|
from typing import Literal |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torchmetrics.functional.image.lpips import _NoTrainLpips |
|
from torchmetrics.image import PeakSignalNoiseRatio, StructuralSimilarityIndexMeasure |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities import dim_zero_cat |
|
from torchmetrics.utilities.imports import _TORCHVISION_AVAILABLE |
|
|
|
|
|
def compute_psnr( |
|
preds: torch.Tensor, |
|
targets: torch.Tensor, |
|
masks: torch.Tensor | None = None, |
|
) -> float: |
|
""" |
|
Args: |
|
preds (torch.Tensor): (..., 3) predicted images in [0, 1]. |
|
targets (torch.Tensor): (..., 3) target images in [0, 1]. |
|
masks (torch.Tensor | None): (...,) optional binary masks where the |
|
1-regions will be taken into account. |
|
|
|
Returns: |
|
psnr (float): Peak signal-to-noise ratio. |
|
""" |
|
if masks is None: |
|
masks = torch.ones_like(preds[..., 0]) |
|
return ( |
|
-10.0 |
|
* torch.log( |
|
F.mse_loss( |
|
preds * masks[..., None], |
|
targets * masks[..., None], |
|
reduction="sum", |
|
) |
|
/ masks.sum().clamp(min=1.0) |
|
/ 3.0 |
|
) |
|
/ np.log(10.0) |
|
).item() |
|
|
|
|
|
def compute_pose_errors( |
|
preds: torch.Tensor, targets: torch.Tensor |
|
) -> tuple[float, float, float]: |
|
""" |
|
Args: |
|
preds: (N, 4, 4) predicted camera poses. |
|
targets: (N, 4, 4) target camera poses. |
|
|
|
Returns: |
|
ate (float): Absolute trajectory error. |
|
rpe_t (float): Relative pose error in translation. |
|
rpe_r (float): Relative pose error in rotation (degree). |
|
""" |
|
|
|
ate = torch.linalg.norm(preds[:, :3, -1] - targets[:, :3, -1], dim=-1).mean().item() |
|
|
|
|
|
|
|
|
|
|
|
preds = preds.detach().cpu().numpy() |
|
targets = targets.detach().cpu().numpy() |
|
pred_rels = np.linalg.inv(preds[:-1]) @ preds[1:] |
|
pred_rels = np.linalg.inv(preds[:-1]) @ preds[1:] |
|
target_rels = np.linalg.inv(targets[:-1]) @ targets[1:] |
|
error_rels = np.linalg.inv(target_rels) @ pred_rels |
|
traces = error_rels[:, :3, :3].trace(axis1=-2, axis2=-1) |
|
rpe_t = np.linalg.norm(error_rels[:, :3, -1], axis=-1).mean().item() |
|
rpe_r = ( |
|
np.arccos(np.clip((traces - 1.0) / 2.0, -1.0, 1.0)).mean().item() |
|
/ np.pi |
|
* 180.0 |
|
) |
|
return ate, rpe_t, rpe_r |
|
|
|
|
|
class mPSNR(PeakSignalNoiseRatio): |
|
sum_squared_error: list[torch.Tensor] |
|
total: list[torch.Tensor] |
|
|
|
def __init__(self, **kwargs) -> None: |
|
super().__init__( |
|
data_range=1.0, |
|
base=10.0, |
|
dim=None, |
|
reduction="elementwise_mean", |
|
**kwargs, |
|
) |
|
self.add_state("sum_squared_error", default=[], dist_reduce_fx="cat") |
|
self.add_state("total", default=[], dist_reduce_fx="cat") |
|
|
|
def __len__(self) -> int: |
|
return len(self.total) |
|
|
|
def update( |
|
self, |
|
preds: torch.Tensor, |
|
targets: torch.Tensor, |
|
masks: torch.Tensor | None = None, |
|
): |
|
"""Update state with predictions and targets. |
|
|
|
Args: |
|
preds (torch.Tensor): (..., 3) float32 predicted images. |
|
targets (torch.Tensor): (..., 3) float32 target images. |
|
masks (torch.Tensor | None): (...,) optional binary masks where the |
|
