File size: 30,784 Bytes
c617fd9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 |
import functools
import time
from dataclasses import asdict
from typing import cast
import numpy as np
import torch
import torch.nn.functional as F
from loguru import logger as guru
from nerfview import CameraState
from pytorch_msssim import SSIM
from torch.utils.tensorboard import SummaryWriter # type: ignore
from flow3d.configs import LossesConfig, OptimizerConfig, SceneLRConfig
from flow3d.loss_utils import (
compute_gradient_loss,
compute_se3_smoothness_loss,
compute_z_acc_loss,
masked_l1_loss,
)
from flow3d.metrics import PCK, mLPIPS, mPSNR, mSSIM
from flow3d.scene_model import SceneModel
from flow3d.vis.utils import get_server
from flow3d.vis.viewer import DynamicViewer
class Trainer:
def __init__(
self,
model: SceneModel,
device: torch.device,
lr_cfg: SceneLRConfig,
losses_cfg: LossesConfig,
optim_cfg: OptimizerConfig,
# Logging.
work_dir: str,
port: int | None = None,
log_every: int = 10,
checkpoint_every: int = 200,
validate_every: int = 500,
validate_video_every: int = 1000,
validate_viewer_assets_every: int = 100,
):
self.device = device
self.log_every = log_every
self.checkpoint_every = checkpoint_every
self.validate_every = validate_every
self.validate_video_every = validate_video_every
self.validate_viewer_assets_every = validate_viewer_assets_every
self.model = model
self.num_frames = model.num_frames
self.lr_cfg = lr_cfg
self.losses_cfg = losses_cfg
self.optim_cfg = optim_cfg
self.reset_opacity_every = (
self.optim_cfg.reset_opacity_every_n_controls * self.optim_cfg.control_every
)
self.optimizers, self.scheduler = self.configure_optimizers()
# running stats for adaptive density control
self.running_stats = {
"xys_grad_norm_acc": torch.zeros(self.model.num_gaussians, device=device),
"vis_count": torch.zeros(
self.model.num_gaussians, device=device, dtype=torch.int64
),
"max_radii": torch.zeros(self.model.num_gaussians, device=device),
}
self.work_dir = work_dir
self.writer = SummaryWriter(log_dir=work_dir)
self.global_step = 0
self.epoch = 0
self.viewer = None
if port is not None:
server = get_server(port=port)
self.viewer = DynamicViewer(
server, self.render_fn, model.num_frames, work_dir, mode="training"
)
# metrics
self.ssim = SSIM(data_range=1.0, size_average=True, channel=3)
self.psnr_metric = mPSNR()
self.ssim_metric = mSSIM()
self.lpips_metric = mLPIPS()
self.pck_metric = PCK()
self.bg_psnr_metric = mPSNR()
self.fg_psnr_metric = mPSNR()
self.bg_ssim_metric = mSSIM()
self.fg_ssim_metric = mSSIM()
self.bg_lpips_metric = mLPIPS()
self.fg_lpips_metric = mLPIPS()
def set_epoch(self, epoch: int):
self.epoch = epoch
def save_checkpoint(self, path: str):
model_dict = self.model.state_dict()
optimizer_dict = {k: v.state_dict() for k, v in self.optimizers.items()}
scheduler_dict = {k: v.state_dict() for k, v in self.scheduler.items()}
ckpt = {
"model": model_dict,
"optimizers": optimizer_dict,
"schedulers": scheduler_dict,
"global_step": self.global_step,
"epoch": self.epoch,
}
torch.save(ckpt, path)
guru.info(f"Saved checkpoint at {self.global_step=} to {path}")
@staticmethod
def init_from_checkpoint(
path: str, device: torch.device, *args, **kwargs
) -> tuple["Trainer", int]:
guru.info(f"Loading checkpoint from {path}")
ckpt = torch.load(path)
state_dict = ckpt["model"]
model = SceneModel.init_from_state_dict(state_dict)
