d2d35138218eb2dd3999a9fa4f7f93b5fef9ea7fe1e60270b943d1ba85993fec
Browse files- vision_niah_d/needle_datasets/images/teddy_bear_times_square.png +3 -0
- vision_niah_d/needle_datasets/images/teddy_bear_times_square_interrupt.png +3 -0
- vision_niah_d/needle_datasets/images/ucsd.jpeg +3 -0
- vision_niah_d/needle_datasets/images/ucsd_interrupt.png +3 -0
- vision_niah_d/needle_datasets/images/zoo.png +3 -0
- vision_niah_d/needle_datasets/images/zoo_interrupt.png +3 -0
- vision_niah_d/niah_output/Qwen2-VL-m_rope-128frames-16card_8k-context-330k-llava-video/all_accuracies.json +452 -0
- vision_niah_d/niah_output/Qwen2-VL-m_rope-128frames-16card_8k-context-330k-llava-video/avg_accuracy.txt +1 -0
- vision_niah_d/niah_output/Qwen2-VL-m_rope-128frames-16card_8k-context-330k-llava-video/heatmap.png +3 -0
- vision_niah_d/niah_output/Qwen2-VL-t_scale2_change_freq-128frames-16card_8k-context-330k-llava-video/all_accuracies.json +452 -0
- vision_niah_d/niah_output/Qwen2-VL-t_scale2_change_freq-128frames-16card_8k-context-330k-llava-video/avg_accuracy.txt +1 -0
- vision_niah_d/niah_output/Qwen2-VL-t_scale2_change_freq-128frames-16card_8k-context-330k-llava-video/heatmap.png +3 -0
- vision_niah_d/niah_output/Qwen2-VL-time_rope-128frames-16card_8k-context-330k-llava-video/all_accuracies.json +452 -0
- vision_niah_d/niah_output/Qwen2-VL-time_rope-128frames-16card_8k-context-330k-llava-video/avg_accuracy.txt +1 -0
- vision_niah_d/niah_output/Qwen2-VL-time_rope-128frames-16card_8k-context-330k-llava-video/heatmap.png +3 -0
- vision_niah_d/niah_output/Qwen2-VL-vanilla_rope-128frames-16card_8k-context-330k-llava-video/all_accuracies.json +452 -0
- vision_niah_d/niah_output/Qwen2-VL-vanilla_rope-128frames-16card_8k-context-330k-llava-video/avg_accuracy.txt +1 -0
- vision_niah_d/niah_output/Qwen2-VL-vanilla_rope-128frames-16card_8k-context-330k-llava-video/heatmap.png +3 -0
- vision_niah_d/produce_haystack_embedding.py +142 -0
- vision_niah_d/produce_needle_embedding.py +163 -0
vision_niah_d/needle_datasets/images/teddy_bear_times_square.png
ADDED
![]() |
Git LFS Details
|
vision_niah_d/needle_datasets/images/teddy_bear_times_square_interrupt.png
ADDED
![]() |
Git LFS Details
|
vision_niah_d/needle_datasets/images/ucsd.jpeg
ADDED
![]() |
Git LFS Details
|
vision_niah_d/needle_datasets/images/ucsd_interrupt.png
ADDED
![]() |
Git LFS Details
|
vision_niah_d/needle_datasets/images/zoo.png
ADDED
![]() |
Git LFS Details
|
vision_niah_d/needle_datasets/images/zoo_interrupt.png
ADDED
![]() |
Git LFS Details
|
vision_niah_d/niah_output/Qwen2-VL-m_rope-128frames-16card_8k-context-330k-llava-video/all_accuracies.json
ADDED
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"Num. Frame": 100,
|
4 |
+
"Frame Depth": 0.0,
|
5 |
+
"Score": 1.0
|
6 |
+
},
|
7 |
+
{
|
8 |
+
"Num. Frame": 100,
|
9 |
+
"Frame Depth": 20.0,
|
10 |
+
"Score": 0.8
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"Num. Frame": 100,
|
14 |
+
"Frame Depth": 40.0,
|
15 |
+
"Score": 0.8
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"Num. Frame": 100,
|
19 |
+
"Frame Depth": 60.0,
|
20 |
+
"Score": 0.8
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"Num. Frame": 100,
|
24 |
+
"Frame Depth": 80.0,
|
25 |
+
"Score": 0.8
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"Num. Frame": 100,
|
29 |
+
"Frame Depth": 100.0,
|
30 |
+
"Score": 1.0
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"Num. Frame": 300,
|
34 |
+
"Frame Depth": 0.0,
|
35 |
+
"Score": 1.0
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"Num. Frame": 300,
|
39 |
+
"Frame Depth": 20.0,
|
40 |
+
"Score": 0.8
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"Num. Frame": 300,
|
44 |
+
"Frame Depth": 40.0,
|
45 |
+
"Score": 0.8
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"Num. Frame": 300,
|
49 |
+
"Frame Depth": 60.0,
|
50 |
+
"Score": 0.8
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"Num. Frame": 300,
|
54 |
+
"Frame Depth": 80.0,
|
55 |
+
"Score": 0.8
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"Num. Frame": 300,
|
59 |
+
"Frame Depth": 100.0,
|
60 |
+
"Score": 1.0
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"Num. Frame": 500,
|
64 |
+
"Frame Depth": 0.0,
|
65 |
+
"Score": 1.0
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"Num. Frame": 500,
|
69 |
+
"Frame Depth": 20.0,
|
70 |
+
"Score": 0.6
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"Num. Frame": 500,
|
74 |
+
"Frame Depth": 40.0,
|
75 |
+
"Score": 0.6
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"Num. Frame": 500,
|
79 |
+
"Frame Depth": 60.0,
|
80 |
+
"Score": 0.6
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"Num. Frame": 500,
|
84 |
+
"Frame Depth": 80.0,
|
85 |
+
"Score": 0.6
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"Num. Frame": 500,
|
89 |
+
"Frame Depth": 100.0,
|
90 |
+
"Score": 1.0
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"Num. Frame": 700,
|
94 |
+
"Frame Depth": 0.0,
|
95 |
+
"Score": 1.0
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"Num. Frame": 700,
|
99 |
+
"Frame Depth": 20.0,
|
100 |
+
"Score": 0.8
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"Num. Frame": 700,
|
104 |
+
"Frame Depth": 40.0,
|
105 |
+
"Score": 0.8
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"Num. Frame": 700,
|
109 |
+
"Frame Depth": 60.0,
|
110 |
+
"Score": 0.8
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"Num. Frame": 700,
|
114 |
+
"Frame Depth": 80.0,
|
115 |
+
"Score": 0.8
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"Num. Frame": 700,
|
119 |
+
"Frame Depth": 100.0,
|
120 |
+
"Score": 1.0
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"Num. Frame": 900,
|
124 |
+
"Frame Depth": 0.0,
|
125 |
+
"Score": 1.0
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"Num. Frame": 900,
|
129 |
+
"Frame Depth": 20.0,
|
130 |
+
"Score": 0.8
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"Num. Frame": 900,
|
134 |
+
"Frame Depth": 40.0,
|
135 |
+
"Score": 0.8
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"Num. Frame": 900,
|
139 |
+
"Frame Depth": 60.0,
|
140 |
+
"Score": 0.8
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"Num. Frame": 900,
|
144 |
+
"Frame Depth": 80.0,
|
145 |
+
"Score": 0.8
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"Num. Frame": 900,
|
149 |
+
"Frame Depth": 100.0,
|
150 |
+
"Score": 1.0
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"Num. Frame": 1100,
|
154 |
+
"Frame Depth": 0.0,
|
155 |
+
"Score": 1.0
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"Num. Frame": 1100,
|
159 |
+
"Frame Depth": 20.0,
|
160 |
+
"Score": 0.4
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"Num. Frame": 1100,
|
164 |
+
"Frame Depth": 40.0,
|
165 |
+
"Score": 0.4
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"Num. Frame": 1100,
|
169 |
+
"Frame Depth": 60.0,
|
170 |
+
"Score": 0.4
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"Num. Frame": 1100,
|
174 |
+
"Frame Depth": 80.0,
|
175 |
+
"Score": 0.4
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"Num. Frame": 1100,
|
179 |
+
"Frame Depth": 100.0,
|
180 |
+
"Score": 1.0
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"Num. Frame": 1300,
|
184 |
+
"Frame Depth": 0.0,
|
185 |
+
"Score": 1.0
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"Num. Frame": 1300,
|
189 |
+
"Frame Depth": 20.0,
|
190 |
+
"Score": 0.8
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"Num. Frame": 1300,
|
194 |
+
"Frame Depth": 40.0,
|
195 |
+
"Score": 0.8
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"Num. Frame": 1300,
|
199 |
+
"Frame Depth": 60.0,
|
200 |
+
"Score": 0.8
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"Num. Frame": 1300,
|
204 |
+
"Frame Depth": 80.0,
|
205 |
+
"Score": 0.8
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"Num. Frame": 1300,
|
209 |
+
"Frame Depth": 100.0,
|
210 |
+
"Score": 1.0
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"Num. Frame": 1500,
|
214 |
+
"Frame Depth": 0.0,
|
215 |
+
"Score": 1.0
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"Num. Frame": 1500,
|
219 |
+
"Frame Depth": 20.0,
|
220 |
+
"Score": 0.8
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"Num. Frame": 1500,
|
224 |
+
"Frame Depth": 40.0,
|
225 |
+
"Score": 0.8
