy (Bar-Ilan University), Nikolaos Malandrakis (Signal Analysis and Interpretation Laboratory (SAIL), USC, Los Angeles, CA 90089, USA), Suresh Manandhar (University of York), Morgane Marchand (CEA-LIST / CNRS-LIMSI), Eugenio Mart\u00ednez-C\u00e1mara (University of Ja\u00e9n), Saif Mohammad (National Research Council Canada), Preslav Nakov (Qatar Computing Research Institute, Qatar Foundation), Roberto Navigli (Sapienza University of Rome), Sapna Negi (University of Malta), Matteo Negri (Fondazione Bruno Kessler), Diarmuid\u00d3 S\u00e9aghdha (University of Cambridge), IFEYINWA OKOYE (University of Colorado at Boulder), Reynier Ortega Bueno (CERPAMID, Cuba), Niels Ott (Eberhard Karls Universit\u00e4t T\u00fcbingen), Prabu palanisamy (Serendio), John Pavlopoulos (Athens x University of Economics and Business), Ted Pedersen (University of Minnesota, Duluth), David Pinto (Benem\u00e9rita Universidad Aut\u00f3noma de Puebla), Matt Post (Johns Hopkins University), Thomas Proisl (FAU Erlangen-N\u00fcrnberg), Majid Rastegar-Mojarad (University of Wisconsin-Milwaukee), Hilke Reckman (SAS Institute), Robert Remus (University of Leipzig), Tim Rockt\u00e4schel (Humboldt-Universit\u00e4t zu Berlin, Knowledge Management in Bioinformatics, Unter den Linden 6, Berlin, 10099), Carlos Rodriguez-Penagos (Barcelona Media Innovaci\u00f3), Sara Rosenthal (Columbia University), Alex Rudnick (Indiana University), Jose Saias (Departamento de Informatica -Universidade de Evora), Daniel Sanchez-Cisneros (Universidad Carlos III de Madrid), Didier Schwab (Univ. Grenoble Alpes), Isabel Segura-Bedmar (Carlos III University of Madrid), Reda Siblini (Concordia University), Amanda Stent (AT&T Labs -Research), Jannik Str\u00f6tgen (Heidelberg University), Nitesh Surtani (IIIT-H), Liling Tan (Nanyang Technological University), Philippe Thomas (Humboldt-Universit\u00e4t zu Berlin, Knowledge Management in Bioinformatics, Unter den Linden 6,",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Vanni Zavarella (Joint Research Center -European Commission), Zhemin Zhu",
"authors": [
{
"first": "",
"middle": [],
"last": "Berlin",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Berlin), Tim Van de Cruys (IRIT & CNRS), Maarten van Gompel (Radboud University Nijmegen), Daniele Vannella (Sapienza University of Rome), Yannick Versley (University of Tuebingen), Christian Wartena (Hochschule Hannover -University of Applied Sciences and Arts), Deniz Yuret (Koc University), Vanni Zavarella (Joint Research Center -European Commission), Zhemin Zhu (CTIT Database Group, EEMCS, University of Twente), and Hans-Peter Zorn (UKP Lab, Technische Universit\u00e4t Darmstadt).",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "UTTime: Temporal Relation Classification using Deep Syntactic Features Natsuda Laokulrat",
"authors": [
{
"first": "Makoto",
"middle": [],
"last": "Miwa",
"suffix": ""
},
{
"first": "Yoshimasa",
"middle": [],
"last": "Tsuruoka",
"suffix": ""
},
{
"first": "Takashi",
"middle": [
". . . . ."
],
"last": "Chikayama",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "UTTime: Temporal Relation Classification using Deep Syntactic Features Natsuda Laokulrat, Makoto Miwa, Yoshimasa Tsuruoka and Takashi Chikayama . . . . . . . . . . . . 88",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Paraphrases Detection Based on Semantic Distance H\u00e9ctor D\u00e1vila",
"authors": [
{
"first": "Alexander",
"middle": [],
"last": "Umcc Dlsi-(eps ; Antonio Fern\u00e1ndez Orqu\u00edn",
"suffix": ""
},
{
"first": "Yoan",
"middle": [],
"last": "Ch\u00e1vez",
"suffix": ""
},
{
"first": "Armando",
"middle": [],
"last": "Guti\u00e9rrez",
"suffix": ""
},
{
"first": "Jos\u00e9",
"middle": [
"I"
],
"last": "Collazo",
"suffix": ""
},
{
"first": "Andr\u00e9s",
"middle": [],
"last": "Abreu",
"suffix": ""
},
{
"first": "Rafael",
"middle": [],
"last": "Montoyo",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "Mu\u00f1oz",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "UMCC DLSI-(EPS): Paraphrases Detection Based on Semantic Distance H\u00e9ctor D\u00e1vila, Antonio Fern\u00e1ndez Orqu\u00edn, Alexander Ch\u00e1vez, Yoan Guti\u00e9rrez, Armando Collazo, Jos\u00e9 I. Abreu, Andr\u00e9s Montoyo and Rafael Mu\u00f1oz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Similarity of Words and Compositional Phrases using Latent Vector Weighting Tim Van de Cruys, Stergos Afantenos and",
"authors": [
{
"first": "Philippe",
"middle": [],
"last": "Muller",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "MELODI: Semantic Similarity of Words and Compositional Phrases using Latent Vector Weighting Tim Van de Cruys, Stergos Afantenos and Philippe Muller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "IIRG: A Naive Approach to Evaluating Phrasal Semantics Lorna Byrne, Caroline Fenlon and",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "IIRG: A Naive Approach to Evaluating Phrasal Semantics Lorna Byrne, Caroline Fenlon and John Dunnion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "UNAL: Discriminating between Literal and Figurative Phrasal Usage Using Distributional Statistics and POS tags",
"authors": [
{
"first": "Reda",
"middle": [],
"last": "Clac",
"suffix": ""
},
{
"first": "Leila",
"middle": [],
"last": "Siblini",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "Kosseim",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "ClaC: Semantic Relatedness of Words and Phrases Reda Siblini and Leila Kosseim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 UNAL: Discriminating between Literal and Figurative Phrasal Usage Using Distributional Statistics and POS tags Sergio Jimenez, Claudia Becerra and Alexander Gelbukh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "ECNUCS: Recognizing Cross-lingual Textual Entailment Using Multiple Text Similarity and Text Difference Measures Jiang",
"authors": [
{
"first": "Man",
"middle": [],
"last": "Zhao",
"suffix": ""
},
{
"first": "Zheng-Yu",
"middle": [],
"last": "Lan",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "Niu",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "ECNUCS: Recognizing Cross-lingual Textual Entailment Using Multiple Text Similarity and Text Dif- ference Measures Jiang Zhao, Man Lan and Zheng-Yu Niu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "BUAP: N-gram based Feature Evaluation for the Cross-Lingual Textual Entailment Task Darnes Vilari\u00f1o",
"authors": [
{
"first": "David",
"middle": [],
"last": "Pinto",
"suffix": ""
},
{
"first": "Saul",
"middle": [],
"last": "Le\u00f3n",
"suffix": ""
},
{
"first": "Yuridiana",
"middle": [],
"last": "Aleman",
"suffix": ""
},
{
"first": "Helena",
"middle": [
". . . . ."
],
"last": "G\u00f3mez",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "BUAP: N-gram based Feature Evaluation for the Cross-Lingual Textual Entailment Task Darnes Vilari\u00f1o, David Pinto, Saul Le\u00f3n, Yuridiana Aleman and Helena G\u00f3mez . . . . . . . . . . . . 124",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "ALTN: Word Alignment Features for Cross-lingual Textual",
"authors": [
{
"first": "Marco",
"middle": [],
"last": "Entailment",
"suffix": ""
},
{
"first": "Matteo",
"middle": [],
"last": "Turchi",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "Negri",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "ALTN: Word Alignment Features for Cross-lingual Textual Entailment Marco Turchi and Matteo Negri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "SemEval-2013 Task 4: Free Paraphrases of Noun Compounds Iris Hendrickx, Zornitsa Kozareva, Preslav Nakov, Diarmuid\u00d3 S\u00e9aghdha, Stan Szpakowicz and",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "SemEval-2013 Task 4: Free Paraphrases of Noun Compounds Iris Hendrickx, Zornitsa Kozareva, Preslav Nakov, Diarmuid\u00d3 S\u00e9aghdha, Stan Szpakowicz and",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "138 MELODI: A Supervised Distributional Approach for Free Paraphrasing of Noun Compounds Tim Van de Cruys, Stergos Afantenos and Philippe Muller",
"authors": [
{
"first": "Tony",
"middle": [
". . . . ."