model = model.to(device)
trainer = Trainer(model, device, *args, **kwargs)
if "optimizers" in ckpt:
trainer.load_checkpoint_optimizers(ckpt["optimizers"])
if "schedulers" in ckpt:
trainer.load_checkpoint_schedulers(ckpt["schedulers"])
trainer.global_step = ckpt.get("global_step", 0)
start_epoch = ckpt.get("epoch", 0)
trainer.set_epoch(start_epoch)
return trainer, start_epoch
def load_checkpoint_optimizers(self, opt_ckpt):
for k, v in self.optimizers.items():
v.load_state_dict(opt_ckpt[k])
def load_checkpoint_schedulers(self, sched_ckpt):
for k, v in self.scheduler.items():
v.load_state_dict(sched_ckpt[k])
@torch.inference_mode()
def render_fn(self, camera_state: CameraState, img_wh: tuple[int, int]):
W, H = img_wh
focal = 0.5 * H / np.tan(0.5 * camera_state.fov).item()
K = torch.tensor(
[[focal, 0.0, W / 2.0], [0.0, focal, H / 2.0], [0.0, 0.0, 1.0]],
device=self.device,
)
w2c = torch.linalg.inv(
torch.from_numpy(camera_state.c2w.astype(np.float32)).to(self.device)
)
t = 0
if self.viewer is not None:
t = (
int(self.viewer._playback_guis[0].value)
if not self.viewer._canonical_checkbox.value
else None
)
self.model.training = False
img = self.model.render(t, w2c[None], K[None], img_wh)["img"][0]
return (img.cpu().numpy() * 255.0).astype(np.uint8)
def train_step(self, batch):
if self.viewer is not None:
while self.viewer.state.status == "paused":
time.sleep(0.1)
self.viewer.lock.acquire()
loss, stats, num_rays_per_step, num_rays_per_sec = self.compute_losses(batch)
if loss.isnan():
guru.info(f"Loss is NaN at step {self.global_step}!!")
import ipdb
ipdb.set_trace()
loss.backward()
for opt in self.optimizers.values():
opt.step()
opt.zero_grad(set_to_none=True)
for sched in self.scheduler.values():
sched.step()
self.log_dict(stats)
self.global_step += 1
self.run_control_steps()
if self.viewer is not None:
self.viewer.lock.release()
self.viewer.state.num_train_rays_per_sec = num_rays_per_sec
if self.viewer.mode == "training":
self.viewer.update(self.global_step, num_rays_per_step)
if self.global_step % self.checkpoint_every == 0:
self.save_checkpoint(f"{self.work_dir}/checkpoints/last.ckpt")
return loss.item()
def compute_losses(self, batch):
self.model.training = True
B = batch["imgs"].shape[0]
W, H = img_wh = batch["imgs"].shape[2:0:-1]
N = batch["target_ts"][0].shape[0]
# (B,).
ts = batch["ts"]
# (B, 4, 4).
w2cs = batch["w2cs"]
# (B, 3, 3).
Ks = batch["Ks"]
# (B, H, W, 3).
imgs = batch["imgs"]
# (B, H, W).
valid_masks = batch.get("valid_masks", torch.ones_like(batch["imgs"][..., 0]))
# (B, H, W).
masks = batch["masks"]
masks *= valid_masks
# (B, H, W).
depths = batch["depths"]
# [(P, 2), ...].
query_tracks_2d = batch["query_tracks_2d"]
# [(N,), ...].
target_ts = batch["target_ts"]
# [(N, 4, 4), ...].
target_w2cs = batch["target_w2cs"]
# [(N, 3, 3), ...].
target_Ks = batch["target_Ks"]
# [(N, P, 2), ...].
target_tracks_2d = batch["target_tracks_2d"]
# [(N, P), ...].
target_visibles = batch["target_visibles"]
# [(N, P), ...].
target_invisibles = batch["target_invisibles"]
# [(N, P), ...].
target_confidences = batch["target_confidences"]
# [(N, P), ...].
target_track_depths = batch["target_track_depths"]
_tic = time.time()
# (B, G, 3).
means, quats = self.model.compute_poses_all(ts) # (G, B, 3), (G, B, 4)
device = means.device
means = means.transpose(0, 1)
quats = quats.transpose(0, 1)
# [(N, G, 3), ...].
target_ts_vec = torch.cat(target_ts)