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"Num. Frame": 1500,
|
229 |
+
"Frame Depth": 60.0,
|
230 |
+
"Score": 0.8
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"Num. Frame": 1500,
|
234 |
+
"Frame Depth": 80.0,
|
235 |
+
"Score": 0.8
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"Num. Frame": 1500,
|
239 |
+
"Frame Depth": 100.0,
|
240 |
+
"Score": 1.0
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"Num. Frame": 1700,
|
244 |
+
"Frame Depth": 0.0,
|
245 |
+
"Score": 1.0
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"Num. Frame": 1700,
|
249 |
+
"Frame Depth": 20.0,
|
250 |
+
"Score": 0.6
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"Num. Frame": 1700,
|
254 |
+
"Frame Depth": 40.0,
|
255 |
+
"Score": 0.6
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"Num. Frame": 1700,
|
259 |
+
"Frame Depth": 60.0,
|
260 |
+
"Score": 0.6
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"Num. Frame": 1700,
|
264 |
+
"Frame Depth": 80.0,
|
265 |
+
"Score": 0.6
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"Num. Frame": 1700,
|
269 |
+
"Frame Depth": 100.0,
|
270 |
+
"Score": 1.0
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"Num. Frame": 1900,
|
274 |
+
"Frame Depth": 0.0,
|
275 |
+
"Score": 1.0
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"Num. Frame": 1900,
|
279 |
+
"Frame Depth": 20.0,
|
280 |
+
"Score": 0.6
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"Num. Frame": 1900,
|
284 |
+
"Frame Depth": 40.0,
|
285 |
+
"Score": 0.6
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"Num. Frame": 1900,
|
289 |
+
"Frame Depth": 60.0,
|
290 |
+
"Score": 0.6
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"Num. Frame": 1900,
|
294 |
+
"Frame Depth": 80.0,
|
295 |
+
"Score": 0.6
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"Num. Frame": 1900,
|
299 |
+
"Frame Depth": 100.0,
|
300 |
+
"Score": 1.0
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"Num. Frame": 2100,
|
304 |
+
"Frame Depth": 0.0,
|
305 |
+
"Score": 1.0
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"Num. Frame": 2100,
|
309 |
+
"Frame Depth": 20.0,
|
310 |
+
"Score": 0.4
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"Num. Frame": 2100,
|
314 |
+
"Frame Depth": 40.0,
|
315 |
+
"Score": 0.4
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"Num. Frame": 2100,
|
319 |
+
"Frame Depth": 60.0,
|
320 |
+
"Score": 0.4
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"Num. Frame": 2100,
|
324 |
+
"Frame Depth": 80.0,
|
325 |
+
"Score": 0.4
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"Num. Frame": 2100,
|
329 |
+
"Frame Depth": 100.0,
|
330 |
+
"Score": 1.0
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"Num. Frame": 2300,
|
334 |
+
"Frame Depth": 0.0,
|
335 |
+
"Score": 1.0
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"Num. Frame": 2300,
|
339 |
+
"Frame Depth": 20.0,
|
340 |
+
"Score": 0.6
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"Num. Frame": 2300,
|
344 |
+
"Frame Depth": 40.0,
|
345 |
+
"Score": 0.6
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"Num. Frame": 2300,
|
349 |
+
"Frame Depth": 60.0,
|
350 |
+
"Score": 0.6
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"Num. Frame": 2300,
|
354 |
+
"Frame Depth": 80.0,
|
355 |
+
"Score": 0.6
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"Num. Frame": 2300,
|
359 |
+
"Frame Depth": 100.0,
|
360 |
+
"Score": 1.0
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"Num. Frame": 2500,
|
364 |
+
"Frame Depth": 0.0,
|
365 |
+
"Score": 1.0
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"Num. Frame": 2500,
|
369 |
+
"Frame Depth": 20.0,
|
370 |
+
"Score": 0.8
|
371 |
+
},
|
372 |
+
{
|
373 |
+
"Num. Frame": 2500,
|
374 |
+
"Frame Depth": 40.0,
|
375 |
+
"Score": 0.8
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"Num. Frame": 2500,
|
379 |
+
"Frame Depth": 60.0,
|
380 |
+
"Score": 0.8
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"Num. Frame": 2500,
|
384 |
+
"Frame Depth": 80.0,
|
385 |
+
"Score": 0.8
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"Num. Frame": 2500,
|
389 |
+
"Frame Depth": 100.0,
|
390 |
+
"Score": 1.0
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"Num. Frame": 2700,
|
394 |
+
"Frame Depth": 0.0,
|
395 |
+
"Score": 1.0
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"Num. Frame": 2700,
|
399 |
+
"Frame Depth": 20.0,
|
400 |
+
"Score": 0.8
|
401 |
+
},
|
402 |
+
{
|
403 |
+
"Num. Frame": 2700,
|
404 |
+
"Frame Depth": 40.0,
|
405 |
+
"Score": 0.8
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"Num. Frame": 2700,
|
409 |
+
"Frame Depth": 60.0,
|
410 |
+
"Score": 0.8
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"Num. Frame": 2700,
|
414 |
+
"Frame Depth": 80.0,
|
415 |
+
"Score": 0.8
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"Num. Frame": 2700,
|
419 |
+
"Frame Depth": 100.0,
|
420 |
+
"Score": 1.0
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"Num. Frame": 2900,
|
424 |
+
"Frame Depth": 0.0,
|
425 |
+
"Score": 1.0
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"Num. Frame": 2900,
|
429 |
+
"Frame Depth": 20.0,
|
430 |
+
"Score": 0.6
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"Num. Frame": 2900,
|
434 |
+
"Frame Depth": 40.0,
|
435 |
+
"Score": 0.6
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"Num. Frame": 2900,
|
439 |
+
"Frame Depth": 60.0,
|
440 |
+
"Score": 0.6
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"Num. Frame": 2900,
|
444 |
+
"Frame Depth": 80.0,
|
445 |
+
"Score": 0.6
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"Num. Frame": 2900,
|
449 |
+
"Frame Depth": 100.0,
|
450 |
+
"Score": 1.0
|
451 |
+
}
|
452 |
+
]
|
vision_niah_d/niah_output/Qwen2-VL-m_rope-128frames-16card_8k-context-330k-llava-video/avg_accuracy.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Average Accuracy: 0.7866666666666665
|
vision_niah_d/niah_output/Qwen2-VL-m_rope-128frames-16card_8k-context-330k-llava-video/heatmap.png
ADDED
![]() |
Git LFS Details
|
vision_niah_d/niah_output/Qwen2-VL-t_scale2_change_freq-128frames-16card_8k-context-330k-llava-video/all_accuracies.json
ADDED
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"Num. Frame": 100,
|
4 |
+
"Frame Depth": 0.0,
|
5 |
+
"Score": 1.0
|
6 |
+
},
|
7 |
+
{
|
8 |
+
"Num. Frame": 100,
|
9 |
+
"Frame Depth": 20.0,
|
10 |
+
"Score": 1.0
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"Num. Frame": 100,
|
14 |
+
"Frame Depth": 40.0,
|
15 |
+
"Score": 1.0
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"Num. Frame": 100,
|
19 |
+
"Frame Depth": 60.0,
|
20 |
+
"Score": 1.0
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"Num. Frame": 100,
|
24 |
+
"Frame Depth": 80.0,
|
25 |
+
"Score": 1.0
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"Num. Frame": 100,
|
29 |
+
"Frame Depth": 100.0,
|
30 |
+
"Score": 1.0
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"Num. Frame": 300,
|
34 |
+
"Frame Depth": 0.0,
|
35 |
+
"Score": 1.0
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"Num. Frame": 300,
|
39 |
+
"Frame Depth": 20.0,
|
40 |
+
"Score": 0.8
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"Num. Frame": 300,
|
44 |
+
"Frame Depth": 40.0,
|
45 |
+
"Score": 0.8
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"Num. Frame": 300,
|
49 |
+
"Frame Depth": 60.0,
|
50 |
+
"Score": 0.8
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"Num. Frame": 300,
|
54 |
+
"Frame Depth": 80.0,
|
55 |
+
"Score": 0.8
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"Num. Frame": 300,
|
59 |
+
"Frame Depth": 100.0,
|
60 |
+
"Score": 1.0
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"Num. Frame": 500,
|
64 |
+
"Frame Depth": 0.0,
|
65 |
+
"Score": 1.0
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"Num. Frame": 500,
|
69 |
+
"Frame Depth": 20.0,
|
70 |
+
"Score": 1.0
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"Num. Frame": 500,
|
74 |
+
"Frame Depth": 40.0,
|
75 |
+
"Score": 1.0
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"Num. Frame": 500,
|
79 |
+
"Frame Depth": 60.0,
|
80 |
+
"Score": 1.0
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"Num. Frame": 500,
|
84 |
+
"Frame Depth": 80.0,
|
85 |
+
"Score": 1.0
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"Num. Frame": 500,
