--- license: mit task_categories: - robotics --- # Dataset of Reactive Diffusion Policy ## Contents - [Description](#description) - [Structure](#structure) - [Usage](#usage) - [Tactile Dataset](#tactile-dataset) ## Description This is the raw and postprocessed dataset used in the paper [Reactive Diffusion Policy: Slow-Fast Visual-Tactile Policy Learning for Contact-Rich Manipulation](https://reactive-diffusion-policy.github.io). - [Paper](https://arxiv.org/pdf/2503.02881) - [Project Homepage](https://reactive-diffusion-policy.github.io) - [GitHub Repository](https://github.com/xiaoxiaoxh/reactive_diffusion_policy) - [Pretrained Models](https://huggingface.co/WendiChen/reactive_diffusion_policy_model) ## Structure We offer two versions of the dataset: one is the [full dataset](https://huggingface.co/datasets/WendiChen/reactive_diffusion_policy_dataset/tree/main/dataset_full) used to train the models in our paper, and the other is a [mini dataset](https://huggingface.co/datasets/WendiChen/reactive_diffusion_policy_dataset/tree/main/dataset_mini) for easier examination. Both versions include raw and postprocessed subsets of peeling, wiping and lifting. Each raw subset is structured as follows: ``` subset_name ├── seq_01.pkl ├── seq_02.pkl ├── ... ``` > Note that we split the full raw lifting subset into 2 parts due to file size restrictions. Each postprocessed subset is stored in [Zarr](https://zarr.dev) format, which is structured as follows: ``` ├── action (25710, 4) float32 ├── external_img (25710, 240, 320, 3) uint8 ├── left_gripper1_img (25710, 240, 320, 3) uint8 ├── left_gripper1_initial_marker (25710, 63, 2) float32 ├── left_gripper1_marker_offset (25710, 63, 2) float32 ├── left_gripper1_marker_offset_emb (25710, 15) float32 ├── left_gripper2_img (25710, 240, 320, 3) uint8 ├── left_gripper2_initial_marker (25710, 25, 2) float32 ├── left_gripper2_marker_offset (25710, 25, 2) float32 ├── left_gripper2_marker_offset_emb (25710, 15) float32 ├── left_robot_gripper_force (25710, 1) float32 ├── left_robot_gripper_width (25710, 1) float32 ├── left_robot_tcp_pose (25710, 9) float32 ├── left_robot_tcp_vel (25710, 6) float32 ├── left_robot_tcp_wrench (25710, 6) float32 ├── left_wrist_img (25710, 240, 320, 3) uint8 ├── right_robot_gripper_force (25710, 1) float32 ├── right_robot_gripper_width (25710, 1) float32 ├── right_robot_tcp_pose (25710, 9) float32 ├── right_robot_tcp_vel (25710, 6) float32 ├── right_robot_tcp_wrench (25710, 6) float32 ├── target (25710, 4) float32 └── timestamp (25710,) float32 ``` ## Usage Follow the [README in our GitHub repo](https://github.com/xiaoxiaoxh/reactive_diffusion_policy) to [postprocess the raw data](https://github.com/xiaoxiaoxh/reactive_diffusion_policy#data-postprocessing) and [train the model](https://github.com/xiaoxiaoxh/reactive_diffusion_policy#-training). ## Tactile Dataset We also provide the raw videos of the [tactile dataset](https://huggingface.co/datasets/WendiChen/reactive_diffusion_policy_dataset/tree/main/dataset_tactile_embedding) used for generate the PCA embedding in our paper.