],
"last": "Veale",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tony Veale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 MELODI: A Supervised Distributional Approach for Free Paraphrasing of Noun Compounds Tim Van de Cruys, Stergos Afantenos and Philippe Muller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Compound Paraphrasing with a Language Model and Discriminative Reranking Yannick Versley",
"authors": [
{
"first": "",
"middle": [],
"last": "Sfs-Tue",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "SFS-TUE: Compound Paraphrasing with a Language Model and Discriminative Reranking Yannick Versley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "A Corpus-Driven Co-occurrence Based Probabilistic Model for Noun Compound Paraphrasing Nitesh Surtani",
"authors": [
{
"first": "",
"middle": [],
"last": "Iiit-H ; Arpita",
"suffix": ""
},
{
"first": "Urmi",
"middle": [],
"last": "Batra",
"suffix": ""
},
{
"first": "Soma",
"middle": [],
"last": "Ghosh",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "Paul",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "IIIT-H: A Corpus-Driven Co-occurrence Based Probabilistic Model for Noun Compound Paraphrasing Nitesh Surtani, Arpita Batra, Urmi Ghosh and Soma Paul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "158 xiv XLING: Matching Query Sentences to a Parallel Corpus using Topic Models for WSD Liling Tan and Francis Bond",
"authors": [
{
"first": "-",
"middle": [],
"last": "Semeval",
"suffix": ""
}
],
"year": 2013,
"venue": "CL-WSD Using Markov Random Fields for SemEval-2013 Task",
"volume": "10",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "SemEval-2013 Task 10: Cross-lingual Word Sense Disambiguation Els Lefever and V\u00e9ronique Hoste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 xiv XLING: Matching Query Sentences to a Parallel Corpus using Topic Models for WSD Liling Tan and Francis Bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 HLTDI: CL-WSD Using Markov Random Fields for SemEval-2013 Task 10",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "178 WSD2: Parameter optimisation for Memory-based Cross-Lingual Word-Sense Disambiguation Maarten van Gompel and Antal van den Bosch",
"authors": [
{
"first": ".",
"middle": [
"."
],
"last": "Apidianaki",
"suffix": ""
}
],
"year": null,
"venue": "LIMSI : Cross-lingual Word Sense Disambiguation using Translation Sense Clustering Marianna",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "LIMSI : Cross-lingual Word Sense Disambiguation using Translation Sense Clustering Marianna Apidianaki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 WSD2: Parameter optimisation for Memory-based Cross-Lingual Word-Sense Disambiguation Maarten van Gompel and Antal van den Bosch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 NRC: A Machine Translation Approach to Cross-Lingual Word Sense Disambiguation (SemEval-2013 Task 10)",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Word Sense Induction and Disambiguation within an End-User Application Roberto Navigli and Daniele Vannella",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "SemEval-2013 Task 11: Word Sense Induction and Disambiguation within an End-User Application Roberto Navigli and Daniele Vannella . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "202 SATTY : Word Sense Induction Application in Web Search Clustering Satyabrata Behera, Upasana Gaikwad, Ramakrishna Bairi and Ganesh Ramakrishnan",
"authors": [
{
"first": "",
"middle": [
". ."
],
"last": "Duluth ; Pedersen",
"suffix": ""
}
],
"year": null,
"venue": "Sense Induction Applied to Web Page Clustering Ted",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Duluth : Word Sense Induction Applied to Web Page Clustering Ted Pedersen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 SATTY : Word Sense Induction Application in Web Search Clustering Satyabrata Behera, Upasana Gaikwad, Ramakrishna Bairi and Ganesh Ramakrishnan . . . . . . . 207",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "212 unimelb: Topic Modelling-based Word Sense Induction for Web Snippet Clustering",
"authors": [
{
"first": "Ukp-Wsi ;",
"middle": [],
"last": "Hans-Peter Zorn And Iryna Gurevych",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "",
"suffix": ""
}
],
"year": null,
"venue": "UKP Lab Semeval-2013 Task 11 System Description",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "UKP-WSI: UKP Lab Semeval-2013 Task 11 System Description Hans-Peter Zorn and Iryna Gurevych . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 unimelb: Topic Modelling-based Word Sense Induction for Web Snippet Clustering Jey Han Lau, Paul Cook and Timothy Baldwin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Reinforcing a Ranking Algorithm with Sense Frequencies and Multidimensional Semantic Resources to solve Multilingual Word Sense Disambiguation Yoan Guti\u00e9rrez, Yenier Casta\u00f1eda",
"authors": [
{
"first": "J\u00e9r\u00f4me",
"middle": [],
"last": "Getalp System ; Andon Tchechmedjiev",
"suffix": ""
},
{
"first": "Mohammad",
"middle": [],
"last": "Goulian",
"suffix": ""
},
{
"first": "Gilles",
"middle": [],
"last": "Nasiruddin",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "S\u00e9rasset",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "Herv\u00e9 Blanchon",
"suffix": ""
},
{
"first": "Rainel",
"middle": [],
"last": ". ; Andy Gonz\u00e1lez",
"suffix": ""
},
{
"first": "Dennys",
"middle": [
"D"
],
"last": "Estrada",
"suffix": ""
},
{
"first": "Jose",
"middle": [
"I"
],
"last": "Piug",
"suffix": ""
},
{
"first": "Roger",
"middle": [],
"last": "Abreu",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "P\u00e9rez",
"suffix": ""
}
],
"year": null,
"venue": "Propagation of a Lesk Measure through an Ant Colony Algorithm Didier Schwab",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "GETALP System : Propagation of a Lesk Measure through an Ant Colony Algorithm Didier Schwab, Andon Tchechmedjiev, J\u00e9r\u00f4me Goulian, Mohammad Nasiruddin, Gilles S\u00e9rasset and Herv\u00e9 Blanchon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 UMCC DLSI: Reinforcing a Ranking Algorithm with Sense Frequencies and Multidimensional Seman- tic Resources to solve Multilingual Word Sense Disambiguation Yoan Guti\u00e9rrez, Yenier Casta\u00f1eda, Andy Gonz\u00e1lez, Rainel Estrada, Dennys D. Piug, Jose I. Abreu, Roger P\u00e9rez, Antonio Fern\u00e1ndez Orqu\u00edn, Andr\u00e9s Montoyo, Rafael Mu\u00f1oz and Franc Camara . . . . . 241",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Peripheral Diversity for Multilingual Word Sense Disambiguation Steve L. Manion, and",
"authors": [
{
"first": "",
"middle": [],
"last": "Daebak!",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "DAEBAK!: Peripheral Diversity for Multilingual Word Sense Disambiguation Steve L. Manion, and Raazesh Sainudiin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "275 SOFTCARDINALITY: Hierarchical Text Overlap for Student Response Analysis Sergio Jimenez, Claudia Becerra and Alexander Gelbukh",
"authors": [
{
"first": "Parisa",
"middle": [],
"last": "Kordjamshidi",
"suffix": ""
},
{
"first": "Marie-Francine",
"middle": [],
"last": "Moens",
"suffix": ""
},
{
"first": "Steven",
"middle": [
"."
],
"last": "Bethard",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Rodney Nielsen",
"suffix": ""
},
{
"first": "Claudia",
"middle": [],
"last": "Brew",
"suffix": ""
},
{
"first": "Danilo",
"middle": [],
"last": "Leacock",
"suffix": ""
},
{
"first": "Luisa",
"middle": [],
"last": "Giampiccolo",
"suffix": ""
},
{
"first": "Peter",
"middle": [],
"last": "Bentivogli",
"suffix": ""
},
{
"first": "Ido",
"middle": [],
"last": "Clark",
"suffix": ""
},
{
"first": "Hoa",
"middle": [
"Trang"
],
"last": "Dagan",
"suffix": ""
},
{
"first": "",
"middle": [
". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ."
],
"last": "Dang",
"suffix": ""
}
],
"year": null,
"venue": "xv SemEval-2013 Task 7: The Joint Student Response Analysis and 8th Recognizing Textual Entailment Challenge Myroslava Dzikovska",
"volume": "255",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "SemEval-2013 Task 3: Spatial Role Labeling Oleksandr Kolomiyets, Parisa Kordjamshidi, Marie-Francine Moens and Steven Bethard . . . . 255 xv SemEval-2013 Task 7: The Joint Student Response Analysis and 8th Recognizing Textual Entailment Challenge Myroslava Dzikovska, Rodney Nielsen, Chris Brew, Claudia Leacock, Danilo Giampiccolo, Luisa Bentivogli, Peter Clark, Ido Dagan and Hoa Trang Dang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 ETS: Domain Adaptation and Stacking for Short Answer Scoring Michael Heilman and Nitin Madnani . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 SOFTCARDINALITY: Hierarchical Text Overlap for Student Response Analysis Sergio Jimenez, Claudia Becerra and Alexander Gelbukh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "SemEval-2013 Task 13: Word Sense Induction for Graded and Non-Graded Senses David Jurgens and Ioannis Klapaftis",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "SemEval-2013 Task 13: Word Sense Induction for Graded and Non-Graded Senses David Jurgens and Ioannis Klapaftis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "300 unimelb: Topic Modelling-based Word Sense Induction Jey Han Lau, Paul Cook and Timothy Baldwin",
"authors": [
{
"first": "",
"middle": [],
"last": "Ai-Ku",
"suffix": ""
}
],
"year": null,
"venue": "Using Substitute Vectors and Co-Occurrence Modeling For Word Sense Induction and Disambiguation Osman Baskaya",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "AI-KU: Using Substitute Vectors and Co-Occurrence Modeling For Word Sense Induction and Disam- biguation Osman Baskaya, Enis Sert, Volkan Cirik and Deniz Yuret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 unimelb: Topic Modelling-based Word Sense Induction Jey Han Lau, Paul Cook and Timothy Baldwin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Canada: Building the State-of-the-Art in Sentiment Analysis of Tweets Saif Mohammad",
"authors": [
{
"first": "- ; Sara",
"middle": [],
"last": "Semeval",
"suffix": ""
},
{
"first": "Zornitsa",
"middle": [],
"last": "Rosenthal",
"suffix": ""
},
{
"first": "Veselin",
"middle": [],
"last": "Kozareva",
"suffix": ""
},
{
"first": "Alan",
"middle": [],
"last": "Stoyanov",
"suffix": ""
},
{
"first": "Theresa",
"middle": [],
"last": "Ritter",
"suffix": ""
},
{
"first": "",
"middle": [
". ."