|
89 |
+
"Frame Depth": 100.0,
|
90 |
+
"Score": 1.0
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"Num. Frame": 700,
|
94 |
+
"Frame Depth": 0.0,
|
95 |
+
"Score": 1.0
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"Num. Frame": 700,
|
99 |
+
"Frame Depth": 20.0,
|
100 |
+
"Score": 1.0
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"Num. Frame": 700,
|
104 |
+
"Frame Depth": 40.0,
|
105 |
+
"Score": 1.0
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"Num. Frame": 700,
|
109 |
+
"Frame Depth": 60.0,
|
110 |
+
"Score": 1.0
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"Num. Frame": 700,
|
114 |
+
"Frame Depth": 80.0,
|
115 |
+
"Score": 1.0
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"Num. Frame": 700,
|
119 |
+
"Frame Depth": 100.0,
|
120 |
+
"Score": 1.0
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"Num. Frame": 900,
|
124 |
+
"Frame Depth": 0.0,
|
125 |
+
"Score": 1.0
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"Num. Frame": 900,
|
129 |
+
"Frame Depth": 20.0,
|
130 |
+
"Score": 0.8
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"Num. Frame": 900,
|
134 |
+
"Frame Depth": 40.0,
|
135 |
+
"Score": 0.8
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"Num. Frame": 900,
|
139 |
+
"Frame Depth": 60.0,
|
140 |
+
"Score": 0.8
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"Num. Frame": 900,
|
144 |
+
"Frame Depth": 80.0,
|
145 |
+
"Score": 0.8
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"Num. Frame": 900,
|
149 |
+
"Frame Depth": 100.0,
|
150 |
+
"Score": 1.0
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"Num. Frame": 1100,
|
154 |
+
"Frame Depth": 0.0,
|
155 |
+
"Score": 1.0
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"Num. Frame": 1100,
|
159 |
+
"Frame Depth": 20.0,
|
160 |
+
"Score": 1.0
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"Num. Frame": 1100,
|
164 |
+
"Frame Depth": 40.0,
|
165 |
+
"Score": 1.0
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"Num. Frame": 1100,
|
169 |
+
"Frame Depth": 60.0,
|
170 |
+
"Score": 1.0
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"Num. Frame": 1100,
|
174 |
+
"Frame Depth": 80.0,
|
175 |
+
"Score": 1.0
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"Num. Frame": 1100,
|
179 |
+
"Frame Depth": 100.0,
|
180 |
+
"Score": 1.0
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"Num. Frame": 1300,
|
184 |
+
"Frame Depth": 0.0,
|
185 |
+
"Score": 1.0
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"Num. Frame": 1300,
|
189 |
+
"Frame Depth": 20.0,
|
190 |
+
"Score": 0.8
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"Num. Frame": 1300,
|
194 |
+
"Frame Depth": 40.0,
|
195 |
+
"Score": 0.8
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"Num. Frame": 1300,
|
199 |
+
"Frame Depth": 60.0,
|
200 |
+
"Score": 0.8
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"Num. Frame": 1300,
|
204 |
+
"Frame Depth": 80.0,
|
205 |
+
"Score": 0.8
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"Num. Frame": 1300,
|
209 |
+
"Frame Depth": 100.0,
|
210 |
+
"Score": 1.0
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"Num. Frame": 1500,
|
214 |
+
"Frame Depth": 0.0,
|
215 |
+
"Score": 1.0
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"Num. Frame": 1500,
|
219 |
+
"Frame Depth": 20.0,
|
220 |
+
"Score": 1.0
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"Num. Frame": 1500,
|
224 |
+
"Frame Depth": 40.0,
|
225 |
+
"Score": 1.0
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"Num. Frame": 1500,
|
229 |
+
"Frame Depth": 60.0,
|
230 |
+
"Score": 1.0
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"Num. Frame": 1500,
|
234 |
+
"Frame Depth": 80.0,
|
235 |
+
"Score": 1.0
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"Num. Frame": 1500,
|
239 |
+
"Frame Depth": 100.0,
|
240 |
+
"Score": 1.0
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"Num. Frame": 1700,
|
244 |
+
"Frame Depth": 0.0,
|
245 |
+
"Score": 1.0
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"Num. Frame": 1700,
|
249 |
+
"Frame Depth": 20.0,
|
250 |
+
"Score": 0.8
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"Num. Frame": 1700,
|
254 |
+
"Frame Depth": 40.0,
|
255 |
+
"Score": 0.8
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"Num. Frame": 1700,
|
259 |
+
"Frame Depth": 60.0,
|
260 |
+
"Score": 0.8
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"Num. Frame": 1700,
|
264 |
+
"Frame Depth": 80.0,
|
265 |
+
"Score": 0.8
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"Num. Frame": 1700,
|
269 |
+
"Frame Depth": 100.0,
|
270 |
+
"Score": 1.0
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"Num. Frame": 1900,
|
274 |
+
"Frame Depth": 0.0,
|
275 |
+
"Score": 1.0
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"Num. Frame": 1900,
|
279 |
+
"Frame Depth": 20.0,
|
280 |
+
"Score": 0.8
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"Num. Frame": 1900,
|
284 |
+
"Frame Depth": 40.0,
|
285 |
+
"Score": 0.8
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"Num. Frame": 1900,
|
289 |
+
"Frame Depth": 60.0,
|
290 |
+
"Score": 0.8
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"Num. Frame": 1900,
|
294 |
+
"Frame Depth": 80.0,
|
295 |
+
"Score": 0.8
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"Num. Frame": 1900,
|
299 |
+
"Frame Depth": 100.0,
|
300 |
+
"Score": 1.0
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"Num. Frame": 2100,
|
304 |
+
"Frame Depth": 0.0,
|
305 |
+
"Score": 1.0
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"Num. Frame": 2100,
|
309 |
+
"Frame Depth": 20.0,
|
310 |
+
"Score": 0.8
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"Num. Frame": 2100,
|
314 |
+
"Frame Depth": 40.0,
|
315 |
+
"Score": 0.8
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"Num. Frame": 2100,
|
319 |
+
"Frame Depth": 60.0,
|
320 |
+
"Score": 0.8
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"Num. Frame": 2100,
|
324 |
+
"Frame Depth": 80.0,
|
325 |
+
"Score": 0.8
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"Num. Frame": 2100,
|
329 |
+
"Frame Depth": 100.0,
|
330 |
+
"Score": 1.0
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"Num. Frame": 2300,
|
334 |
+
"Frame Depth": 0.0,
|
335 |
+
"Score": 1.0
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"Num. Frame": 2300,
|
339 |
+
"Frame Depth": 20.0,
|
340 |
+
"Score": 0.8
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"Num. Frame": 2300,
|
344 |
+
"Frame Depth": 40.0,
|
345 |
+
"Score": 0.8
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"Num. Frame": 2300,
|
349 |
+
"Frame Depth": 60.0,
|
350 |
+
"Score": 0.8
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"Num. Frame": 2300,
|
354 |
+
"Frame Depth": 80.0,
|
355 |
+
"Score": 0.8
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"Num. Frame": 2300,
|
359 |
+
"Frame Depth": 100.0,
|
360 |
+
"Score": 1.0
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"Num. Frame": 2500,
|
364 |
+
"Frame Depth": 0.0,
|
365 |
+
"Score": 1.0
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"Num. Frame": 2500,
|
369 |
+
"Frame Depth": 20.0,
|
370 |
+
"Score": 0.8
|
371 |
+
},
|
372 |
+
{
|
373 |
+
"Num. Frame": 2500,
|
374 |
+
"Frame Depth": 40.0,
|
375 |
+
"Score": 0.8
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"Num. Frame": 2500,
|
379 |
+
"Frame Depth": 60.0,
|
380 |
+
"Score": 0.8
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"Num. Frame": 2500,
|
384 |
+
"Frame Depth": 80.0,
|
385 |
+
"Score": 0.8
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"Num. Frame": 2500,
|
389 |
+
"Frame Depth": 100.0,
|
390 |
+
"Score": 1.0
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"Num. Frame": 2700,
|
394 |
+
"Frame Depth": 0.0,
|
395 |
+
"Score": 1.0
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"Num. Frame": 2700,
|
399 |
+
"Frame Depth": 20.0,
|
400 |
+
"Score": 0.8
|
401 |
+
},
|
402 |
+
{
|
403 |
+
"Num. Frame": 2700,
|
404 |
+
"Frame Depth": 40.0,
|
405 |
+
"Score": 0.8
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"Num. Frame": 2700,
|
409 |
+
"Frame Depth": 60.0,
|
410 |
+
"Score": 0.8
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"Num. Frame": 2700,
|
414 |
+
"Frame Depth": 80.0,
|
415 |
+
"Score": 0.8