# (B * N, G, 3).
target_means, _ = self.model.compute_poses_all(target_ts_vec)
target_means = target_means.transpose(0, 1)
target_mean_list = target_means.split(N)
num_frames = self.model.num_frames
loss = 0.0
bg_colors = []
rendered_all = []
self._batched_xys = []
self._batched_radii = []
self._batched_img_wh = []
for i in range(B):
bg_color = torch.ones(1, 3, device=device)
rendered = self.model.render(
ts[i].item(),
w2cs[None, i],
Ks[None, i],
img_wh,
target_ts=target_ts[i],
target_w2cs=target_w2cs[i],
bg_color=bg_color,
means=means[i],
quats=quats[i],
target_means=target_mean_list[i].transpose(0, 1),
return_depth=True,
return_mask=self.model.has_bg,
)
rendered_all.append(rendered)
bg_colors.append(bg_color)
if (
self.model._current_xys is not None
and self.model._current_radii is not None
and self.model._current_img_wh is not None
):
self._batched_xys.append(self.model._current_xys)
self._batched_radii.append(self.model._current_radii)
self._batched_img_wh.append(self.model._current_img_wh)
# Necessary to make viewer work.
num_rays_per_step = H * W * B
num_rays_per_sec = num_rays_per_step / (time.time() - _tic)
# (B, H, W, N, *).
rendered_all = {
key: (
torch.cat([out_dict[key] for out_dict in rendered_all], dim=0)
if rendered_all[0][key] is not None
else None
)
for key in rendered_all[0]
}
bg_colors = torch.cat(bg_colors, dim=0)
# Compute losses.
# (B * N).
frame_intervals = (ts.repeat_interleave(N) - target_ts_vec).abs()
if not self.model.has_bg:
imgs = (
imgs * masks[..., None]
+ (1.0 - masks[..., None]) * bg_colors[:, None, None]
)
else:
imgs = (
imgs * valid_masks[..., None]
+ (1.0 - valid_masks[..., None]) * bg_colors[:, None, None]
)
# (P_all, 2).
tracks_2d = torch.cat([x.reshape(-1, 2) for x in target_tracks_2d], dim=0)
# (P_all,)
visibles = torch.cat([x.reshape(-1) for x in target_visibles], dim=0)
# (P_all,)
confidences = torch.cat([x.reshape(-1) for x in target_confidences], dim=0)
# RGB loss.
rendered_imgs = cast(torch.Tensor, rendered_all["img"])
if self.model.has_bg:
rendered_imgs = (
rendered_imgs * valid_masks[..., None]
+ (1.0 - valid_masks[..., None]) * bg_colors[:, None, None]
)
rgb_loss = 0.8 * F.l1_loss(rendered_imgs, imgs) + 0.2 * (
1 - self.ssim(rendered_imgs.permute(0, 3, 1, 2), imgs.permute(0, 3, 1, 2))
)
loss += rgb_loss * self.losses_cfg.w_rgb
# Mask loss.
if not self.model.has_bg:
mask_loss = F.mse_loss(rendered_all["acc"], masks[..., None]) # type: ignore
else:
mask_loss = F.mse_loss(
rendered_all["acc"], torch.ones_like(rendered_all["acc"]) # type: ignore
) + masked_l1_loss(
rendered_all["mask"],
masks[..., None],
quantile=0.98, # type: ignore
)
loss += mask_loss * self.losses_cfg.w_mask
# (B * N, H * W, 3).
pred_tracks_3d = (
rendered_all["tracks_3d"].permute(0, 3, 1, 2, 4).reshape(-1, H * W, 3) # type: ignore
)
pred_tracks_2d = torch.einsum(
"bij,bpj->bpi", torch.cat(target_Ks), pred_tracks_3d
)
# (B * N, H * W, 1).
mapped_depth = torch.clamp(pred_tracks_2d[..., 2:], min=1e-6)
# (B * N, H * W, 2).
pred_tracks_2d = pred_tracks_2d[..., :2] / mapped_depth
# (B * N).
w_interval = torch.exp(-2 * frame_intervals / num_frames)