],
"last": "Wilson",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "Svetlana Kiritchenko And Xiaodan Zhu",
"suffix": ""
}
],
"year": 2013,
"venue": "Sentiment Analysis in Twitter Preslav Nakov",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "SemEval-2013 Task 2: Sentiment Analysis in Twitter Preslav Nakov, Sara Rosenthal, Zornitsa Kozareva, Veselin Stoyanov, Alan Ritter and Theresa Wilson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 NRC-Canada: Building the State-of-the-Art in Sentiment Analysis of Tweets Saif Mohammad, Svetlana Kiritchenko and Xiaodan Zhu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Sentiment Analysis of Short Messages using Linguistic Features and Stochastic Gradient Descent Tobias G\u00fcnther and",
"authors": [
{
"first": "",
"middle": [],
"last": "Gu-Mlt-Lt",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "GU-MLT-LT: Sentiment Analysis of Short Messages using Linguistic Features and Stochastic Gradient Descent Tobias G\u00fcnther and Lenz Furrer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Extraction of Drug-Drug Interactions from Biomedical Texts",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "SemEval-2013 Task 9 : Extraction of Drug-Drug Interactions from Biomedical Texts (DDIExtraction",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "A Multi-Phase Kernel Based Approach for Drug-Drug Interaction Detection and Classification that Exploits Linguistic Information Md. Faisal Mahbub Chowdhury and Alberto Lavelli",
"authors": [
{
"first": "",
"middle": [],
"last": "Fbk-Irst",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "FBK-irst : A Multi-Phase Kernel Based Approach for Drug-Drug Interaction Detection and Classifi- cation that Exploits Linguistic Information Md. Faisal Mahbub Chowdhury and Alberto Lavelli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351",
"links": null
},
"BIBREF35": {
"ref_id": "b35",
"title": "356 xvi AMI&ERIC: How to Learn with Naive Bayes and Prior Knowledge: an Application to Sentiment Analysis Mohamed Dermouche, Leila Khouas, Julien Velcin and Sabine Loudcher",
"authors": [
{
"first": "",
"middle": [],
"last": "Wbi-Ner ; Torsten",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Huber",
"suffix": ""
},
{
"first": "Ulf",
"middle": [],
"last": "Weidlich",
"suffix": ""
},
{
"first": "",
"middle": [
". . . . . . . . . . . . . . . . . . . . ."
],
"last": "Leser",
"suffix": ""
}
],
"year": null,
"venue": "The impact of domain-specific features on the performance of identifying and classifying mentions of drugs Tim Rockt\u00e4schel",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "WBI-NER: The impact of domain-specific features on the performance of identifying and classifying mentions of drugs Tim Rockt\u00e4schel, Torsten Huber, Michael Weidlich and Ulf Leser . . . . . . . . . . . . . . . . . . . . . . . . . 356 xvi AMI&ERIC: How to Learn with Naive Bayes and Prior Knowledge: an Application to Sentiment Anal- ysis Mohamed Dermouche, Leila Khouas, Julien Velcin and Sabine Loudcher . . . . . . . . . . . . . . . . . . 364",
"links": null
},
"BIBREF36": {
"ref_id": "b36",
"title": "UNITOR: Combining Syntactic and Semantic Kernels for Twitter Sentiment Analysis Giuseppe Castellucci",
"authors": [
{
"first": "Simone",
"middle": [],
"last": "Filice",
"suffix": ""
},
{
"first": "Danilo",
"middle": [],
"last": "Croce",
"suffix": ""
},
{
"first": "Roberto",
"middle": [
". . . . . . . . . . . . . . . . ."
],
"last": "Basili",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "UNITOR: Combining Syntactic and Semantic Kernels for Twitter Sentiment Analysis Giuseppe Castellucci, Simone Filice, Danilo Croce and Roberto Basili . . . . . . . . . . . . . . . . . . . . . 369",
"links": null
},
"BIBREF37": {
"ref_id": "b37",
"title": "375 uOttawa: System description for SemEval 2013 Task 2 Sentiment Analysis in Twitter Hamid Poursepanj",
"authors": [
{
"first": "Jeremy",
"middle": [
"Ellman"
],
"last": "",
"suffix": ""
},
{
"first": ".",
"middle": [
". ."
],
"last": "",
"suffix": ""
}
],
"year": null,
"venue": "TJP: Using Twitter to Analyze the Polarity of Contexts Tawunrat Chalothorn and",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "TJP: Using Twitter to Analyze the Polarity of Contexts Tawunrat Chalothorn and Jeremy Ellman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 uOttawa: System description for SemEval 2013 Task 2 Sentiment Analysis in Twitter Hamid Poursepanj, Josh Weissbock and Diana Inkpen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380",
"links": null
},
"BIBREF38": {
"ref_id": "b38",
"title": "An Experimental Study on Sentiment Analysis in Twitter Zhemin Zhu",
"authors": [
{
"first": "",
"middle": [],
"last": "Ut-Db ; Djoerd",
"suffix": ""
},
{
"first": "Peter",
"middle": [],
"last": "Hiemstra",
"suffix": ""
},
{
"first": "Andreas",
"middle": [],
"last": "Apers",
"suffix": ""
},
{
"first": "",
"middle": [
". . . . . . . . . . . . . . . . . ."
],
"last": "Wombacher",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "UT-DB: An Experimental Study on Sentiment Analysis in Twitter Zhemin Zhu, Djoerd Hiemstra, Peter Apers and Andreas Wombacher . . . . . . . . . . . . . . . . . . . . . . 384",
"links": null
},
"BIBREF39": {
"ref_id": "b39",
"title": "USNA: A Dual-Classifier Approach to Contextual Sentiment Analysis Ganesh Harihara",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "USNA: A Dual-Classifier Approach to Contextual Sentiment Analysis Ganesh Harihara, Eugene Yang and Nate Chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390",
"links": null
},
"BIBREF40": {
"ref_id": "b40",
"title": "KLUE: Simple and robust methods for polarity classification Thomas Proisl",
"authors": [
{
"first": "Paul",
"middle": [],
"last": "Greiner",
"suffix": ""
},
{
"first": "Stefan",
"middle": [],
"last": "Evert",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "Besim Kabashi",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "KLUE: Simple and robust methods for polarity classification Thomas Proisl, Paul Greiner, Stefan Evert and Besim Kabashi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395",
"links": null
},
"BIBREF41": {
"ref_id": "b41",
"title": "402 ECNUCS: A Surface Information Based System Description of Sentiment Analysis in Twitter in the SemEval-2013 (Task 2) Zhu Tiantian, Zhang Fangxi and Man Lan",
"authors": [
{
"first": "Arturo",
"middle": [],
"last": "Mart\u00ednez-C\u00e1mara",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Montejo-R\u00e1ez",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Teresa Mart\u00edn-Valdivia",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "Alfonso Ure\u00f1a-L\u00f3pez",
"suffix": ""
}
],
"year": null,
"venue": "SINAI: Machine Learning and Emotion of the Crowd for Sentiment Analysis in Microblogs",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "SINAI: Machine Learning and Emotion of the Crowd for Sentiment Analysis in Microblogs Eugenio Mart\u00ednez-C\u00e1mara, Arturo Montejo-R\u00e1ez, M. Teresa Mart\u00edn-Valdivia and L. Alfonso Ure\u00f1a-L\u00f3pez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 ECNUCS: A Surface Information Based System Description of Sentiment Analysis in Twitter in the SemEval-2013 (Task 2) Zhu Tiantian, Zhang Fangxi and Man Lan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408",
"links": null
},
"BIBREF42": {
"ref_id": "b42",
"title": "Using Syntactic Features and Multi-polarity Words for Sentiment Analysis in Twitter Morgane Marchand, Alexandru Ginsca, Romaric Besan\u00e7on and",
"authors": [
{
"first": ".",
"middle": [
". ."