1-regions will be taken into account. |
|
""" |
|
if masks is None: |
|
masks = torch.ones_like(preds[..., 0]) |
|
self.sum_squared_error.append( |
|
torch.sum(torch.pow((preds - targets) * masks[..., None], 2)) |
|
) |
|
self.total.append(masks.sum().to(torch.int64) * 3) |
|
|
|
def compute(self) -> torch.Tensor: |
|
"""Compute peak signal-to-noise ratio over state.""" |
|
sum_squared_error = dim_zero_cat(self.sum_squared_error) |
|
total = dim_zero_cat(self.total) |
|
return -10.0 * torch.log(sum_squared_error / total).mean() / np.log(10.0) |
|
|
|
|
|
class mSSIM(StructuralSimilarityIndexMeasure): |
|
similarity: list |
|
|
|
def __init__(self, **kwargs) -> None: |
|
super().__init__( |
|
reduction=None, |
|
data_range=1.0, |
|
return_full_image=False, |
|
**kwargs, |
|
) |
|
assert isinstance(self.sigma, float) |
|
|
|
def __len__(self) -> int: |
|
return sum([s.shape[0] for s in self.similarity]) |
|
|
|
def update( |
|
self, |
|
preds: torch.Tensor, |
|
targets: torch.Tensor, |
|
masks: torch.Tensor | None = None, |
|
): |
|
"""Update state with predictions and targets. |
|
|
|
Args: |
|
preds (torch.Tensor): (B, H, W, 3) float32 predicted images. |
|
targets (torch.Tensor): (B, H, W, 3) float32 target images. |
|
masks (torch.Tensor | None): (B, H, W) optional binary masks where |
|
the 1-regions will be taken into account. |
|
""" |
|
if masks is None: |
|
masks = torch.ones_like(preds[..., 0]) |
|
|
|
|
|
assert isinstance(self.kernel_size, int) |
|
hw = self.kernel_size // 2 |
|
shift = (2 * hw - self.kernel_size + 1) / 2 |
|
assert isinstance(self.sigma, float) |
|
f_i = ( |
|
(torch.arange(self.kernel_size, device=preds.device) - hw + shift) |
|
/ self.sigma |
|
) ** 2 |
|
filt = torch.exp(-0.5 * f_i) |
|
filt /= torch.sum(filt) |
|
|
|
|
|
def convolve2d(z, m, f): |
|
|
|
z = z.permute(0, 3, 1, 2) |
|
m = m[:, None] |
|
f = f[None, None].expand(z.shape[1], -1, -1, -1) |
|
z_ = torch.nn.functional.conv2d( |
|
z * m, f, padding="valid", groups=z.shape[1] |
|
) |
|
m_ = torch.nn.functional.conv2d(m, torch.ones_like(f[:1]), padding="valid") |
|
return torch.where( |
|
m_ != 0, z_ * torch.ones_like(f).sum() / (m_ * z.shape[1]), 0 |
|
).permute(0, 2, 3, 1), (m_ != 0)[:, 0].to(z.dtype) |
|
|
|
filt_fn1 = lambda z, m: convolve2d(z, m, filt[:, None]) |
|
filt_fn2 = lambda z, m: convolve2d(z, m, filt[None, :]) |
|
filt_fn = lambda z, m: filt_fn1(*filt_fn2(z, m)) |
|
|
|
mu0 = filt_fn(preds, masks)[0] |
|
mu1 = filt_fn(targets, masks)[0] |
|
mu00 = mu0 * mu0 |
|
mu11 = mu1 * mu1 |
|
mu01 = mu0 * mu1 |
|
sigma00 = filt_fn(preds**2, masks)[0] - mu00 |
|
sigma11 = filt_fn(targets**2, masks)[0] - mu11 |
|
sigma01 = filt_fn(preds * targets, masks)[0] - mu01 |
|
|
|
|
|
|
|
sigma00 = sigma00.clamp(min=0.0) |
|
sigma11 = sigma11.clamp(min=0.0) |
|
sigma01 = torch.sign(sigma01) * torch.minimum( |
|
torch.sqrt(sigma00 * sigma11), torch.abs(sigma01) |
|
) |
|
|
|
assert isinstance(self.data_range, float) |
|
c1 = (self.k1 * self.data_range) ** 2 |
|
c2 = (self.k2 * self.data_range) ** 2 |
|
numer = (2 * mu01 + c1) * (2 * sigma01 + c2) |
|
denom = (mu00 + mu11 + c1) * (sigma00 + sigma11 + c2) |