# w_track_loss = min(1, (self.max_steps - self.global_step) / 6000)
track_weights = confidences[..., None] * w_interval
# (B, H, W).
masks_flatten = torch.zeros_like(masks)
for i in range(B):
# This takes advantage of the fact that the query 2D tracks are
# always on the grid.
query_pixels = query_tracks_2d[i].to(torch.int64)
masks_flatten[i, query_pixels[:, 1], query_pixels[:, 0]] = 1.0
# (B * N, H * W).
masks_flatten = (
masks_flatten.reshape(-1, H * W).tile(1, N).reshape(-1, H * W) > 0.5
)
track_2d_loss = masked_l1_loss(
pred_tracks_2d[masks_flatten][visibles],
tracks_2d[visibles],
mask=track_weights[visibles],
quantile=0.98,
) / max(H, W)
loss += track_2d_loss * self.losses_cfg.w_track
depth_masks = (
masks[..., None] if not self.model.has_bg else valid_masks[..., None]
)
pred_depth = cast(torch.Tensor, rendered_all["depth"])
pred_disp = 1.0 / (pred_depth + 1e-5)
tgt_disp = 1.0 / (depths[..., None] + 1e-5)
depth_loss = masked_l1_loss(
pred_disp,
tgt_disp,
mask=depth_masks,
quantile=0.98,
)
# depth_loss = cauchy_loss_with_uncertainty(
# pred_disp.squeeze(-1),
# tgt_disp.squeeze(-1),
# depth_masks.squeeze(-1),
# self.depth_uncertainty_activation(self.depth_uncertainties)[ts],
# bias=1e-3,
# )
loss += depth_loss * self.losses_cfg.w_depth_reg
# mapped depth loss (using cached depth with EMA)
# mapped_depth_loss = 0.0
mapped_depth_gt = torch.cat([x.reshape(-1) for x in target_track_depths], dim=0)
mapped_depth_loss = masked_l1_loss(
1 / (mapped_depth[masks_flatten][visibles] + 1e-5),
1 / (mapped_depth_gt[visibles, None] + 1e-5),
track_weights[visibles],
)
loss += mapped_depth_loss * self.losses_cfg.w_depth_const
# depth_gradient_loss = 0.0
depth_gradient_loss = compute_gradient_loss(
pred_disp,
tgt_disp,
mask=depth_masks > 0.5,
quantile=0.95,
)
# depth_gradient_loss = compute_gradient_loss(
# pred_disps,
# ref_disps,
# mask=depth_masks.squeeze(-1) > 0.5,
# c=depth_uncertainty.detach(),
# mode="l1",
# bias=1e-3,
# )
loss += depth_gradient_loss * self.losses_cfg.w_depth_grad
# bases should be smooth.
small_accel_loss = compute_se3_smoothness_loss(
self.model.motion_bases.params["rots"],
self.model.motion_bases.params["transls"],
)
loss += small_accel_loss * self.losses_cfg.w_smooth_bases
# tracks should be smooth
ts = torch.clamp(ts, min=1, max=num_frames - 2)
ts_neighbors = torch.cat((ts - 1, ts, ts + 1))
transfms_nbs = self.model.compute_transforms(ts_neighbors) # (G, 3n, 3, 4)
means_fg_nbs = torch.einsum(
"pnij,pj->pni",
transfms_nbs,
F.pad(self.model.fg.params["means"], (0, 1), value=1.0),
)
means_fg_nbs = means_fg_nbs.reshape(
means_fg_nbs.shape[0], 3, -1, 3
) # [G, 3, n, 3]
if self.losses_cfg.w_smooth_tracks > 0:
small_accel_loss_tracks = 0.5 * (
(2 * means_fg_nbs[:, 1:-1] - means_fg_nbs[:, :-2] - means_fg_nbs[:, 2:])
.norm(dim=-1)
.mean()
)