],
"last": "Umigon ; Heuristics Clement Levallois",
"suffix": ""
},
{
"first": "",
"middle": [
". . . . ."
],
"last": "Olivier Mesnard",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Umigon: sentiment analysis for tweets based on terms lists and heuristics Clement Levallois . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 [LVIC-LIMSI]: Using Syntactic Features and Multi-polarity Words for Sentiment Analysis in Twitter Morgane Marchand, Alexandru Ginsca, Romaric Besan\u00e7on and Olivier Mesnard . . . . . . . . . . . 418",
"links": null
},
"BIBREF43": {
"ref_id": "b43",
"title": "430 SAIL: A hybrid approach to sentiment analysis Nikolaos Malandrakis",
"authors": [
{
"first": "Rich",
"middle": [],
"last": "Clark",
"suffix": ""
},
{
"first": "",
"middle": [
". ."
],
"last": "Wicentwoski",
"suffix": ""
}
],
"year": null,
"venue": "Domain Semi-Independent Short Message Sentiment Classification \u00d8yvind Selmer, Mikael Brevik, Bj\u00f6rn Gamb\u00e4ck and Lars Bungum",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "SwatCS: Combining simple classifiers with estimated accuracy Sam Clark and Rich Wicentwoski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 NTNU: Domain Semi-Independent Short Message Sentiment Classification \u00d8yvind Selmer, Mikael Brevik, Bj\u00f6rn Gamb\u00e4ck and Lars Bungum . . . . . . . . . . . . . . . . . . . . . . . . 430 SAIL: A hybrid approach to sentiment analysis Nikolaos Malandrakis, Abe Kazemzadeh, Alexandros Potamianos and Shrikanth Narayanan . 438",
"links": null
},
"BIBREF44": {
"ref_id": "b44",
"title": "443 xvii ASVUniOfLeipzig: Sentiment Analysis in Twitter using Data-driven Machine Learning Techniques Robert Remus",
"authors": [
{
"first": "",
"middle": [],
"last": "Umcc Dlsi-(sa ; Andy",
"suffix": ""
},
{
"first": "Roger",
"middle": [],
"last": "Gonz\u00e1lez",
"suffix": ""
},
{
"first": "Jos\u00e9",
"middle": [
"I"
],
"last": "P\u00e9rez",
"suffix": ""
},
{
"first": "Antonio",
"middle": [],
"last": "Abreu",
"suffix": ""
},
{
"first": "Alejandro",
"middle": [],
"last": "Fern\u00e1ndez Orqu\u00edn",
"suffix": ""
},
{
"first": "Andr\u00e9s",
"middle": [],
"last": "Mosquera",
"suffix": ""
},
{
"first": "Rafael",
"middle": [],
"last": "Montoyo",
"suffix": ""
},
{
"first": "Franc",
"middle": [],
"last": "Mu\u00f1oz",
"suffix": ""
},
{
"first": "",
"middle": [
". . . . . . . . . . . . . . . . . . . . . . . . ."
],
"last": "Camara",
"suffix": ""
}
],
"year": null,
"venue": "Using a ranking algorithm and informal features to solve Sentiment Analysis in Twitter Yoan Guti\u00e9rrez",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "UMCC DLSI-(SA): Using a ranking algorithm and informal features to solve Sentiment Analysis in Twitter Yoan Guti\u00e9rrez, Andy Gonz\u00e1lez, Roger P\u00e9rez, Jos\u00e9 I. Abreu, Antonio Fern\u00e1ndez Orqu\u00edn, Alejan- dro Mosquera, Andr\u00e9s Montoyo, Rafael Mu\u00f1oz and Franc Camara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443 xvii ASVUniOfLeipzig: Sentiment Analysis in Twitter using Data-driven Machine Learning Techniques Robert Remus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450",
"links": null
},
"BIBREF45": {
"ref_id": "b45",
"title": "Experiments with DBpedia, WordNet and SentiWordNet as resources for sentiment analysis in microblogging Hussam Hamdan, Frederic B\u00e9chet and",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Experiments with DBpedia, WordNet and SentiWordNet as resources for sentiment analysis in micro- blogging Hussam Hamdan, Frederic B\u00e9chet and Patrice Bellot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455",
"links": null
},
"BIBREF46": {
"ref_id": "b46",
"title": "OPTWIMA: Comparing Knowledge-rich and Knowledge-poor Approaches for Sentiment Analysis in Short Informal Texts Alexandra Balahur",
"authors": [
{
"first": "Marco",
"middle": [],
"last": "Guerini",
"suffix": ""
},
{
"first": "Sara",
"middle": [],
"last": "Tonelli",
"suffix": ""
},
{
"first": "Alberto",
"middle": [
". . . . ."
],
"last": "Lavelli",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "OPTWIMA: Comparing Knowledge-rich and Knowledge-poor Approaches for Sentiment Analysis in Short Informal Texts Alexandra Balahur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .460 FBK: Sentiment Analysis in Twitter with Tweetsted Md. Faisal Mahbub Chowdhury, Marco Guerini, Sara Tonelli and Alberto Lavelli . . . . . . . . . . . 466",
"links": null
},
"BIBREF47": {
"ref_id": "b47",
"title": "A Classification System for Sentiment Analysis in Twitter Gizem Gezici, Rahim Dehkharghani, Berrin Yanikoglu, Dilek Tapucu and Yucel Saygin",
"authors": [
{
"first": "",
"middle": [],
"last": "Su-Sentilab",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "SU-Sentilab : A Classification System for Sentiment Analysis in Twitter Gizem Gezici, Rahim Dehkharghani, Berrin Yanikoglu, Dilek Tapucu and Yucel Saygin . . . . . 471",
"links": null
},
"BIBREF48": {
"ref_id": "b48",
"title": "Sentiment Detection of Subjective Phrases in Social Media Sara",
"authors": [
{
"first": "Nlp",
"middle": [],
"last": "Columbia",
"suffix": ""
},
{
"first": "Kathy",
"middle": [],
"last": "Rosenthal",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "Mckeown",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Columbia NLP: Sentiment Detection of Subjective Phrases in Social Media Sara Rosenthal and Kathy McKeown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478",
"links": null
},
"BIBREF49": {
"ref_id": "b49",
"title": "FBM: Combining lexicon-based ML and heuristics for Social Media Polarities Carlos Rodriguez-Penagos",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "FBM: Combining lexicon-based ML and heuristics for Social Media Polarities Carlos Rodriguez-Penagos, Jordi Atserias Batalla, Joan Codina-Filb\u00e0, David Garc\u00eda-Narbona, Jens",
"links": null
},
"BIBREF50": {
"ref_id": "b50",
"title": "483 REACTION: A naive machine learning approach for sentiment classification Silvio Moreira",
"authors": [
{
"first": "Patrik",
"middle": [],
"last": "Grivolla",
"suffix": ""
},
{
"first": "Roser",
"middle": [],
"last": "Lambert",
"suffix": ""
},
{
"first": "Francisco",
"middle": [
". ."
],
"last": "Saur\u00ed",
"suffix": ""
},
{
"first": "M\u00e1rio",
"middle": [
"J"
],
"last": "Couto",
"suffix": ""
},
{
"first": "",
"middle": [
". . ."
],
"last": "Silva",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Grivolla, Patrik Lambert and Roser Saur\u00ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483 REACTION: A naive machine learning approach for sentiment classification Silvio Moreira, Jo\u00e3o Filgueiras, Bruno Martins, Francisco Couto and M\u00e1rio J. Silva . . . . . . . . . 490",
"links": null
},
"BIBREF51": {
"ref_id": "b51",
"title": "Participation in Sentiment Analysis in Twitter SemEval 2013 Task Karan Chawla, Ankit Ramteke and",
"authors": [
{
"first": "",
"middle": [],
"last": "Iitb-Sentiment-Analysts",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "IITB-Sentiment-Analysts: Participation in Sentiment Analysis in Twitter SemEval 2013 Task Karan Chawla, Ankit Ramteke and Pushpak Bhattacharyya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495",
"links": null
},
"BIBREF52": {
"ref_id": "b52",
"title": "Unsupervised Sentiment Analysis in Twitter Reynier Ortega Bueno",
"authors": [
{
"first": "Yoan",
"middle": [],
"last": "Ssa-Uo ; Adrian Fonseca Bruz\u00f3n",
"suffix": ""
},
{
"first": "Andres",
"middle": [],
"last": "Guti\u00e9rrez",
"suffix": ""
},
{
"first": "",
"middle": [
". . ."