|
ssim_map = numer / denom |
|
|
|
self.similarity.append(ssim_map.mean(dim=(1, 2, 3))) |
|
|
|
def compute(self) -> torch.Tensor: |
|
"""Compute final SSIM metric.""" |
|
return torch.cat(self.similarity).mean() |
|
|
|
|
|
class mLPIPS(Metric): |
|
sum_scores: list[torch.Tensor] |
|
total: list[torch.Tensor] |
|
|
|
def __init__( |
|
self, |
|
net_type: Literal["vgg", "alex", "squeeze"] = "alex", |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
if not _TORCHVISION_AVAILABLE: |
|
raise ModuleNotFoundError( |
|
"LPIPS metric requires that torchvision is installed." |
|
" Either install as `pip install torchmetrics[image]` or `pip install torchvision`." |
|
) |
|
|
|
valid_net_type = ("vgg", "alex", "squeeze") |
|
if net_type not in valid_net_type: |
|
raise ValueError( |
|
f"Argument `net_type` must be one of {valid_net_type}, but got {net_type}." |
|
) |
|
self.net = _NoTrainLpips(net=net_type, spatial=True) |
|
|
|
self.add_state("sum_scores", [], dist_reduce_fx="cat") |
|
self.add_state("total", [], dist_reduce_fx="cat") |
|
|
|
def __len__(self) -> int: |
|
return len(self.total) |
|
|
|
def update( |
|
self, |
|
preds: torch.Tensor, |
|
targets: torch.Tensor, |
|
masks: torch.Tensor | None = None, |
|
): |
|
"""Update internal states with lpips scores. |
|
|
|
Args: |
|
preds (torch.Tensor): (B, H, W, 3) float32 predicted images. |
|
targets (torch.Tensor): (B, H, W, 3) float32 target images. |
|
masks (torch.Tensor | None): (B, H, W) optional float32 binary |
|
masks where the 1-regions will be taken into account. |
|
""" |
|
if masks is None: |
|
masks = torch.ones_like(preds[..., 0]) |
|
scores = self.net( |
|
(preds * masks[..., None]).permute(0, 3, 1, 2), |
|
(targets * masks[..., None]).permute(0, 3, 1, 2), |
|
normalize=True, |
|
) |
|
self.sum_scores.append((scores * masks[:, None]).sum()) |
|
self.total.append(masks.sum().to(torch.int64)) |
|
|
|
def compute(self) -> torch.Tensor: |
|
"""Compute final perceptual similarity metric.""" |
|
return ( |
|
torch.tensor(self.sum_scores, device=self.device) |
|
/ torch.tensor(self.total, device=self.device) |
|
).mean() |
|
|
|
|
|
class PCK(Metric): |
|
correct: list[torch.Tensor] |
|
total: list[int] |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
self.add_state("correct", default=[], dist_reduce_fx="cat") |
|
self.add_state("total", default=[], dist_reduce_fx="cat") |
|
|
|
def __len__(self) -> int: |
|
return len(self.total) |
|
|
|
def update(self, preds: torch.Tensor, targets: torch.Tensor, threshold: float): |
|
"""Update internal states with PCK scores. |
|
|
|
Args: |
|
preds (torch.Tensor): (N, 2) predicted 2D keypoints. |
|
targets (torch.Tensor): (N, 2) targets 2D keypoints. |
|
threshold (float): PCK threshold. |
|
""" |
|
|
|
self.correct.append( |
|
(torch.linalg.norm(preds - targets, dim=-1) < threshold).sum() |
|
) |
|
self.total.append(preds.shape[0]) |
|
|
|
def compute(self) -> torch.Tensor: |
|
"""Compute PCK over state.""" |
|
return ( |
|
torch.tensor(self.correct, device=self.device) |
|
/ torch.clamp(torch.tensor(self.total, device=self.device), min=1e-8) |
|
).mean() |
|
|