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"Num. Frame": 2700,
|
419 |
+
"Frame Depth": 100.0,
|
420 |
+
"Score": 1.0
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"Num. Frame": 2900,
|
424 |
+
"Frame Depth": 0.0,
|
425 |
+
"Score": 1.0
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"Num. Frame": 2900,
|
429 |
+
"Frame Depth": 20.0,
|
430 |
+
"Score": 0.8
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"Num. Frame": 2900,
|
434 |
+
"Frame Depth": 40.0,
|
435 |
+
"Score": 0.8
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"Num. Frame": 2900,
|
439 |
+
"Frame Depth": 60.0,
|
440 |
+
"Score": 0.8
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"Num. Frame": 2900,
|
444 |
+
"Frame Depth": 80.0,
|
445 |
+
"Score": 0.8
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"Num. Frame": 2900,
|
449 |
+
"Frame Depth": 100.0,
|
450 |
+
"Score": 1.0
|
451 |
+
}
|
452 |
+
]
|
vision_niah_d/niah_output/Qwen2-VL-t_scale2_change_freq-128frames-16card_8k-context-330k-llava-video/avg_accuracy.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Average Accuracy: 0.9111111111111111
|
vision_niah_d/niah_output/Qwen2-VL-t_scale2_change_freq-128frames-16card_8k-context-330k-llava-video/heatmap.png
ADDED
![]() |
Git LFS Details
|
vision_niah_d/niah_output/Qwen2-VL-time_rope-128frames-16card_8k-context-330k-llava-video/all_accuracies.json
ADDED
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"Num. Frame": 100,
|
4 |
+
"Frame Depth": 0.0,
|
5 |
+
"Score": 1.0
|
6 |
+
},
|
7 |
+
{
|
8 |
+
"Num. Frame": 100,
|
9 |
+
"Frame Depth": 20.0,
|
10 |
+
"Score": 0.8
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"Num. Frame": 100,
|
14 |
+
"Frame Depth": 40.0,
|
15 |
+
"Score": 0.8
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"Num. Frame": 100,
|
19 |
+
"Frame Depth": 60.0,
|
20 |
+
"Score": 0.8
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"Num. Frame": 100,
|
24 |
+
"Frame Depth": 80.0,
|
25 |
+
"Score": 0.8
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"Num. Frame": 100,
|
29 |
+
"Frame Depth": 100.0,
|
30 |
+
"Score": 1.0
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"Num. Frame": 300,
|
34 |
+
"Frame Depth": 0.0,
|
35 |
+
"Score": 1.0
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"Num. Frame": 300,
|
39 |
+
"Frame Depth": 20.0,
|
40 |
+
"Score": 0.8
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"Num. Frame": 300,
|
44 |
+
"Frame Depth": 40.0,
|
45 |
+
"Score": 0.8
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"Num. Frame": 300,
|
49 |
+
"Frame Depth": 60.0,
|
50 |
+
"Score": 0.8
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"Num. Frame": 300,
|
54 |
+
"Frame Depth": 80.0,
|
55 |
+
"Score": 0.8
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"Num. Frame": 300,
|
59 |
+
"Frame Depth": 100.0,
|
60 |
+
"Score": 1.0
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"Num. Frame": 500,
|
64 |
+
"Frame Depth": 0.0,
|
65 |
+
"Score": 0.6
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"Num. Frame": 500,
|
69 |
+
"Frame Depth": 20.0,
|
70 |
+
"Score": 0.4
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"Num. Frame": 500,
|
74 |
+
"Frame Depth": 40.0,
|
75 |
+
"Score": 0.4
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"Num. Frame": 500,
|
79 |
+
"Frame Depth": 60.0,
|
80 |
+
"Score": 0.4
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"Num. Frame": 500,
|
84 |
+
"Frame Depth": 80.0,
|
85 |
+
"Score": 0.4
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"Num. Frame": 500,
|
89 |
+
"Frame Depth": 100.0,
|
90 |
+
"Score": 1.0
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"Num. Frame": 700,
|
94 |
+
"Frame Depth": 0.0,
|
95 |
+
"Score": 0.2
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"Num. Frame": 700,
|
99 |
+
"Frame Depth": 20.0,
|
100 |
+
"Score": 0.2
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"Num. Frame": 700,
|
104 |
+
"Frame Depth": 40.0,
|
105 |
+
"Score": 0.2
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"Num. Frame": 700,
|
109 |
+
"Frame Depth": 60.0,
|
110 |
+
"Score": 0.2
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"Num. Frame": 700,
|
114 |
+
"Frame Depth": 80.0,
|
115 |
+
"Score": 0.2
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"Num. Frame": 700,
|
119 |
+
"Frame Depth": 100.0,
|
120 |
+
"Score": 1.0
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"Num. Frame": 900,
|
124 |
+
"Frame Depth": 0.0,
|
125 |
+
"Score": 0.8
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"Num. Frame": 900,
|
129 |
+
"Frame Depth": 20.0,
|
130 |
+
"Score": 0.6
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"Num. Frame": 900,
|
134 |
+
"Frame Depth": 40.0,
|
135 |
+
"Score": 0.6
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"Num. Frame": 900,
|
139 |
+
"Frame Depth": 60.0,
|
140 |
+
"Score": 0.6
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"Num. Frame": 900,
|
144 |
+
"Frame Depth": 80.0,
|
145 |
+
"Score": 0.6
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"Num. Frame": 900,
|
149 |
+
"Frame Depth": 100.0,
|
150 |
+
"Score": 1.0
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"Num. Frame": 1100,
|
154 |
+
"Frame Depth": 0.0,
|
155 |
+
"Score": 0.4
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"Num. Frame": 1100,
|
159 |
+
"Frame Depth": 20.0,
|
160 |
+
"Score": 0.4
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"Num. Frame": 1100,
|
164 |
+
"Frame Depth": 40.0,
|
165 |
+
"Score": 0.4
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"Num. Frame": 1100,
|
169 |
+
"Frame Depth": 60.0,
|
170 |
+
"Score": 0.4
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"Num. Frame": 1100,
|
174 |
+
"Frame Depth": 80.0,
|
175 |
+
"Score": 0.4
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"Num. Frame": 1100,
|
179 |
+
"Frame Depth": 100.0,
|
180 |
+
"Score": 0.8
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"Num. Frame": 1300,
|
184 |
+
"Frame Depth": 0.0,
|
185 |
+
"Score": 0.0
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"Num. Frame": 1300,
|
189 |
+
"Frame Depth": 20.0,
|
190 |
+
"Score": 0.4
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"Num. Frame": 1300,
|
194 |
+
"Frame Depth": 40.0,
|
195 |
+
"Score": 0.4
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"Num. Frame": 1300,
|
199 |
+
"Frame Depth": 60.0,
|
200 |
+
"Score": 0.4
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"Num. Frame": 1300,
|
204 |
+
"Frame Depth": 80.0,
|
205 |
+
"Score": 0.4
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"Num. Frame": 1300,
|
209 |
+
"Frame Depth": 100.0,
|
210 |
+
"Score": 0.6
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"Num. Frame": 1500,
|
214 |
+
"Frame Depth": 0.0,
|
215 |
+
"Score": 0.4
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"Num. Frame": 1500,
|
219 |
+
"Frame Depth": 20.0,
|
220 |
+
"Score": 0.2
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"Num. Frame": 1500,
|
224 |
+
"Frame Depth": 40.0,
|
225 |
+
"Score": 0.2
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"Num. Frame": 1500,
|
229 |
+
"Frame Depth": 60.0,
|
230 |
+
"Score": 0.2
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"Num. Frame": 1500,
|
234 |
+
"Frame Depth": 80.0,
|
235 |
+
"Score": 0.2
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"Num. Frame": 1500,
|
239 |
+
"Frame Depth": 100.0,
|
240 |
+
"Score": 0.2
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"Num. Frame": 1700,
|
244 |
+
"Frame Depth": 0.0,
|
245 |
+
"Score": 0.0
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"Num. Frame": 1700,
|
249 |
+
"Frame Depth": 20.0,
|
250 |
+
"Score": 0.0
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"Num. Frame": 1700,
|
254 |
+
"Frame Depth": 40.0,
|
255 |
+
"Score": 0.0
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"Num. Frame": 1700,
|
259 |
+
"Frame Depth": 60.0,
|
260 |
+
"Score": 0.0
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"Num. Frame": 1700,
|
264 |
+
"Frame Depth": 80.0,
|
265 |
+
"Score": 0.0
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"Num. Frame": 1700,
|
269 |
+
"Frame Depth": 100.0,
|
270 |
+
"Score": 0.0
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"Num. Frame": 1900,
|
274 |
+
"Frame Depth": 0.0,
|
275 |
+
"Score": 0.2