],
"last": "Montoyo",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "SSA-UO: Unsupervised Sentiment Analysis in Twitter Reynier Ortega Bueno, Adrian Fonseca Bruz\u00f3n, Yoan Guti\u00e9rrez and Andres Montoyo . . . . . . . 501",
"links": null
},
"BIBREF53": {
"ref_id": "b53",
"title": "508 teragram: Rule-based detection of sentiment phrases using SAS Sentiment Analysis Hilke Reckman",
"authors": [],
"year": null,
"venue": "an approach for informally written short texts in SemEval-2013 Sentiment Analysis task Jos\u00e9 Saias and Hil\u00e1rio Fernandes",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "senti.ue-en: an approach for informally written short texts in SemEval-2013 Sentiment Analysis task Jos\u00e9 Saias and Hil\u00e1rio Fernandes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508 teragram: Rule-based detection of sentiment phrases using SAS Sentiment Analysis Hilke Reckman, Cheyanne Baird, Jean Crawford, Richard Crowell, Linnea Micciulla, Saratendu Sethi and Fruzsina Veress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513",
"links": null
},
"BIBREF54": {
"ref_id": "b54",
"title": "520 sielers : Feature Analysis and Polarity Classification of Expressions from Twitter and SMS Data Harshit Jain, Aditya Mogadala and Vasudeva Varma",
"authors": [
{
"first": "Junfei",
"middle": [],
"last": "Han",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Guo",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "Hinrich Schuetze",
"suffix": ""
}
],
"year": null,
"venue": "CodeX: Combining an SVM Classifier and Character N-gram Language Models for Sentiment Analysis on Twitter Text Qi",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "CodeX: Combining an SVM Classifier and Character N-gram Language Models for Sentiment Analysis on Twitter Text Qi Han, Junfei Guo and Hinrich Schuetze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520 sielers : Feature Analysis and Polarity Classification of Expressions from Twitter and SMS Data Harshit Jain, Aditya Mogadala and Vasudeva Varma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525",
"links": null
},
"BIBREF55": {
"ref_id": "b55",
"title": "Using Explicit Semantic Analysis for Classifying Sentiments Sapna Negi and Michael Rosner",
"authors": [
{
"first": "",
"middle": [
". . ."
],
"last": "Kea ; Aijun An",
"suffix": ""
}
],
"year": null,
"venue": "Expression-level Sentiment Analysis from Twitter Data Ameeta Agrawal and",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kea: Expression-level Sentiment Analysis from Twitter Data Ameeta Agrawal and Aijun An . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530 xviii UoM: Using Explicit Semantic Analysis for Classifying Sentiments Sapna Negi and Michael Rosner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535 bwbaugh : Hierarchical sentiment analysis with partial self-training Wesley Baugh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539",
"links": null
},
"BIBREF56": {
"ref_id": "b56",
"title": "Simple and Practical lexicon based approach to Sentiment Analysis Prabu palanisamy, Vineet Yadav and Harsha Elchuri",
"authors": [
{
"first": "",
"middle": [],
"last": "Serendio",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Serendio: Simple and Practical lexicon based approach to Sentiment Analysis Prabu palanisamy, Vineet Yadav and Harsha Elchuri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543",
"links": null
},
"BIBREF57": {
"ref_id": "b57",
"title": "549 BOUNCE: Sentiment Classification in Twitter using Rich Feature Sets Nadin K\u00f6kciyan, Arda \u00c7 elebi",
"authors": [
{
"first": "",
"middle": [],
"last": "Szte-Nlp ; Arzucan\u00f6zg\u00fcr",
"suffix": ""
},
{
"first": "",
"middle": [
". ."
],
"last": "Suzan\u00fcsk\u00fcdarl\u0131",
"suffix": ""
}
],
"year": null,
"venue": "Sentiment Detection on Twitter Messages Viktor Hangya, Gabor Berend and Rich\u00e1rd Farkas",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "SZTE-NLP: Sentiment Detection on Twitter Messages Viktor Hangya, Gabor Berend and Rich\u00e1rd Farkas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549 BOUNCE: Sentiment Classification in Twitter using Rich Feature Sets Nadin K\u00f6kciyan, Arda \u00c7 elebi, Arzucan\u00d6zg\u00fcr and Suzan\u00dcsk\u00fcdarl\u0131 . . . . . . . . . . . . . . . . . . . . . . . 554",
"links": null
},
"BIBREF58": {
"ref_id": "b58",
"title": "A Hybrid System for Sentiment Analysis in Twitter Messages Pedro Balage Filho and Thiago Pardo",
"authors": [
{
"first": "Rafael",
"middle": [],
"last": "Michael Karampatsis",
"suffix": ""
},
{
"first": "Konstantina",
"middle": [],
"last": "Makrynioti",
"suffix": ""
},
{
"first": "John",
"middle": [],
"last": "Pavlopoulos",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "",
"suffix": ""
}
],
"year": null,
"venue": "nlp.cs.aueb.gr: Two Stage Sentiment Analysis Prodromos Malakasiotis",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "nlp.cs.aueb.gr: Two Stage Sentiment Analysis Prodromos Malakasiotis, Rafael Michael Karampatsis, Konstantina Makrynioti and John Pavlopou- los . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562 NILC USP: A Hybrid System for Sentiment Analysis in Twitter Messages Pedro Balage Filho and Thiago Pardo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568",
"links": null
},
"BIBREF59": {
"ref_id": "b59",
"title": "Structured Kernel-based learning for Spatial Role Labeling Emanuele Bastianelli",
"authors": [
{
"first": "Unitor-Hmm-Tk ; Danilo",
"middle": [],
"last": "Croce",
"suffix": ""
},
{
"first": "Roberto",
"middle": [],
"last": "Basili",
"suffix": ""
},
{
"first": "Daniele",
"middle": [
". . . . . . . . . . . . . . . ."
],
"last": "Nardi",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "UNITOR-HMM-TK: Structured Kernel-based learning for Spatial Role Labeling Emanuele Bastianelli, Danilo Croce, Roberto Basili and Daniele Nardi . . . . . . . . . . . . . . . . . . . . 573",
"links": null
},
"BIBREF60": {
"ref_id": "b60",
"title": "Similarity-Feature Based Approach for Student Response Analysis Itziar Aldabe, Montse Maritxalar and Oier Lopez de Lacalle",
"authors": [
{
"first": "",
"middle": [],
"last": "Ehu-Alm",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "EHU-ALM: Similarity-Feature Based Approach for Student Response Analysis Itziar Aldabe, Montse Maritxalar and Oier Lopez de Lacalle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580",
"links": null
},
"BIBREF61": {
"ref_id": "b61",
"title": "CNGL: Grading Student Answers by Acts of Translation Ergun",
"authors": [
{
"first": "Josef",
"middle": [],
"last": "Bicici",
"suffix": ""
},
{
"first": "",
"middle": [
". ."
],
"last": "Van Genabith",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "CNGL: Grading Student Answers by Acts of Translation Ergun Bicici and Josef van Genabith . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585",
"links": null
},
"BIBREF62": {
"ref_id": "b62",
"title": "Celi: EDITS and Generic Text Pair Classification Milen Kouylekov",
"authors": [
{
"first": "Luca",
"middle": [],
"last": "Dini",
"suffix": ""
},
{
"first": "Alessio",
"middle": [],
"last": "Bosca",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "Marco Trevisan",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Celi: EDITS and Generic Text Pair Classification Milen Kouylekov, Luca Dini, Alessio Bosca and Marco Trevisan . . . . . . . . . . . . . . . . . . . . . . . . . . 592",
"links": null
},
"BIBREF63": {
"ref_id": "b63",
"title": "LIMSIILES: Basic English Substitution for Student Answer Assessment at SemEval",
"authors": [],
"year": 2013,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "LIMSIILES: Basic English Substitution for Student Answer Assessment at SemEval 2013",
"links": null
},
"BIBREF64": {
"ref_id": "b64",
"title": "598 CU : Computational Assessment of Short Free Text Answers -A Tool for Evaluating Students' Understanding IFEYINWA",
"authors": [
{
"first": "Martin",
"middle": [],
"last": "Gleize",
"suffix": ""
},
{
"first": "Brigitte",
"middle": [
". . ."