loss += small_accel_loss_tracks * self.losses_cfg.w_smooth_tracks
# Constrain the std of scales.
# TODO: do we want to penalize before or after exp?
loss += (
self.losses_cfg.w_scale_var
* torch.var(self.model.fg.params["scales"], dim=-1).mean()
)
if self.model.bg is not None:
loss += (
self.losses_cfg.w_scale_var
* torch.var(self.model.bg.params["scales"], dim=-1).mean()
)
# # sparsity loss
# loss += 0.01 * self.opacity_activation(self.opacities).abs().mean()
# Acceleration along ray direction should be small.
z_accel_loss = compute_z_acc_loss(means_fg_nbs, w2cs)
loss += self.losses_cfg.w_z_accel * z_accel_loss
# Prepare stats for logging.
stats = {
"train/loss": loss.item(),
"train/rgb_loss": rgb_loss.item(),
"train/mask_loss": mask_loss.item(),
"train/depth_loss": depth_loss.item(),
"train/depth_gradient_loss": depth_gradient_loss.item(),
"train/mapped_depth_loss": mapped_depth_loss.item(),
"train/track_2d_loss": track_2d_loss.item(),
"train/small_accel_loss": small_accel_loss.item(),
"train/z_acc_loss": z_accel_loss.item(),
"train/num_gaussians": self.model.num_gaussians,
"train/num_fg_gaussians": self.model.num_fg_gaussians,
"train/num_bg_gaussians": self.model.num_bg_gaussians,
}
# Compute metrics.
with torch.no_grad():
psnr = self.psnr_metric(
rendered_imgs, imgs, masks if not self.model.has_bg else valid_masks
)
self.psnr_metric.reset()
stats["train/psnr"] = psnr
if self.model.has_bg:
bg_psnr = self.bg_psnr_metric(rendered_imgs, imgs, 1.0 - masks)
fg_psnr = self.fg_psnr_metric(rendered_imgs, imgs, masks)
self.bg_psnr_metric.reset()
self.fg_psnr_metric.reset()
stats["train/bg_psnr"] = bg_psnr
stats["train/fg_psnr"] = fg_psnr
stats.update(
**{
"train/num_rays_per_sec": num_rays_per_sec,
"train/num_rays_per_step": float(num_rays_per_step),
}
)
return loss, stats, num_rays_per_step, num_rays_per_sec
def log_dict(self, stats: dict):
for k, v in stats.items():
self.writer.add_scalar(k, v, self.global_step)
def run_control_steps(self):
global_step = self.global_step
# Adaptive gaussian control.
cfg = self.optim_cfg
num_frames = self.model.num_frames
ready = self._prepare_control_step()
if (
ready
and global_step > cfg.warmup_steps
and global_step % cfg.control_every == 0
and global_step < cfg.stop_control_steps
):
if (
global_step < cfg.stop_densify_steps
and global_step % self.reset_opacity_every > num_frames
):
self._densify_control_step(global_step)
if global_step % self.reset_opacity_every > min(3 * num_frames, 1000):
self._cull_control_step(global_step)
if global_step % self.reset_opacity_every == 0:
self._reset_opacity_control_step()
# Reset stats after every control.
for k in self.running_stats:
self.running_stats[k].zero_()
@torch.no_grad()
def _prepare_control_step(self) -> bool:
# Prepare for adaptive gaussian control based on the current stats.
if not (
self.model._current_radii is not None
and self.model._current_xys is not None
):
guru.warning("Model not training, skipping control step preparation")
return False
batch_size = len(self._batched_xys)
# these quantities are for each rendered view and have shapes (C, G, *)
# must be aggregated over all views
for _current_xys, _current_radii, _current_img_wh in zip(
self._batched_xys, self._batched_radii, self._batched_img_wh
):
sel = _current_radii > 0
gidcs = torch.where(sel)[1]
# normalize grads to [-1, 1] screen space
xys_grad = _current_xys.grad.clone()
xys_grad[..., 0] *= _current_img_wh[0] / 2.0 * batch_size
xys_grad[..., 1] *= _current_img_wh[1] / 2.0 * batch_size
self.running_stats["xys_grad_norm_acc"].index_add_(
0, gidcs, xys_grad[sel].norm(dim=-1)
)
self.running_stats["vis_count"].index_add_(
0, gidcs, torch.ones_like(gidcs, dtype=torch.int64)
)
max_radii = torch.maximum(
self.running_stats["max_radii"].index_select(0, gidcs),
_current_radii[sel] / max(_current_img_wh),
)
self.running_stats["max_radii"].index_put((gidcs,), max_radii)
return True
@torch.no_grad()
def _densify_control_step(self, global_step):
assert (self.running_stats["vis_count"] > 0).any()
cfg = self.optim_cfg
xys_grad_avg = self.running_stats["xys_grad_norm_acc"] / self.running_stats[
"vis_count"
].clamp_min(1)