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"Num. Frame": 1900,
|
279 |
+
"Frame Depth": 20.0,
|
280 |
+
"Score": 0.0
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"Num. Frame": 1900,
|
284 |
+
"Frame Depth": 40.0,
|
285 |
+
"Score": 0.0
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"Num. Frame": 1900,
|
289 |
+
"Frame Depth": 60.0,
|
290 |
+
"Score": 0.0
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"Num. Frame": 1900,
|
294 |
+
"Frame Depth": 80.0,
|
295 |
+
"Score": 0.0
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"Num. Frame": 1900,
|
299 |
+
"Frame Depth": 100.0,
|
300 |
+
"Score": 0.0
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"Num. Frame": 2100,
|
304 |
+
"Frame Depth": 0.0,
|
305 |
+
"Score": 0.0
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"Num. Frame": 2100,
|
309 |
+
"Frame Depth": 20.0,
|
310 |
+
"Score": 0.0
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"Num. Frame": 2100,
|
314 |
+
"Frame Depth": 40.0,
|
315 |
+
"Score": 0.0
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"Num. Frame": 2100,
|
319 |
+
"Frame Depth": 60.0,
|
320 |
+
"Score": 0.0
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"Num. Frame": 2100,
|
324 |
+
"Frame Depth": 80.0,
|
325 |
+
"Score": 0.0
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"Num. Frame": 2100,
|
329 |
+
"Frame Depth": 100.0,
|
330 |
+
"Score": 0.0
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"Num. Frame": 2300,
|
334 |
+
"Frame Depth": 0.0,
|
335 |
+
"Score": 0.0
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"Num. Frame": 2300,
|
339 |
+
"Frame Depth": 20.0,
|
340 |
+
"Score": 0.0
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"Num. Frame": 2300,
|
344 |
+
"Frame Depth": 40.0,
|
345 |
+
"Score": 0.0
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"Num. Frame": 2300,
|
349 |
+
"Frame Depth": 60.0,
|
350 |
+
"Score": 0.0
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"Num. Frame": 2300,
|
354 |
+
"Frame Depth": 80.0,
|
355 |
+
"Score": 0.0
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"Num. Frame": 2300,
|
359 |
+
"Frame Depth": 100.0,
|
360 |
+
"Score": 0.0
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"Num. Frame": 2500,
|
364 |
+
"Frame Depth": 0.0,
|
365 |
+
"Score": 0.0
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"Num. Frame": 2500,
|
369 |
+
"Frame Depth": 20.0,
|
370 |
+
"Score": 0.0
|
371 |
+
},
|
372 |
+
{
|
373 |
+
"Num. Frame": 2500,
|
374 |
+
"Frame Depth": 40.0,
|
375 |
+
"Score": 0.0
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"Num. Frame": 2500,
|
379 |
+
"Frame Depth": 60.0,
|
380 |
+
"Score": 0.0
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"Num. Frame": 2500,
|
384 |
+
"Frame Depth": 80.0,
|
385 |
+
"Score": 0.0
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"Num. Frame": 2500,
|
389 |
+
"Frame Depth": 100.0,
|
390 |
+
"Score": 0.0
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"Num. Frame": 2700,
|
394 |
+
"Frame Depth": 0.0,
|
395 |
+
"Score": 0.0
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"Num. Frame": 2700,
|
399 |
+
"Frame Depth": 20.0,
|
400 |
+
"Score": 0.0
|
401 |
+
},
|
402 |
+
{
|
403 |
+
"Num. Frame": 2700,
|
404 |
+
"Frame Depth": 40.0,
|
405 |
+
"Score": 0.0
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"Num. Frame": 2700,
|
409 |
+
"Frame Depth": 60.0,
|
410 |
+
"Score": 0.0
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"Num. Frame": 2700,
|
414 |
+
"Frame Depth": 80.0,
|
415 |
+
"Score": 0.0
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"Num. Frame": 2700,
|
419 |
+
"Frame Depth": 100.0,
|
420 |
+
"Score": 0.0
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"Num. Frame": 2900,
|
424 |
+
"Frame Depth": 0.0,
|
425 |
+
"Score": 0.0
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"Num. Frame": 2900,
|
429 |
+
"Frame Depth": 20.0,
|
430 |
+
"Score": 0.0
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"Num. Frame": 2900,
|
434 |
+
"Frame Depth": 40.0,
|
435 |
+
"Score": 0.0
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"Num. Frame": 2900,
|
439 |
+
"Frame Depth": 60.0,
|
440 |
+
"Score": 0.0
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"Num. Frame": 2900,
|
444 |
+
"Frame Depth": 80.0,
|
445 |
+
"Score": 0.0
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"Num. Frame": 2900,
|
449 |
+
"Frame Depth": 100.0,
|
450 |
+
"Score": 0.0
|
451 |
+
}
|
452 |
+
]
|
vision_niah_d/niah_output/Qwen2-VL-time_rope-128frames-16card_8k-context-330k-llava-video/avg_accuracy.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Average Accuracy: 0.29333333333333333
|
vision_niah_d/niah_output/Qwen2-VL-time_rope-128frames-16card_8k-context-330k-llava-video/heatmap.png
ADDED
![]() |
Git LFS Details
|
vision_niah_d/niah_output/Qwen2-VL-vanilla_rope-128frames-16card_8k-context-330k-llava-video/all_accuracies.json
ADDED
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"Num. Frame": 100,
|
4 |
+
"Frame Depth": 0.0,
|
5 |
+
"Score": 1.0
|
6 |
+
},
|
7 |
+
{
|
8 |
+
"Num. Frame": 100,
|
9 |
+
"Frame Depth": 20.0,
|
10 |
+
"Score": 0.8
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"Num. Frame": 100,
|
14 |
+
"Frame Depth": 40.0,
|
15 |
+
"Score": 0.8
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"Num. Frame": 100,
|
19 |
+
"Frame Depth": 60.0,
|
20 |
+
"Score": 0.8
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"Num. Frame": 100,
|
24 |
+
"Frame Depth": 80.0,
|
25 |
+
"Score": 0.8
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"Num. Frame": 100,
|
29 |
+
"Frame Depth": 100.0,
|
30 |
+
"Score": 1.0
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"Num. Frame": 300,
|
34 |
+
"Frame Depth": 0.0,
|
35 |
+
"Score": 1.0
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"Num. Frame": 300,
|
39 |
+
"Frame Depth": 20.0,
|
40 |
+
"Score": 0.6
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"Num. Frame": 300,
|
44 |
+
"Frame Depth": 40.0,
|
45 |
+
"Score": 0.6
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"Num. Frame": 300,
|
49 |
+
"Frame Depth": 60.0,
|
50 |
+
"Score": 0.6
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"Num. Frame": 300,
|
54 |
+
"Frame Depth": 80.0,
|
55 |
+
"Score": 0.6
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"Num. Frame": 300,
|
59 |
+
"Frame Depth": 100.0,
|
60 |
+
"Score": 1.0
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"Num. Frame": 500,
|
64 |
+
"Frame Depth": 0.0,
|
65 |
+
"Score": 0.8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"Num. Frame": 500,
|
69 |
+
"Frame Depth": 20.0,
|
70 |
+
"Score": 0.6
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"Num. Frame": 500,
|
74 |
+
"Frame Depth": 40.0,
|
75 |
+
"Score": 0.6
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"Num. Frame": 500,
|
79 |
+
"Frame Depth": 60.0,
|
80 |
+
"Score": 0.6
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"Num. Frame": 500,
|
84 |
+
"Frame Depth": 80.0,
|
85 |
+
"Score": 0.6
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"Num. Frame": 500,
|
89 |
+
"Frame Depth": 100.0,
|
90 |
+
"Score": 1.0
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"Num. Frame": 700,
|
94 |
+
"Frame Depth": 0.0,
|
95 |
+
"Score": 0.4
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"Num. Frame": 700,
|
99 |
+
"Frame Depth": 20.0,
|
100 |
+
"Score": 0.4
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"Num. Frame": 700,
|
104 |
+
"Frame Depth": 40.0,
|
105 |
+
"Score": 0.4
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"Num. Frame": 700,
|
109 |
+
"Frame Depth": 60.0,
|
110 |
+
"Score": 0.4
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"Num. Frame": 700,
|
114 |
+
"Frame Depth": 80.0,
|
115 |
+
"Score": 0.4
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"Num. Frame": 700,
|
119 |
+
"Frame Depth": 100.0,
|
120 |
+
"Score": 1.0
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"Num. Frame": 900,
|
124 |
+
"Frame Depth": 0.0,
|
125 |
+
"Score": 0.6
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"Num. Frame": 900,
|
129 |
+
"Frame Depth": 20.0,
|
130 |
+
"Score": 0.6
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"Num. Frame": 900,
|
134 |
+
"Frame Depth": 40.0,
|
135 |
+
"Score": 0.6
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"Num. Frame": 900,