],
"last": "Grau",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Martin Gleize and Brigitte Grau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598 CU : Computational Assessment of Short Free Text Answers -A Tool for Evaluating Students' Under- standing IFEYINWA OKOYE, Steven Bethard and Tamara Sumner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603",
"links": null
},
"BIBREF65": {
"ref_id": "b65",
"title": "CoMeT: Integrating different levels of linguistic modeling for meaning assessment",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "CoMeT: Integrating different levels of linguistic modeling for meaning assessment Niels Ott, Ramon Ziai, Michael Hahn and Detmar Meurers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608",
"links": null
},
"BIBREF66": {
"ref_id": "b66",
"title": "UC3M: A kernel-based approach to identify and classify DDIs in bio-medical texts",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "UC3M: A kernel-based approach to identify and classify DDIs in bio-medical texts.",
"links": null
},
"BIBREF68": {
"ref_id": "b68",
"title": "UEM-UC3M: An Ontology-based named entity recognition system for biomedical texts",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "UEM-UC3M: An Ontology-based named entity recognition system for biomedical texts.",
"links": null
},
"BIBREF69": {
"ref_id": "b69",
"title": "622 xix WBI-DDI: Drug-Drug Interaction Extraction using Majority Voting Philippe Thomas, Mariana Neves, Tim Rockt\u00e4schel and Ulf Leser",
"authors": [
{
"first": "Daniel",
"middle": [],
"last": "Sanchez",
"suffix": ""
},
{
"first": "-",
"middle": [],
"last": "Cisneros",
"suffix": ""
},
{
"first": "Fernando",
"middle": [
". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ."
],
"last": "Aparicio Gali",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Daniel Sanchez-Cisneros and Fernando Aparicio Gali . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622 xix WBI-DDI: Drug-Drug Interaction Extraction using Majority Voting Philippe Thomas, Mariana Neves, Tim Rockt\u00e4schel and Ulf Leser . . . . . . . . . . . . . . . . . . . . . . . . . 628",
"links": null
},
"BIBREF70": {
"ref_id": "b70",
"title": "Semantic and Lexical features for detection and classification Drugs in biomedical texts Armando Collazo",
"authors": [
{
"first": "Dennys",
"middle": [
"D"
],
"last": "Umcc Dlsi ; Alberto Ceballo",
"suffix": ""
},
{
"first": "Yoan",
"middle": [],
"last": "Puig",
"suffix": ""
},
{
"first": "Jos\u00e9",
"middle": [
"I"
],
"last": "Guti\u00e9rrez",
"suffix": ""
},
{
"first": "Roger",
"middle": [],
"last": "Abreu",
"suffix": ""
},
{
"first": "Antonio",
"middle": [],
"last": "P\u00e9rez",
"suffix": ""
},
{
"first": "Andr\u00e9s",
"middle": [],
"last": "Fern\u00e1ndez Orqu\u00edn",
"suffix": ""
},
{
"first": "Rafael",
"middle": [],
"last": "Montoyo",
"suffix": ""
},
{
"first": "Franc",
"middle": [],
"last": "Mu\u00f1oz",
"suffix": ""
},
{
"first": "",
"middle": [
". . . . . . . . . . . . ."
],
"last": "Camara",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "UMCC DLSI: Semantic and Lexical features for detection and classification Drugs in biomedical texts Armando Collazo, Alberto Ceballo, Dennys D. Puig, Yoan Guti\u00e9rrez, Jos\u00e9 I. Abreu, Roger P\u00e9rez, Antonio Fern\u00e1ndez Orqu\u00edn, Andr\u00e9s Montoyo, Rafael Mu\u00f1oz and Franc Camara . . . . . . . . . . . . . . . . . 636",
"links": null
},
"BIBREF71": {
"ref_id": "b71",
"title": "NIL UCM: Extracting Drug-Drug interactions from text through combination of sequence and tree kernels Behrouz Bokharaeian and ALBERTO",
"authors": [
{
"first": "",
"middle": [
". ."
],
"last": "Diaz",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "NIL UCM: Extracting Drug-Drug interactions from text through combination of sequence and tree kernels Behrouz Bokharaeian and ALBERTO DIAZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644",
"links": null
},
"BIBREF72": {
"ref_id": "b72",
"title": "UTurku: Drug Named Entity Recognition and Drug-Drug Interaction Extraction Using SVM Classification and Domain Knowledge Jari Bj\u00f6rne",
"authors": [
{
"first": "Suwisa",
"middle": [],
"last": "Kaewphan",
"suffix": ""
},
{
"first": "Tapio",
"middle": [],
"last": "Salakoski",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "UTurku: Drug Named Entity Recognition and Drug-Drug Interaction Extraction Using SVM Classifi- cation and Domain Knowledge Jari Bj\u00f6rne, Suwisa Kaewphan and Tapio Salakoski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651",
"links": null
},
"BIBREF73": {
"ref_id": "b73",
"title": "LASIGE: using Conditional Random Fields and ChEBI",
"authors": [
{
"first": "Tiago",
"middle": [],
"last": "Ontology",
"suffix": ""
},
{
"first": "Francisco",
"middle": [],
"last": "Grego",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Pinto",
"suffix": ""
},
{
"first": "",
"middle": [
". ."
],
"last": "Francisco M Couto",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "LASIGE: using Conditional Random Fields and ChEBI ontology Tiago Grego, Francisco Pinto and Francisco M Couto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660",
"links": null
},
"BIBREF74": {
"ref_id": "b74",
"title": "Classifying Drug-Drug Interactions with Two-Stage SVM and Post-Processing Majid Rastegar-Mojarad",
"authors": [
{
"first": "Uwm-Triads ;",
"middle": [],
"last": "Richard",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Boyce",
"suffix": ""
},
{
"first": "Rashmi",
"middle": [],
"last": "Prasad",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "UWM-TRIADS: Classifying Drug-Drug Interactions with Two-Stage SVM and Post-Processing Majid Rastegar-Mojarad, Richard D. Boyce and Rashmi Prasad . . . . . . . . . . . . . . . . . . . . . . . . . . . 667",
"links": null
},
"BIBREF75": {
"ref_id": "b75",
"title": "SCAI: Extracting drug-drug interactions using a rich feature vector Tamara Bobic, Juliane Fluck and",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "SCAI: Extracting drug-drug interactions using a rich feature vector Tamara Bobic, Juliane Fluck and Martin Hofmann-Apitius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675",
"links": null
},
"BIBREF76": {
"ref_id": "b76",
"title": "Extraction of Drug-Drug Interactions from Biomedical Text using Knowledge-rich and Knowledge-poor Features Negacy Hailu",
"authors": [
{
"first": "Som ;",
"middle": [],
"last": "Ucolorado",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Lawrence",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Hunter",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "Bretonnel Cohen",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "UColorado SOM: Extraction of Drug-Drug Interactions from Biomedical Text using Knowledge-rich and Knowledge-poor Features Negacy Hailu, Lawrence E. Hunter and K. Bretonnel Cohen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684",
"links": null
},
"BIBREF77": {
"ref_id": "b77",
"title": "SEMRecep:onandSTSPosterSession(PLN1)",
"authors": [
{
"first": "*",
"middle": [],
"last": "Openingremarksand",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Semlongpapers1",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "OpeningRemarksand*SEMLongPapers1 *SEMRecep:onandSTSPosterSession(PLN1)",
"links": null
},
"BIBREF78": {
"ref_id": "b78",
"title": "Andr\u00e9s Montoyo, Rafael Mu\u00f1oz and Franc Camara ASVUniOfLeipzig: Sentiment Analysis in Twitter using Data-driven Machine Learning Techniques Robert Remus Experiments with DBpedia, WordNet and SentiWordNet as resources for sentiment analysis in micro-blogging Hussam Hamdan, Frederic B\u00e9chet and Patrice Bellot OPTWIMA: Comparing Knowledge-rich and Knowledge-poor Approaches for Sentiment Analysis in Short Informal Texts Alexandra Balahur FBK: Sentiment Analysis in Twitter with Tweetsted Md. Faisal Mahbub Chowdhury, Marco Guerini, Sara Tonelli and Alberto Lavelli SU-Sentilab : A Classification System for Sentiment Analysis in Twitter Gizem Gezici, Rahim Dehkharghani, Berrin Yanikoglu, Dilek Tapucu and Yucel Saygin Columbia NLP: Sentiment Detection of Subjective Phrases in Social Media Sara Rosenthal and Kathy McKeown FBM: Combining lexicon-based ML and heuristics for Social Media Polarities Carlos Rodriguez-Penagos",