is_grad_too_high = xys_grad_avg > cfg.densify_xys_grad_threshold
# Split gaussians.
scales = self.model.get_scales_all()
is_scale_too_big = scales.amax(dim=-1) > cfg.densify_scale_threshold
if global_step < cfg.stop_control_by_screen_steps:
is_radius_too_big = (
self.running_stats["max_radii"] > cfg.densify_screen_threshold
)
else:
is_radius_too_big = torch.zeros_like(is_grad_too_high, dtype=torch.bool)
should_split = is_grad_too_high & (is_scale_too_big | is_radius_too_big)
should_dup = is_grad_too_high & ~is_scale_too_big
num_fg = self.model.num_fg_gaussians
should_fg_split = should_split[:num_fg]
num_fg_splits = int(should_fg_split.sum().item())
should_fg_dup = should_dup[:num_fg]
num_fg_dups = int(should_fg_dup.sum().item())
should_bg_split = should_split[num_fg:]
num_bg_splits = int(should_bg_split.sum().item())
should_bg_dup = should_dup[num_fg:]
num_bg_dups = int(should_bg_dup.sum().item())
fg_param_map = self.model.fg.densify_params(should_fg_split, should_fg_dup)
for param_name, new_params in fg_param_map.items():
full_param_name = f"fg.params.{param_name}"
optimizer = self.optimizers[full_param_name]
dup_in_optim(
optimizer,
[new_params],
should_fg_split,
num_fg_splits * 2 + num_fg_dups,
)
if self.model.bg is not None:
bg_param_map = self.model.bg.densify_params(should_bg_split, should_bg_dup)
for param_name, new_params in bg_param_map.items():
full_param_name = f"bg.params.{param_name}"
optimizer = self.optimizers[full_param_name]
dup_in_optim(
optimizer,
[new_params],
should_bg_split,
num_bg_splits * 2 + num_bg_dups,
)
# update running stats
for k, v in self.running_stats.items():
v_fg, v_bg = v[:num_fg], v[num_fg:]
new_v = torch.cat(
[
v_fg[~should_fg_split],
v_fg[should_fg_dup],
v_fg[should_fg_split].repeat(2),
v_bg[~should_bg_split],
v_bg[should_bg_dup],
v_bg[should_bg_split].repeat(2),
],
dim=0,
)
self.running_stats[k] = new_v
guru.info(
f"Split {should_split.sum().item()} gaussians, "
f"Duplicated {should_dup.sum().item()} gaussians, "
f"{self.model.num_gaussians} gaussians left"
)
@torch.no_grad()
def _cull_control_step(self, global_step):
# Cull gaussians.
cfg = self.optim_cfg
opacities = self.model.get_opacities_all()
device = opacities.device
is_opacity_too_small = opacities < cfg.cull_opacity_threshold
is_radius_too_big = torch.zeros_like(is_opacity_too_small, dtype=torch.bool)
is_scale_too_big = torch.zeros_like(is_opacity_too_small, dtype=torch.bool)
cull_scale_threshold = (
torch.ones(len(is_scale_too_big), device=device) * cfg.cull_scale_threshold
)
num_fg = self.model.num_fg_gaussians
cull_scale_threshold[num_fg:] *= self.model.bg_scene_scale
if global_step > self.reset_opacity_every:
scales = self.model.get_scales_all()
is_scale_too_big = scales.amax(dim=-1) > cull_scale_threshold
if global_step < cfg.stop_control_by_screen_steps:
is_radius_too_big = (
self.running_stats["max_radii"] > cfg.cull_screen_threshold
)
should_cull = is_opacity_too_small | is_radius_too_big | is_scale_too_big
should_fg_cull = should_cull[:num_fg]
should_bg_cull = should_cull[num_fg:]
fg_param_map = self.model.fg.cull_params(should_fg_cull)
for param_name, new_params in fg_param_map.items():
full_param_name = f"fg.params.{param_name}"
optimizer = self.optimizers[full_param_name]
remove_from_optim(optimizer, [new_params], should_fg_cull)
if self.model.bg is not None:
bg_param_map = self.model.bg.cull_params(should_bg_cull)
for param_name, new_params in bg_param_map.items():
full_param_name = f"bg.params.{param_name}"
optimizer = self.optimizers[full_param_name]
remove_from_optim(optimizer, [new_params], should_bg_cull)
# update running stats
for k, v in self.running_stats.items():
self.running_stats[k] = v[~should_cull]
guru.info(
f"Culled {should_cull.sum().item()} gaussians, "
f"{self.model.num_gaussians} gaussians left"
)
@torch.no_grad()
def _reset_opacity_control_step(self):