|
139 |
+
"Frame Depth": 60.0,
|
140 |
+
"Score": 0.6
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"Num. Frame": 900,
|
144 |
+
"Frame Depth": 80.0,
|
145 |
+
"Score": 0.6
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"Num. Frame": 900,
|
149 |
+
"Frame Depth": 100.0,
|
150 |
+
"Score": 1.0
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"Num. Frame": 1100,
|
154 |
+
"Frame Depth": 0.0,
|
155 |
+
"Score": 0.6
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"Num. Frame": 1100,
|
159 |
+
"Frame Depth": 20.0,
|
160 |
+
"Score": 0.4
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"Num. Frame": 1100,
|
164 |
+
"Frame Depth": 40.0,
|
165 |
+
"Score": 0.4
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"Num. Frame": 1100,
|
169 |
+
"Frame Depth": 60.0,
|
170 |
+
"Score": 0.4
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"Num. Frame": 1100,
|
174 |
+
"Frame Depth": 80.0,
|
175 |
+
"Score": 0.4
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"Num. Frame": 1100,
|
179 |
+
"Frame Depth": 100.0,
|
180 |
+
"Score": 0.8
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"Num. Frame": 1300,
|
184 |
+
"Frame Depth": 0.0,
|
185 |
+
"Score": 0.4
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"Num. Frame": 1300,
|
189 |
+
"Frame Depth": 20.0,
|
190 |
+
"Score": 0.4
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"Num. Frame": 1300,
|
194 |
+
"Frame Depth": 40.0,
|
195 |
+
"Score": 0.4
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"Num. Frame": 1300,
|
199 |
+
"Frame Depth": 60.0,
|
200 |
+
"Score": 0.4
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"Num. Frame": 1300,
|
204 |
+
"Frame Depth": 80.0,
|
205 |
+
"Score": 0.4
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"Num. Frame": 1300,
|
209 |
+
"Frame Depth": 100.0,
|
210 |
+
"Score": 0.6
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"Num. Frame": 1500,
|
214 |
+
"Frame Depth": 0.0,
|
215 |
+
"Score": 0.2
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"Num. Frame": 1500,
|
219 |
+
"Frame Depth": 20.0,
|
220 |
+
"Score": 0.2
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"Num. Frame": 1500,
|
224 |
+
"Frame Depth": 40.0,
|
225 |
+
"Score": 0.2
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"Num. Frame": 1500,
|
229 |
+
"Frame Depth": 60.0,
|
230 |
+
"Score": 0.2
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"Num. Frame": 1500,
|
234 |
+
"Frame Depth": 80.0,
|
235 |
+
"Score": 0.2
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"Num. Frame": 1500,
|
239 |
+
"Frame Depth": 100.0,
|
240 |
+
"Score": 0.0
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"Num. Frame": 1700,
|
244 |
+
"Frame Depth": 0.0,
|
245 |
+
"Score": 0.0
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"Num. Frame": 1700,
|
249 |
+
"Frame Depth": 20.0,
|
250 |
+
"Score": 0.0
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"Num. Frame": 1700,
|
254 |
+
"Frame Depth": 40.0,
|
255 |
+
"Score": 0.0
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"Num. Frame": 1700,
|
259 |
+
"Frame Depth": 60.0,
|
260 |
+
"Score": 0.0
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"Num. Frame": 1700,
|
264 |
+
"Frame Depth": 80.0,
|
265 |
+
"Score": 0.0
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"Num. Frame": 1700,
|
269 |
+
"Frame Depth": 100.0,
|
270 |
+
"Score": 0.0
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"Num. Frame": 1900,
|
274 |
+
"Frame Depth": 0.0,
|
275 |
+
"Score": 0.2
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"Num. Frame": 1900,
|
279 |
+
"Frame Depth": 20.0,
|
280 |
+
"Score": 0.2
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"Num. Frame": 1900,
|
284 |
+
"Frame Depth": 40.0,
|
285 |
+
"Score": 0.2
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"Num. Frame": 1900,
|
289 |
+
"Frame Depth": 60.0,
|
290 |
+
"Score": 0.2
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"Num. Frame": 1900,
|
294 |
+
"Frame Depth": 80.0,
|
295 |
+
"Score": 0.2
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"Num. Frame": 1900,
|
299 |
+
"Frame Depth": 100.0,
|
300 |
+
"Score": 0.2
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"Num. Frame": 2100,
|
304 |
+
"Frame Depth": 0.0,
|
305 |
+
"Score": 0.0
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"Num. Frame": 2100,
|
309 |
+
"Frame Depth": 20.0,
|
310 |
+
"Score": 0.0
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"Num. Frame": 2100,
|
314 |
+
"Frame Depth": 40.0,
|
315 |
+
"Score": 0.0
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"Num. Frame": 2100,
|
319 |
+
"Frame Depth": 60.0,
|
320 |
+
"Score": 0.0
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"Num. Frame": 2100,
|
324 |
+
"Frame Depth": 80.0,
|
325 |
+
"Score": 0.0
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"Num. Frame": 2100,
|
329 |
+
"Frame Depth": 100.0,
|
330 |
+
"Score": 0.0
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"Num. Frame": 2300,
|
334 |
+
"Frame Depth": 0.0,
|
335 |
+
"Score": 0.0
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"Num. Frame": 2300,
|
339 |
+
"Frame Depth": 20.0,
|
340 |
+
"Score": 0.0
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"Num. Frame": 2300,
|
344 |
+
"Frame Depth": 40.0,
|
345 |
+
"Score": 0.0
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"Num. Frame": 2300,
|
349 |
+
"Frame Depth": 60.0,
|
350 |
+
"Score": 0.0
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"Num. Frame": 2300,
|
354 |
+
"Frame Depth": 80.0,
|
355 |
+
"Score": 0.0
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"Num. Frame": 2300,
|
359 |
+
"Frame Depth": 100.0,
|
360 |
+
"Score": 0.0
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"Num. Frame": 2500,
|
364 |
+
"Frame Depth": 0.0,
|
365 |
+
"Score": 0.0
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"Num. Frame": 2500,
|
369 |
+
"Frame Depth": 20.0,
|
370 |
+
"Score": 0.0
|
371 |
+
},
|
372 |
+
{
|
373 |
+
"Num. Frame": 2500,
|
374 |
+
"Frame Depth": 40.0,
|
375 |
+
"Score": 0.0
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"Num. Frame": 2500,
|
379 |
+
"Frame Depth": 60.0,
|
380 |
+
"Score": 0.0
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"Num. Frame": 2500,
|
384 |
+
"Frame Depth": 80.0,
|
385 |
+
"Score": 0.0
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"Num. Frame": 2500,
|
389 |
+
"Frame Depth": 100.0,
|
390 |
+
"Score": 0.0
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"Num. Frame": 2700,
|
394 |
+
"Frame Depth": 0.0,
|
395 |
+
"Score": 0.0
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"Num. Frame": 2700,
|
399 |
+
"Frame Depth": 20.0,
|
400 |
+
"Score": 0.0
|
401 |
+
},
|
402 |
+
{
|
403 |
+
"Num. Frame": 2700,
|
404 |
+
"Frame Depth": 40.0,
|
405 |
+
"Score": 0.0
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"Num. Frame": 2700,
|
409 |
+
"Frame Depth": 60.0,
|
410 |
+
"Score": 0.0
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"Num. Frame": 2700,
|
414 |
+
"Frame Depth": 80.0,
|
415 |
+
"Score": 0.0
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"Num. Frame": 2700,
|
419 |
+
"Frame Depth": 100.0,
|
420 |
+
"Score": 0.0
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"Num. Frame": 2900,
|
424 |
+
"Frame Depth": 0.0,
|
425 |
+
"Score": 0.0
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"Num. Frame": 2900,
|
429 |
+
"Frame Depth": 20.0,
|
430 |
+
"Score": 0.0
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"Num. Frame": 2900,
|
434 |
+
"Frame Depth": 40.0,
|
435 |
+
"Score": 0.0
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"Num. Frame": 2900,
|
439 |
+
"Frame Depth": 60.0,
|
440 |
+
"Score": 0.0
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"Num. Frame": 2900,
|
444 |
+
"Frame Depth": 80.0,
|
445 |
+
"Score": 0.0
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"Num. Frame": 2900,
|
449 |
+
"Frame Depth": 100.0,
|
450 |
+
"Score": 0.0
|
451 |
+
}
|
452 |
+
]
|
vision_niah_d/niah_output/Qwen2-VL-vanilla_rope-128frames-16card_8k-context-330k-llava-video/avg_accuracy.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Average Accuracy: 0.31777777777777777
|
vision_niah_d/niah_output/Qwen2-VL-vanilla_rope-128frames-16card_8k-context-330k-llava-video/heatmap.png
ADDED
![]() |
Git LFS Details
|