"authors": [
{
"first": "*",
"middle": [],
"last": "Sempanel",
"suffix": ""
},
{
"first": ":",
"middle": [],
"last": "Towarddeepnaturallanguageunderstanding",
"suffix": ""
},
{
"first": ":",
"middle": [],
"last": "Kevinknight",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Christophermanning",
"suffix": ""
},
{
"first": "Owen",
"middle": [],
"last": "Marthapalmer",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Rambow ; Andy",
"suffix": ""
},
{
"first": "Roger",
"middle": [],
"last": "Gonz\u00e1lez",
"suffix": ""
},
{
"first": "Jos\u00e9",
"middle": [
"I"
],
"last": "P\u00e9rez",
"suffix": ""
},
{
"first": "Antonio",
"middle": [],
"last": "Abreu",
"suffix": ""
},
{
"first": "Alejandro Mosquera ; Jo\u00e3o",
"middle": [],
"last": "Fern\u00e1ndez Orqu\u00edn",
"suffix": ""
},
{
"first": "Bruno",
"middle": [],
"last": "Filgueiras",
"suffix": ""
},
{
"first": "Francisco",
"middle": [],
"last": "Martins",
"suffix": ""
},
{
"first": "M\u00e1rio",
"middle": [
"J"
],
"last": "Couto",
"suffix": ""
},
{
"first": "Iitb-Sentiment-Analysts ; Rodney",
"middle": [],
"last": "Silva",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Nielsen",
"suffix": ""
},
{
"first": "Claudia",
"middle": [],
"last": "Brew",
"suffix": ""
},
{
"first": "Danilo",
"middle": [],
"last": "Leacock",
"suffix": ""
},
{
"first": "Luisa",
"middle": [],
"last": "Giampiccolo",
"suffix": ""
},
{
"first": "Peter",
"middle": [],
"last": "Bentivogli",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Clark",
"suffix": ""
}
],
"year": 2013,
"venue": "cs.aueb.gr: Two Stage Sentiment Analysis Prodromos Malakasiotis, Rafael Michael Karampatsis, Konstantina Makrynioti and John Pavlopoulos NILC USP: A Hybrid System for Sentiment Analysis in Twitter Messages Pedro Balage Filho and Thiago Pardo SemEval-2013 Task 3: Spatial Role Labeling Oleksandr Kolomiyets, Parisa Kordjamshidi, Marie-Francine Moens and Steven Bethard UNITOR-HMM-TK: Structured Kernel-based learning for Spatial Role Labeling Emanuele Bastianelli, Danilo Croce, Roberto Basili and Daniele Nardi SemEval-2013 Task 7: The Joint Student Response Analysis and 8th Recognizing Textual Entailment Challenge Myroslava Dzikovska",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "*SEMPanel:TowardDeepNaturalLanguageUnderstanding: KevinKnight,ChristopherManning,MarthaPalmer,Owen Rambow,andDanRoth 3: Saturday June 15, 2013 (continued) [LVIC-LIMSI]: Using Syntactic Features and Multi-polarity Words for Sentiment Analysis in Twitter Morgane Marchand, Alexandru Ginsca, Romaric Besan\u00e7on and Olivier Mesnard SwatCS: Combining simple classifiers with estimated accuracy Sam Clark and Rich Wicentwoski NTNU: Domain Semi-Independent Short Message Sentiment Classification \u00d8yvind Selmer, Mikael Brevik, Bj\u00f6rn Gamb\u00e4ck and Lars Bungum SAIL: A hybrid approach to sentiment analysis Nikolaos Malandrakis, Abe Kazemzadeh, Alexandros Potamianos and Shrikanth Narayanan UMCC DLSI-(SA): Using a ranking algorithm and informal features to solve Sentiment Analysis in Twitter Yoan Guti\u00e9rrez, Andy Gonz\u00e1lez, Roger P\u00e9rez, Jos\u00e9 I. Abreu, Antonio Fern\u00e1ndez Orqu\u00edn, Alejandro Mosquera, Andr\u00e9s Montoyo, Rafael Mu\u00f1oz and Franc Camara ASVUniOfLeipzig: Sentiment Analysis in Twitter using Data-driven Machine Learning Techniques Robert Remus Experiments with DBpedia, WordNet and SentiWordNet as resources for sentiment analy- sis in micro-blogging Hussam Hamdan, Frederic B\u00e9chet and Patrice Bellot OPTWIMA: Comparing Knowledge-rich and Knowledge-poor Approaches for Sentiment Analysis in Short Informal Texts Alexandra Balahur FBK: Sentiment Analysis in Twitter with Tweetsted Md. Faisal Mahbub Chowdhury, Marco Guerini, Sara Tonelli and Alberto Lavelli SU-Sentilab : A Classification System for Sentiment Analysis in Twitter Gizem Gezici, Rahim Dehkharghani, Berrin Yanikoglu, Dilek Tapucu and Yucel Saygin Columbia NLP: Sentiment Detection of Subjective Phrases in Social Media Sara Rosenthal and Kathy McKeown FBM: Combining lexicon-based ML and heuristics for Social Media Polarities Carlos Rodriguez-Penagos, Jordi Atserias Batalla, Joan Codina-Filb\u00e0, David Garc\u00eda- Narbona, Jens Grivolla, Patrik Lambert and Roser Saur\u00ed xxxii Day 3: Saturday June 15, 2013 (continued) REACTION: A naive machine learning approach for sentiment classification Silvio Moreira, Jo\u00e3o Filgueiras, Bruno Martins, Francisco Couto and M\u00e1rio J. Silva IITB-Sentiment-Analysts: Participation in Sentiment Analysis in Twitter SemEval 2013 Task Karan Chawla, Ankit Ramteke and Pushpak Bhattacharyya SSA-UO: Unsupervised Sentiment Analysis in Twitter Reynier Ortega Bueno, Adrian Fonseca Bruz\u00f3n, Yoan Guti\u00e9rrez and Andres Montoyo senti.ue-en: an approach for informally written short texts in SemEval-2013 Sentiment Analysis task Jos\u00e9 Saias and Hil\u00e1rio Fernandes teragram: Rule-based detection of sentiment phrases using SAS Sentiment Analysis Hilke Reckman, Cheyanne Baird, Jean Crawford, Richard Crowell, Linnea Micciulla, Saratendu Sethi and Fruzsina Veress CodeX: Combining an SVM Classifier and Character N-gram Language Models for Sen- timent Analysis on Twitter Text Qi Han, Junfei Guo and Hinrich Schuetze sielers : Feature Analysis and Polarity Classification of Expressions from Twitter and SMS Data Harshit Jain, Aditya Mogadala and Vasudeva Varma Kea: Expression-level Sentiment Analysis from Twitter Data Ameeta Agrawal and Aijun An NRC-Canada: Building the State-of-the-Art in Sentiment Analysis of Tweets Saif Mohammad, Svetlana Kiritchenko and Xiaodan Zhu UoM: Using Explicit Semantic Analysis for Classifying Sentiments Sapna Negi and Michael Rosner bwbaugh : Hierarchical sentiment analysis with partial self-training Wesley Baugh Serendio: Simple and Practical lexicon based approach to Sentiment Analysis Prabu palanisamy, Vineet Yadav and Harsha Elchuri SZTE-NLP: Sentiment Detection on Twitter Messages Viktor Hangya, Gabor Berend and Rich\u00e1rd Farkas xxxiii Day 3: Saturday June 15, 2013 (continued) BOUNCE: Sentiment Classification in Twitter using Rich Feature Sets Nadin K\u00f6kciyan, Arda \u00c7 elebi, Arzucan\u00d6zg\u00fcr and Suzan\u00dcsk\u00fcdarl\u0131 nlp.cs.aueb.gr: Two Stage Sentiment Analysis Prodromos Malakasiotis, Rafael Michael Karampatsis, Konstantina Makrynioti and John Pavlopoulos NILC USP: A Hybrid System for Sentiment Analysis in Twitter Messages Pedro Balage Filho and Thiago Pardo SemEval-2013 Task 3: Spatial Role Labeling Oleksandr Kolomiyets, Parisa Kordjamshidi, Marie-Francine Moens and Steven Bethard UNITOR-HMM-TK: Structured Kernel-based learning for Spatial Role Labeling Emanuele Bastianelli, Danilo Croce, Roberto Basili and Daniele Nardi SemEval-2013 Task 7: The Joint Student Response Analysis and 8th Recognizing Textual Entailment Challenge Myroslava Dzikovska, Rodney Nielsen, Chris Brew, Claudia Leacock, Danilo Giampic- colo, Luisa Bentivogli, Peter Clark, Ido Dagan and Hoa Trang Dang UKP-BIU: Similarity and Entailment Metrics for Student Response Analysis Omer Levy, Torsten Zesch, Ido Dagan and Iryna Gurevych ETS: Domain Adaptation and Stacking for Short Answer Scoring Michael Heilman and Nitin Madnani EHU-ALM: Similarity-Feature Based Approach for Student Response Analysis Itziar Aldabe, Montse Maritxalar and Oier Lopez de Lacalle CNGL: Grading Student Answers by Acts of Translation Ergun Bicici and Josef van Genabith Celi: EDITS and Generic Text Pair Classification Milen Kouylekov, Luca Dini, Alessio Bosca and Marco Trevisan LIMSIILES: Basic English Substitution for Student Answer Assessment at SemEval 2013",