# Reset gaussian opacities.
new_val = torch.logit(torch.tensor(0.8 * self.optim_cfg.cull_opacity_threshold))
for part in ["fg", "bg"]:
part_params = getattr(self.model, part).reset_opacities(new_val)
# Modify optimizer states by new assignment.
for param_name, new_params in part_params.items():
full_param_name = f"{part}.params.{param_name}"
optimizer = self.optimizers[full_param_name]
reset_in_optim(optimizer, [new_params])
guru.info("Reset opacities")
def configure_optimizers(self):
def _exponential_decay(step, *, lr_init, lr_final):
t = np.clip(step / self.optim_cfg.max_steps, 0.0, 1.0)
lr = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t)
return lr / lr_init
lr_dict = asdict(self.lr_cfg)
optimizers = {}
schedulers = {}
# named parameters will be [part].params.[field]
# e.g. fg.params.means
# lr config is a nested dict for each fg/bg part
for name, params in self.model.named_parameters():
part, _, field = name.split(".")
lr = lr_dict[part][field]
optim = torch.optim.Adam([{"params": params, "lr": lr, "name": name}])
if "scales" in name:
fnc = functools.partial(_exponential_decay, lr_final=0.1 * lr)
else:
fnc = lambda _, **__: 1.0
optimizers[name] = optim
schedulers[name] = torch.optim.lr_scheduler.LambdaLR(
optim, functools.partial(fnc, lr_init=lr)
)
return optimizers, schedulers
def dup_in_optim(optimizer, new_params: list, should_dup: torch.Tensor, num_dups: int):
assert len(optimizer.param_groups) == len(new_params)
for i, p_new in enumerate(new_params):
old_params = optimizer.param_groups[i]["params"][0]
param_state = optimizer.state[old_params]
if len(param_state) == 0:
return
for key in param_state:
if key == "step":
continue
p = param_state[key]
param_state[key] = torch.cat(
[p[~should_dup], p.new_zeros(num_dups, *p.shape[1:])],
dim=0,
)
del optimizer.state[old_params]
optimizer.state[p_new] = param_state
optimizer.param_groups[i]["params"] = [p_new]
del old_params
torch.cuda.empty_cache()
def remove_from_optim(optimizer, new_params: list, _should_cull: torch.Tensor):
assert len(optimizer.param_groups) == len(new_params)
for i, p_new in enumerate(new_params):
old_params = optimizer.param_groups[i]["params"][0]
param_state = optimizer.state[old_params]
if len(param_state) == 0:
return
for key in param_state:
if key == "step":
continue
param_state[key] = param_state[key][~_should_cull]
del optimizer.state[old_params]
optimizer.state[p_new] = param_state
optimizer.param_groups[i]["params"] = [p_new]
del old_params
torch.cuda.empty_cache()
def reset_in_optim(optimizer, new_params: list):
assert len(optimizer.param_groups) == len(new_params)
for i, p_new in enumerate(new_params):
old_params = optimizer.param_groups[i]["params"][0]
param_state = optimizer.state[old_params]
if len(param_state) == 0:
return
for key in param_state:
param_state[key] = torch.zeros_like(param_state[key])
del optimizer.state[old_params]
optimizer.state[p_new] = param_state
optimizer.param_groups[i]["params"] = [p_new]
del old_params
torch.cuda.empty_cache()
|