Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Meta Speech Recognition Slavic Languages Dataset (Common Voice)
|
2 |
|
3 |
This dataset contains metadata for Slavic language speech recognition samples from Common Voice.
|
@@ -110,150 +132,4 @@ tar -xzf {lang}.tar.gz
|
|
110 |
βββ sl/
|
111 |
βββ sr/
|
112 |
βββ uk/
|
113 |
-
```
|
114 |
-
|
115 |
-
## Training NeMo Conformer ASR for Slavic Languages
|
116 |
-
|
117 |
-
### 1. Pull and Run NeMo Docker
|
118 |
-
```bash
|
119 |
-
# Pull the NeMo Docker image
|
120 |
-
docker pull nvcr.io/nvidia/nemo:24.05
|
121 |
-
|
122 |
-
# Run the container with GPU support
|
123 |
-
docker run --gpus all -it --rm \
|
124 |
-
-v /external1:/external1 \
|
125 |
-
-v /external2:/external2 \
|
126 |
-
-v /external3:/external3 \
|
127 |
-
-v /cv:/cv \
|
128 |
-
--shm-size=8g \
|
129 |
-
-p 8888:8888 -p 6006:6006 \
|
130 |
-
--ulimit memlock=-1 \
|
131 |
-
--ulimit stack=67108864 \
|
132 |
-
nvcr.io/nvidia/nemo:24.05
|
133 |
-
```
|
134 |
-
|
135 |
-
### 2. Create Training Script
|
136 |
-
Create a script `train_nemo_asr_slavic.py`:
|
137 |
-
```python
|
138 |
-
from nemo.collections.asr.models import EncDecCTCModel
|
139 |
-
from nemo.collections.asr.data.audio_to_text import TarredAudioToTextDataset
|
140 |
-
import pytorch_lightning as pl
|
141 |
-
from omegaconf import OmegaConf
|
142 |
-
import os
|
143 |
-
|
144 |
-
# Load the dataset from Hugging Face
|
145 |
-
from datasets import load_dataset
|
146 |
-
dataset = load_dataset("WhissleAI/Meta_STT_SLAVIC_CommonVoice")
|
147 |
-
|
148 |
-
# Create config
|
149 |
-
config = OmegaConf.create({
|
150 |
-
'model': {
|
151 |
-
'name': 'EncDecCTCModel',
|
152 |
-
'train_ds': {
|
153 |
-
'manifest_filepath': None, # Will be set dynamically
|
154 |
-
'batch_size': 32,
|
155 |
-
'shuffle': True,
|
156 |
-
'num_workers': 4,
|
157 |
-
'pin_memory': True,
|
158 |
-
'use_start_end_token': False,
|
159 |
-
},
|
160 |
-
'validation_ds': {
|
161 |
-
'manifest_filepath': None, # Will be set dynamically
|
162 |
-
'batch_size': 32,
|
163 |
-
'shuffle': False,
|
164 |
-
'num_workers': 4,
|
165 |
-
'pin_memory': True,
|
166 |
-
'use_start_end_token': False,
|
167 |
-
},
|
168 |
-
'optim': {
|
169 |
-
'name': 'adamw',
|
170 |
-
'lr': 0.001,
|
171 |
-
'weight_decay': 0.01,
|
172 |
-
},
|
173 |
-
'trainer': {
|
174 |
-
'devices': 1,
|
175 |
-
'accelerator': 'gpu',
|
176 |
-
'max_epochs': 100,
|
177 |
-
'precision': 16,
|
178 |
-
}
|
179 |
-
}
|
180 |
-
})
|
181 |
-
|
182 |
-
# Initialize model
|
183 |
-
model = EncDecCTCModel(cfg=config.model)
|
184 |
-
|
185 |
-
# Create trainer
|
186 |
-
trainer = pl.Trainer(**config.model.trainer)
|
187 |
-
|
188 |
-
# Train
|
189 |
-
trainer.fit(model)
|
190 |
-
```
|
191 |
-
|
192 |
-
### 3. Create Config File
|
193 |
-
Create a config file `config_slavic.yaml`:
|
194 |
-
```yaml
|
195 |
-
model:
|
196 |
-
name: "EncDecCTCModel"
|
197 |
-
train_ds:
|
198 |
-
