from abc import ABC, abstractmethod import dlimp as dl import tensorflow as tf import tensorflow_datasets as tfds class TfdsModFunction(ABC): @classmethod @abstractmethod def mod_features( cls, features: tfds.features.FeaturesDict, ) -> tfds.features.FeaturesDict: """ Modifies the data builder feature dict to reflect feature changes of ModFunction. """ ... @classmethod @abstractmethod def mod_dataset(cls, ds: tf.data.Dataset) -> tf.data.Dataset: """ Perform arbitrary modifications on the dataset that comply with the modified feature definition. """ ... def mod_obs_features(features, obs_feature_mod_function): """Utility function to only modify keys in observation dict.""" return tfds.features.FeaturesDict( { "steps": tfds.features.Dataset( { "observation": tfds.features.FeaturesDict( { key: obs_feature_mod_function( key, features["steps"]["observation"][key] ) for key in features["steps"]["observation"].keys() } ), **{ key: features["steps"][key] for key in features["steps"].keys() if key not in ("observation",) }, } ), **{key: features[key] for key in features.keys() if key not in ("steps",)}, } ) class ResizeAndJpegEncode(TfdsModFunction): MAX_RES: int = 256 @classmethod def mod_features( cls, features: tfds.features.FeaturesDict, ) -> tfds.features.FeaturesDict: def downsize_and_jpeg(key, feat): """Downsizes image features, encodes as jpeg.""" if len(feat.shape) >= 2 and feat.shape[0] >= 64 and feat.shape[1] >= 64: # is image / depth feature should_jpeg_encode = ( isinstance(feat, tfds.features.Image) and "depth" not in key ) if len(feat.shape) > 2: new_shape = (ResizeAndJpegEncode.MAX_RES, ResizeAndJpegEncode.MAX_RES, feat.shape[2]) else: new_shape = (ResizeAndJpegEncode.MAX_RES, ResizeAndJpegEncode.MAX_RES) if isinstance(feat, tfds.features.Image): return tfds.features.Image( shape=new_shape, dtype=feat.dtype, encoding_format="jpeg" if should_jpeg_encode else "png", doc=feat.doc, ) else: return tfds.features.Tensor( shape=new_shape, dtype=feat.dtype, doc=feat.doc, ) return feat return mod_obs_features(features, downsize_and_jpeg) @classmethod def mod_dataset(cls, ds: tf.data.Dataset) -> tf.data.Dataset: def resize_image_fn(step): # resize images for key in step["observation"]: if len(step["observation"][key].shape) >= 2 and ( step["observation"][key].shape[0] >= 64 or step["observation"][key].shape[1] >= 64 ): size = (ResizeAndJpegEncode.MAX_RES, ResizeAndJpegEncode.MAX_RES) if "depth" in key: step["observation"][key] = tf.cast( dl.utils.resize_depth_image( tf.cast(step["observation"][key], tf.float32), size ), step["observation"][key].dtype, ) else: step["observation"][key] = tf.cast( dl.utils.resize_image(step["observation"][key], size), tf.uint8, ) return step def episode_map_fn(episode): episode["steps"] = episode["steps"].map(resize_image_fn) return episode return ds.map(episode_map_fn) class FilterSuccess(TfdsModFunction): @classmethod def mod_features( cls, features: tfds.features.FeaturesDict, ) -> tfds.features.FeaturesDict: return features # no feature changes @classmethod def mod_dataset(cls, ds: tf.data.Dataset) -> tf.data.Dataset: return ds.filter(lambda e: e["success"]) class FlipImgChannels(TfdsModFunction): FLIP_KEYS = ["image"] @classmethod def mod_features( cls, features: tfds.features.FeaturesDict, ) -> tfds.features.FeaturesDict: return features # no feature changes @classmethod def mod_dataset(cls, ds: tf.data.Dataset) -> tf.data.Dataset: def flip(step): for key in cls.FLIP_KEYS: if key in step["observation"]: step["observation"][key] = step["observation"][key][..., ::-1] return step def episode_map_fn(episode): episode["steps"] = episode["steps"].map(flip) return episode return ds.map(episode_map_fn) class FlipWristImgChannels(FlipImgChannels): FLIP_KEYS = ["wrist_image", "hand_image"] TFDS_MOD_FUNCTIONS = { "resize_and_jpeg_encode": ResizeAndJpegEncode, "filter_success": FilterSuccess, "flip_image_channels": FlipImgChannels, "flip_wrist_image_channels": FlipWristImgChannels, }