vision_niah_d/produce_haystack_embedding.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from qwen_vl_utils import process_vision_info
|
2 |
+
from decord import VideoReader, cpu
|
3 |
+
import argparse
|
4 |
+
import os
|
5 |
+
import numpy as np
|
6 |
+
from tqdm import tqdm
|
7 |
+
import torch
|
8 |
+
import transformers
|
9 |
+
import math
|
10 |
+
from PIL import Image
|
11 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
12 |
+
from torchvision import io, transforms
|
13 |
+
from torchvision.transforms import InterpolationMode
|
14 |
+
IMAGE_FACTOR = 28
|
15 |
+
MIN_PIXELS = 144 * 28 * 28
|
16 |
+
MAX_PIXELS = 144 * 28 * 28
|
17 |
+
MAX_RATIO = 200
|
18 |
+
def load_video_batches(video_path, batch_size):
|
19 |
+
global args
|
20 |
+
vr = VideoReader(video_path, ctx=cpu(0))
|
21 |
+
total_frame_num = len(vr)
|
22 |
+
fps = round(vr.get_avg_fps())
|
23 |
+
frame_idx = [i for i in range(0, len(vr), fps)]
|
24 |
+
for start_idx in range(0, len(frame_idx), batch_size):
|
25 |
+
end_idx = min(start_idx + batch_size, total_frame_num)
|
26 |
+
frame_indices = frame_idx[start_idx:end_idx]
|
27 |
+
batch_frames = vr.get_batch(frame_indices).asnumpy()
|
28 |
+
batch_frames = torch.tensor(batch_frames).permute(0, 3, 1, 2)
|
29 |
+
# import pdb; pdb.set_trace()
|
30 |
+
nframes, _, height, width = batch_frames.shape
|
31 |
+
# if torch.unique(batch_frames).numel() == 1:
|
32 |
+
# batch_frames.fill_(args.v)
|
33 |
+
# print(torch.unique(batch_frames).item())
|
34 |
+
resized_height, resized_width = 252, 448
|
35 |
+
# resized_height, resized_width = smart_resize(
|
36 |
+
# height,
|
37 |
+
# width,
|
38 |
+
# factor=IMAGE_FACTOR,
|
39 |
+
# min_pixels=MIN_PIXELS,
|
40 |
+
# max_pixels=MAX_PIXELS,
|
41 |
+
# )
|
42 |
+
batch_frames = transforms.functional.resize(
|
43 |
+
batch_frames,
|
44 |
+
[resized_height, resized_width],
|
45 |
+
interpolation=InterpolationMode.BICUBIC,
|
46 |
+
antialias=True,
|
47 |
+
).float()
|
48 |
+
|
49 |
+
yield batch_frames
|
50 |
+
|
51 |
+
def round_by_factor(number: int, factor: int) -> int:
|
52 |
+
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
53 |
+
return round(number / factor) * factor
|
54 |
+
|
55 |
+
|
56 |
+
def ceil_by_factor(number: int, factor: int) -> int:
|
57 |
+
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
|
58 |
+
return math.ceil(number / factor) * factor
|
59 |
+
|
60 |
+
|
61 |
+
def floor_by_factor(number: int, factor: int) -> int:
|
62 |
+
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
|
63 |
+
return math.floor(number / factor) * factor
|
64 |
+
def smart_resize(
|
65 |
+
height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS
|
66 |
+
) -> tuple[int, int]:
|
67 |
+
"""
|
68 |
+
Rescales the image so that the following conditions are met:
|
69 |
+
|
70 |
+
1. Both dimensions (height and width) are divisible by 'factor'.
|
71 |
+
|
72 |
+
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
73 |
+
|
74 |
+
3. The aspect ratio of the image is maintained as closely as possible.
|
75 |
+
"""
|
76 |
+
if max(height, width) / min(height, width) > MAX_RATIO:
|
77 |
+
raise ValueError(
|
78 |
+
f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)}"
|
79 |
+
)
|
80 |
+
h_bar = max(factor, round_by_factor(height, factor))
|
81 |
+
w_bar = max(factor, round_by_factor(width, factor))
|
82 |
+
if h_bar * w_bar > max_pixels:
|
83 |
+
beta = math.sqrt((height * width) / max_pixels)
|
84 |
+
h_bar = floor_by_factor(height / beta, factor)
|
85 |
+
w_bar = floor_by_factor(width / beta, factor)
|
86 |
+
elif h_bar * w_bar < min_pixels:
|
87 |
+
beta = math.sqrt(min_pixels / (height * width))
|
88 |
+
h_bar = ceil_by_factor(height * beta, factor)
|
89 |
+
w_bar = ceil_by_factor(width * beta, factor)
|
90 |
+
return h_bar, w_bar
|
91 |
+
|
92 |
+
def main(args):
|
93 |
+
video_path = args.video_path
|
94 |
+
model_path = args.model
|
95 |
+
model_name = "llava_qwen"
|
96 |
+
|
97 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(model_path,
|
98 |
+
device_map="auto",
|
99 |
+
torch_dtype=torch.bfloat16,
|
100 |
+
attn_implementation="flash_attention_2"
|
101 |
+
)
|
102 |
+
processor = AutoProcessor.from_pretrained("/mnt/petrelfs/weixilin/cache/Qwen2-VL-7B-Instruct")
|
103 |
+
del model.model.layers
|
104 |
+
# Process video in batches
|
105 |
+
batch_size = 32
|
106 |
+
total_batches = (args.sampled_frames_num + batch_size - 1) // batch_size
|
107 |
+
image_feature_list = []
|
108 |
+
if args.add_newline_token:
|
109 |
+
newline_token_embeddong = model.model.image_newline
|
110 |
+
with torch.inference_mode():
|
111 |
+
for i, video_batch in tqdm(enumerate(load_video_batches(video_path, batch_size)), total=total_batches, desc="Processing Video Batches"):
|
112 |
+
v_test = processor.image_processor(images=None, videos=video_batch)
|
113 |
+
merge_length = processor.image_processor.merge_size**2
|
114 |
+
pixel_values_videos,video_grid_thw=torch.from_numpy(v_test['pixel_values_videos']), torch.from_numpy(v_test['video_grid_thw']).to(model.device)
|
115 |
+
# if i > 30:
|
116 |
+
# import pdb; pdb.set_trace()
|
117 |
+
print(video_grid_thw)
|
118 |
+
# import pdb; pdb.set_trace()
|
119 |
+
pixel_values_videos = pixel_values_videos.type(model.visual.get_dtype()).to(model.device)
|
120 |
+
video_embeds = model.visual(pixel_values_videos, grid_thw=video_grid_thw).to(model.device)
|
121 |
+
|
122 |
+
print(video_embeds.shape)
|
123 |
+
if args.add_newline_token:
|
124 |
+
image_features = torch.cat([image_features, newline_token_embeddong.unsqueeze(0).expand(image_features.shape[0], 1, -1)], dim=1)
|
125 |
+
image_feature_list.append(video_embeds.to(torch.bfloat16).to("cpu"))
|
126 |
+
if i > total_batches:
|
127 |
+
break
|
128 |
+
image_feature_list = torch.cat(image_feature_list, dim=0)
|
129 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
130 |
+
torch.save(image_feature_list, f"{args.output_dir}/video_embeddings.pt")
|
131 |
+
|
132 |
+
if __name__ == "__main__":
|
133 |
+
parser = argparse.ArgumentParser()
|
134 |
+
parser.add_argument("--model", type=str, default="/mnt/petrelfs/weixilin/cache/Qwen2-VL-7B-Instruct")
|
135 |
+
# parser.add_argument("--v", type=int, default=255)
|
136 |
+
parser.add_argument("--video_path", type=str, default="/mnt/petrelfs/weixilin/projects/MLLM/LongVA/asset/videos/movie.mp4")
|
137 |
+
parser.add_argument("--sampled_frames_num", type=int, default=6000)
|
138 |
+
parser.add_argument("--output_dir", type=str, default="/mnt/petrelfs/weixilin/projects/MLLM/Qwen2-VL/vision_niah/video_needle_haystack/data/haystack_vicuna_embeddings_6000frames-tune_projector")
|
139 |
+
parser.add_argument("--pooling_size", type=int, default=0)
|
140 |
+
parser.add_argument("--add_newline_token", action="store_true")
|
141 |
+
args = parser.parse_args()
|
142 |
+
main(args)
|
vision_niah_d/produce_needle_embedding.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from qwen_vl_utils import process_vision_info
|
2 |
+
from decord import VideoReader, cpu
|
3 |
+
import argparse
|
4 |
+
import numpy as np
|
5 |
+
from tqdm import tqdm
|
6 |
+
import torch
|
7 |
+
import transformers
|
8 |
+
import math
|
9 |
+
from PIL import Image
|
10 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
11 |
+
from torchvision import io, transforms
|
12 |
+
from torchvision.transforms import InterpolationMode
|
13 |
+
import os
|
14 |
+
import json
|
15 |
+
IMAGE_FACTOR = 28
|
16 |
+
MIN_PIXELS = 144 * 28 * 28
|
17 |
+
MAX_PIXELS = 144 * 28 * 28
|
18 |
+
MAX_RATIO = 200
|
19 |
+
|
20 |
+
def round_by_factor(number: int, factor: int) -> int:
|
21 |
+
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
22 |
+
return round(number / factor) * factor
|
23 |
+
|
24 |
+
|
25 |
+
def ceil_by_factor(number: int, factor: int) -> int:
|
26 |
+
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
|
27 |
+
return math.ceil(number / factor) * factor
|
28 |
+
|
29 |
+
|
30 |
+
def floor_by_factor(number: int, factor: int) -> int:
|
31 |
+
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
|
32 |
+
return math.floor(number / factor) * factor
|
33 |
+
def smart_resize(
|
34 |
+
height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS
|
35 |
+
) -> tuple[int, int]:
|
36 |
+
"""
|
37 |
+
Rescales the image so that the following conditions are met:
|
38 |
+
|
39 |
+
1. Both dimensions (height and width) are divisible by 'factor'.
|
40 |
+
|
41 |
+
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
42 |
+
|
43 |
+
3. The aspect ratio of the image is maintained as closely as possible.
|
44 |
+
"""
|
45 |
+
if max(height, width) / min(height, width) > MAX_RATIO:
|
46 |
+
raise ValueError(
|
47 |
+
f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)}"
|
48 |
+
)
|
49 |
+
h_bar = max(factor, round_by_factor(height, factor))
|
50 |
+
w_bar = max(factor, round_by_factor(width, factor))
|
51 |
+
if h_bar * w_bar > max_pixels:
|
52 |
+
beta = math.sqrt((height * width) / max_pixels)
|
53 |
+
h_bar = floor_by_factor(height / beta, factor)
|
54 |
+
w_bar = floor_by_factor(width / beta, factor)
|
55 |
+
elif h_bar * w_bar < min_pixels:
|
56 |
+
beta = math.sqrt(min_pixels / (height * width))
|
57 |
+
h_bar = ceil_by_factor(height * beta, factor)
|
58 |
+
w_bar = ceil_by_factor(width * beta, factor)
|
59 |
+
return h_bar, w_bar
|
60 |
+
|
61 |
+
def read_json_file(file_path):
|
62 |
+
"""
|
63 |
+
读取JSON文件并返回数据作为字典。
|
64 |
+
|
65 |
+
参数:
|
66 |
+
file_path (str): JSON文件的路径。
|
67 |
+
|
68 |
+
返回:
|
69 |
+
dict: JSON文件中的数据。
|
70 |
+
"""
|
71 |
+
try:
|
72 |
+
# 打开文件并读取数据
|
73 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
74 |
+
# 将JSON数据解析为字典
|
75 |
+
data = json.load(file)
|
76 |
+
return data
|
77 |
+
except FileNotFoundError:
|
78 |
+
print(f"The file {file_path} was not found.")
|
79 |
+
except json.JSONDecodeError:
|
80 |
+
print(f"Error decoding JSON from file {file_path}.")
|
81 |
+
except Exception as e:
|
82 |
+
print(f"An error occurred: {e}")
|
83 |
+
|
84 |
+
def fetch_image(ele, size_factor: int = IMAGE_FACTOR) -> Image.Image:
|
85 |
+
if "image" in ele:
|
86 |
+
image = ele["image"]
|
87 |
+
else:
|
88 |
+
image = ele["image_url"]
|
89 |
+
image_obj = None
|
90 |
+
if isinstance(image, Image.Image):
|
91 |
+
image_obj = image
|
92 |
+
elif image.startswith("http://") or image.startswith("https://"):
|
93 |
+
image_obj = Image.open(requests.get(image, stream=True).raw)
|
94 |
+
elif image.startswith("file://"):
|
95 |
+
image_obj = Image.open(image[7:])
|
96 |
+
elif image.startswith("data:image"):
|
97 |
+
if "base64," in image:
|
98 |
+
_, base64_data = image.split("base64,", 1)
|
99 |
+
data = base64.b64decode(base64_data)
|
100 |
+
image_obj = Image.open(BytesIO(data))
|
101 |
+
else:
|
102 |
+
image_obj = Image.open(image)
|
103 |
+
if image_obj is None:
|
104 |
+
raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}")
|
105 |
+
image = image_obj.convert("RGB")
|
106 |
+
## resize
|
107 |
+
if "resized_height" in ele and "resized_width" in ele:
|
108 |
+
resized_height, resized_width = 252, 448
|
109 |
+
# resized_height, resized_width = smart_resize(
|
110 |
+
# ele["resized_height"],
|
111 |
+
# ele["resized_width"],
|
112 |
+
# factor=size_factor,
|
113 |
+
# )
|
114 |
+
else:
|
115 |
+
width, height = image.size
|
116 |
+
min_pixels = ele.get("min_pixels", MIN_PIXELS)
|
117 |
+
max_pixels = ele.get("max_pixels", MAX_PIXELS)
|
118 |
+
# resized_height, resized_width = smart_resize(
|
119 |
+
# height,
|
120 |
+
# width,
|
121 |
+
# factor=size_factor,
|
122 |
+
# min_pixels=min_pixels,
|
123 |
+
# max_pixels=max_pixels,
|
124 |
+
# )
|
125 |
+
resized_height, resized_width = 252, 448
|
126 |
+
image = image.resize((resized_width, resized_height))
|
127 |
+
|
128 |
+
return image
|
129 |
+
def main(args):
|
130 |
+
model_path = args.model
|
131 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(model_path,
|
132 |
+
device_map="auto",
|
133 |
+
torch_dtype=torch.bfloat16,
|
134 |
+
attn_implementation="flash_attention_2"
|
135 |
+
)
|
136 |
+
processor = AutoProcessor.from_pretrained("/mnt/petrelfs/weixilin/cache/Qwen2-VL-7B-Instruct")
|
137 |
+
del model.model.layers
|
138 |
+
# dataset = load_dataset(args.needle_dataset)["test"]
|
139 |
+
# dataset = load_dataset('json', '/mnt/petrelfs/weixilin/projects/MLLM/LongVA/vision_niah/needle_datasets/dataset.json')
|
140 |
+
dataset = read_json_file(args.needle_dataset)
|
141 |
+
for index, instance in enumerate(dataset):
|
142 |
+
|
143 |
+
# image = instance["image"].convert("RGB")
|
144 |
+
img = fetch_image({"image": os.path.join('/mnt/petrelfs/weixilin/projects/MLLM/Qwen2-VL/vision_niah/needle_datasets/images', instance['path']), "resized_height": 252, "resized_width": 448})
|
145 |
+
image_single = processor.image_processor(images=[img], videos=None)
|
146 |
+
merge_length = processor.image_processor.merge_size**2
|
147 |
+
pixel_values, image_grid_thw=torch.from_numpy(image_single['pixel_values']), torch.from_numpy(image_single['image_grid_thw']).to(model.device)
|
148 |
+
# import pdb; pdb.set_trace()
|
149 |
+
pixel_values = pixel_values.type(model.visual.get_dtype()).to(model.device)
|
150 |
+
image_embed = model.visual(pixel_values, grid_thw=image_grid_thw).to(model.device)
|
151 |
+
print(image_embed.shape)
|
152 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
153 |
+
torch.save(image_embed, f"{args.output_dir}/{index}.pt")
|
154 |
+
|
155 |
+
|
156 |
+
|
157 |
+
if __name__ == "__main__":
|
158 |
+
parser = argparse.ArgumentParser()
|
159 |
+
parser.add_argument("--model", type=str, default="/mnt/petrelfs/weixilin/cache/Qwen2-VL-7B-Instruct")
|
160 |
+
parser.add_argument("--needle_dataset", type=str, default="/mnt/petrelfs/weixilin/projects/MLLM/Qwen2-VL/vision_niah/needle_datasets/dataset_change_format_debug.json")
|
161 |
+
parser.add_argument("--output_dir", type=str, default="/mnt/petrelfs/weixilin/projects/MLLM/Qwen2-VL/vision_niah/video_needle_haystack/data/needle_vicuna_embeddings_144tokens-tune_projector_interrupt_debug")
|
162 |
+
args = parser.parse_args()
|
163 |
+
main(args)
|