manifest_filepath: "train.json"
|
199 |
-
batch_size: 32
|
200 |
-
shuffle: true
|
201 |
-
num_workers: 4
|
202 |
-
pin_memory: true
|
203 |
-
use_start_end_token: false
|
204 |
-
|
205 |
-
validation_ds:
|
206 |
-
manifest_filepath: "valid.json"
|
207 |
-
batch_size: 32
|
208 |
-
shuffle: false
|
209 |
-
num_workers: 4
|
210 |
-
pin_memory: true
|
211 |
-
use_start_end_token: false
|
212 |
-
|
213 |
-
optim:
|
214 |
-
name: adamw
|
215 |
-
lr: 0.001
|
216 |
-
weight_decay: 0.01
|
217 |
-
|
218 |
-
trainer:
|
219 |
-
devices: 1
|
220 |
-
accelerator: "gpu"
|
221 |
-
max_epochs: 100
|
222 |
-
precision: 16
|
223 |
-
```
|
224 |
-
|
225 |
-
### 4. Start Training
|
226 |
-
```bash
|
227 |
-
# Inside the NeMo container
|
228 |
-
python -m torch.distributed.launch --nproc_per_node=1 \
|
229 |
-
train_nemo_asr_slavic.py \
|
230 |
-
--config-path=. \
|
231 |
-
--config-name=config_slavic.yaml
|
232 |
-
```
|
233 |
-
|
234 |
-
## Usage Notes
|
235 |
-
|
236 |
-
1. The dataset includes only metadata. Audio files must be downloaded separately from Common Voice.
|
237 |
-
2. Audio files should be placed in the `/cv/cv-corpus-15.0-2023-09-08/{lang}/` directory structure.
|
238 |
-
3. For optimal performance:
|
239 |
-
- Use a GPU with at least 16GB VRAM
|
240 |
-
- Adjust batch size based on your GPU memory
|
241 |
-
- Consider gradient accumulation for larger effective batch sizes
|
242 |
-
- Monitor training with TensorBoard (accessible via port 6006)
|
243 |
-
|
244 |
-
## Common Issues and Solutions
|
245 |
-
|
246 |
-
1. **Memory Issues**:
|
247 |
-
- Reduce batch size if you encounter OOM errors
|
248 |
-
- Use gradient accumulation for larger effective batch sizes
|
249 |
-
- Enable mixed precision training (fp16)
|
250 |
-
|
251 |
-
2. **Training Speed**:
|
252 |
-
- Increase num_workers based on your CPU cores
|
253 |
-
- Use pin_memory=True for faster data transfer to GPU
|
254 |
-
- Consider using tarred datasets for faster I/O
|
255 |
-
|
256 |
-
3. **Model Performance**:
|
257 |
-
- Adjust learning rate based on your batch size
|
258 |
-
- Use learning rate warmup for better convergence
|
259 |
-
- Consider using a pretrained model as initialization
|
|
|
1 |
+
---
|
2 |
+
task_categories:
|
3 |
+
- automatic-speech-recognition
|
4 |
+
- audio-classification
|
5 |
+
language:
|
6 |
+
- ru
|
7 |
+
- be
|
8 |
+
- cs
|
9 |
+
- bg
|
10 |
+
- ka
|
11 |
+
- mk
|
12 |
+
- pl
|
13 |
+
- sr
|
14 |
+
- sl
|
15 |
+
- uk
|
16 |
+
tags:
|
17 |
+
- speech-recogniton
|
18 |
+
- entity-tagging
|
19 |
+
- intent-classification
|
20 |
+
- age-prediction
|
21 |
+
- emotion-classication
|
22 |
+
---
|
23 |
# Meta Speech Recognition Slavic Languages Dataset (Common Voice)
|
24 |
|
25 |
This dataset contains metadata for Slavic language speech recognition samples from Common Voice.
|
|
|
132 |
βββ sl/
|
133 |
βββ sr/
|
134 |
βββ uk/
|
135 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|