"links": null
},
"BIBREF79": {
"ref_id": "b79",
"title": "Hierarchical Text Overlap for Student Response Analysis Sergio Jimenez, Claudia Becerra and Alexander Gelbukh CU : Computational Assessment of Short Free Text Answers -A Tool for Evaluating Students' Understanding IFEYINWA OKOYE, Steven Bethard and Tamara Sumner xxxiv Day 3: Saturday",
"authors": [
{
"first": "Martin",
"middle": [],
"last": "Gleize",
"suffix": ""
},
{
"first": "Brigitte",
"middle": [],
"last": "Grau",
"suffix": ""
},
{
"first": "Softcardinality",
"middle": [],
"last": "",
"suffix": ""
}
],
"year": 2013,
"venue": "",
"volume": "9",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Martin Gleize and Brigitte Grau SOFTCARDINALITY: Hierarchical Text Overlap for Student Response Analysis Sergio Jimenez, Claudia Becerra and Alexander Gelbukh CU : Computational Assessment of Short Free Text Answers -A Tool for Evaluating Stu- dents' Understanding IFEYINWA OKOYE, Steven Bethard and Tamara Sumner xxxiv Day 3: Saturday June 15, 2013 (continued) CoMeT: Integrating different levels of linguistic modeling for meaning assessment Niels Ott, Ramon Ziai, Michael Hahn and Detmar Meurers SemEval-2013 Task 9 : Extraction of Drug-Drug Interactions from Biomedical Texts (DDIExtraction 2013)",
"links": null
},
"BIBREF80": {
"ref_id": "b80",
"title": "UC3M: A kernel-based approach to identify and classify DDIs in bio-medical texts",
"authors": [
{
"first": "Isabel",
"middle": [],
"last": "Segura-Bedmar",
"suffix": ""
},
{
"first": "Paloma",
"middle": [],
"last": "Mart\u00ednez",
"suffix": ""
},
{
"first": "Mar\u00eda",
"middle": [],
"last": "Herrero",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Isabel Segura-Bedmar, Paloma Mart\u00ednez and Mar\u00eda Herrero Zazo UC3M: A kernel-based approach to identify and classify DDIs in bio-medical texts.",
"links": null
},
"BIBREF81": {
"ref_id": "b81",
"title": "An Ontology-based named entity recognition system for biomedical texts",
"authors": [
{
"first": "Daniel",
"middle": [],
"last": "Sanchez-Cisneros",
"suffix": ""
},
{
"first": "Uem-Uc3m",
"middle": [],
"last": "",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Daniel Sanchez-Cisneros UEM-UC3M: An Ontology-based named entity recognition system for biomedical texts.",
"links": null
},
"BIBREF82": {
"ref_id": "b82",
"title": "(continued) SCAI: Extracting drug-drug interactions using a rich feature vector Tamara Bobic, Juliane Fluck and Martin Hofmann-Apitius UColorado SOM: Extraction of Drug-Drug Interactions from Biomedical Text using Knowledge-rich and Knowledge-poor Features Negacy Hailu, Lawrence E. Hunter and K. Bretonnel Cohen SemEval-2013 Task 13: Word Sense Induction for Graded and Non-Graded Senses David Jurgens and Ioannis Klapaftis UoS: A Graph-Based System for Graded Word Sense Induction David Hope and Bill Keller AI-KU: Using Substitute Vectors and Co-Occurrence Modeling For Word Sense Induction and Disambiguation Osman Baskaya",
"authors": [
{
"first": "Daniel",
"middle": [],
"last": "Sanchez",
"suffix": ""
},
{
"first": "-",
"middle": [],
"last": "Cisneros",
"suffix": ""
},
{
"first": "Fernando",
"middle": [],
"last": "Aparicio Gali",
"suffix": ""
},
{
"first": "Fbk-Irst ;",
"middle": [],
"last": "Thomas",
"suffix": ""
},
{
"first": "Mariana",
"middle": [],
"last": "Neves",
"suffix": ""
},
{
"first": "Tim",
"middle": [],
"last": "Rockt\u00e4schel",
"suffix": ""
},
{
"first": "Ulf",
"middle": [],
"last": "Leser",
"suffix": ""
},
{
"first": "Wbi-Ner ; Alberto",
"middle": [],
"last": "Ceballo",
"suffix": ""
},
{
"first": "Dennys",
"middle": [
"D"
],
"last": "Puig",
"suffix": ""
},
{
"first": "Yoan",
"middle": [],
"last": "Guti\u00e9rrez",
"suffix": ""
},
{
"first": "Jos\u00e9",
"middle": [
"I"
],
"last": "Abreu",
"suffix": ""
},
{
"first": "Roger",
"middle": [],
"last": "P\u00e9rez",
"suffix": ""
},
{
"first": "Antonio",
"middle": [],
"last": "Fern\u00e1ndez Orqu\u00edn",
"suffix": ""
},
{
"first": "Andr\u00e9s",
"middle": [],
"last": "Montoyo",
"suffix": ""
},
{
"first": ";",
"middle": [],
"last": "Ontology",
"suffix": ""
},
{
"first": "Tiago",
"middle": [],
"last": "Grego",
"suffix": ""
},
{
"first": "Francisco",
"middle": [],
"last": "Pinto",
"suffix": ""
},
{
"first": "Francisco M Couto Uwm-Triads",
"middle": [],
"last": "",
"suffix": ""
}
],
"year": 2013,
"venue": "Multi-Phase Kernel Based Approach for Drug-Drug Interaction Detection and Classification that Exploits Linguistic Information Md. Faisal Mahbub Chowdhury and Alberto Lavelli WBI-DDI: Drug-Drug Interaction Extraction using Majority Voting Philippe",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Daniel Sanchez-Cisneros and Fernando Aparicio Gali FBK-irst : A Multi-Phase Kernel Based Approach for Drug-Drug Interaction Detection and Classification that Exploits Linguistic Information Md. Faisal Mahbub Chowdhury and Alberto Lavelli WBI-DDI: Drug-Drug Interaction Extraction using Majority Voting Philippe Thomas, Mariana Neves, Tim Rockt\u00e4schel and Ulf Leser WBI-NER: The impact of domain-specific features on the performance of identifying and classifying mentions of drugs Tim Rockt\u00e4schel, Torsten Huber, Michael Weidlich and Ulf Leser UMCC DLSI: Semantic and Lexical features for detection and classification Drugs in biomedical texts Armando Collazo, Alberto Ceballo, Dennys D. Puig, Yoan Guti\u00e9rrez, Jos\u00e9 I. Abreu, Roger P\u00e9rez, Antonio Fern\u00e1ndez Orqu\u00edn, Andr\u00e9s Montoyo, Rafael Mu\u00f1oz and Franc Camara NIL UCM: Extracting Drug-Drug interactions from text through combination of sequence and tree kernels Behrouz Bokharaeian and ALBERTO DIAZ UTurku: Drug Named Entity Recognition and Drug-Drug Interaction Extraction Using SVM Classification and Domain Knowledge Jari Bj\u00f6rne, Suwisa Kaewphan and Tapio Salakoski LASIGE: using Conditional Random Fields and ChEBI ontology Tiago Grego, Francisco Pinto and Francisco M Couto UWM-TRIADS: Classifying Drug-Drug Interactions with Two-Stage SVM and Post- Processing Majid Rastegar-Mojarad, Richard D. Boyce and Rashmi Prasad xxxv Day 3: Saturday June 15, 2013 (continued) SCAI: Extracting drug-drug interactions using a rich feature vector Tamara Bobic, Juliane Fluck and Martin Hofmann-Apitius UColorado SOM: Extraction of Drug-Drug Interactions from Biomedical Text using Knowledge-rich and Knowledge-poor Features Negacy Hailu, Lawrence E. Hunter and K. Bretonnel Cohen SemEval-2013 Task 13: Word Sense Induction for Graded and Non-Graded Senses David Jurgens and Ioannis Klapaftis UoS: A Graph-Based System for Graded Word Sense Induction David Hope and Bill Keller AI-KU: Using Substitute Vectors and Co-Occurrence Modeling For Word Sense Induction and Disambiguation Osman Baskaya, Enis Sert, Volkan Cirik and Deniz Yuret unimelb: Topic Modelling-based Word Sense Induction Jey Han Lau, Paul Cook and Timothy Baldwin xxxvi",
"links": null
}
},
"ref_entries": {
"TABREF0": {
"type_str": "table",
"num": null,
"html": null,
"text": "timely and impressive panel on Towards Deep Natural Language Understanding,",
"content": "<table><tr><td>featuring the following panelists:</td></tr><tr><td>-Kevin Knight (USC/Information Sciences Institute)</td></tr><tr><td>-Chris Manning (Stanford University)</td></tr><tr><td>-Martha Palmer (University of Colorado at Boulder)</td></tr><tr><td>-Owen Rambow (Columbia University)</td></tr><tr><td>-Dan Roth (University of Illinois at Urbana-Champaign)</td></tr><tr><td>\u2022 A Reception and Shared Task Poster Session in the evening, thanks to the generous</td></tr><tr><td>sponsorship of the DARPA Deft program.</td></tr></table>"
},
"TABREF3": {
"type_str": "table",
"num": null,
"html": null,
"text": "SemEval-2013 Task 1: TempEval-3: Evaluating Time Expressions, Events, and Temporal Relations Naushad UzZaman, Hector Llorens, Leon Derczynski, James Allen, Marc Verhagen and James",
"content": "<table/>"
}
}
}
}