|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from flow3d.transforms import cont_6d_to_rmat |
|
|
|
|
|
class GaussianParams(nn.Module): |
|
def __init__( |
|
self, |
|
means: torch.Tensor, |
|
quats: torch.Tensor, |
|
scales: torch.Tensor, |
|
colors: torch.Tensor, |
|
opacities: torch.Tensor, |
|
motion_coefs: torch.Tensor | None = None, |
|
scene_center: torch.Tensor | None = None, |
|
scene_scale: torch.Tensor | float = 1.0, |
|
): |
|
super().__init__() |
|
if not check_gaussian_sizes( |
|
means, quats, scales, colors, opacities, motion_coefs |
|
): |
|
import ipdb |
|
|
|
ipdb.set_trace() |
|
params_dict = { |
|
"means": nn.Parameter(means), |
|
"quats": nn.Parameter(quats), |
|
"scales": nn.Parameter(scales), |
|
"colors": nn.Parameter(colors), |
|
"opacities": nn.Parameter(opacities), |
|
} |
|
if motion_coefs is not None: |
|
params_dict["motion_coefs"] = nn.Parameter(motion_coefs) |
|
self.params = nn.ParameterDict(params_dict) |
|
self.quat_activation = lambda x: F.normalize(x, dim=-1, p=2) |
|
self.color_activation = torch.sigmoid |
|
self.scale_activation = torch.exp |
|
self.opacity_activation = torch.sigmoid |
|
self.motion_coef_activation = lambda x: F.softmax(x, dim=-1) |
|
|
|
if scene_center is None: |
|
scene_center = torch.zeros(3, device=means.device) |
|
self.register_buffer("scene_center", scene_center) |
|
self.register_buffer("scene_scale", torch.as_tensor(scene_scale)) |
|
|
|
@staticmethod |
|
def init_from_state_dict(state_dict, prefix="params."): |
|
req_keys = ["means", "quats", "scales", "colors", "opacities"] |
|
assert all(f"{prefix}{k}" in state_dict for k in req_keys) |
|
args = { |
|
"motion_coefs": None, |
|
"scene_center": torch.zeros(3), |
|
"scene_scale": torch.tensor(1.0), |
|
} |
|
for k in req_keys + list(args.keys()): |
|
if f"{prefix}{k}" in state_dict: |
|
args[k] = state_dict[f"{prefix}{k}"] |
|
return GaussianParams(**args) |
|
|
|
@property |
|
def num_gaussians(self) -> int: |
|
return self.params["means"].shape[0] |
|
|
|
def get_colors(self) -> torch.Tensor: |
|
return self.color_activation(self.params["colors"]) |
|
|
|
def get_scales(self) -> torch.Tensor: |
|
return self.scale_activation(self.params["scales"]) |
|
|
|
def get_opacities(self) -> torch.Tensor: |
|
return self.opacity_activation(self.params["opacities"]) |
|
|
|
def get_quats(self) -> torch.Tensor: |
|
return self.quat_activation(self.params["quats"]) |
|
|
|
def get_coefs(self) -> torch.Tensor: |
|
assert "motion_coefs" in self.params |
|
return self.motion_coef_activation(self.params["motion_coefs"]) |
|
|
|
def densify_params(self, should_split, should_dup): |
|
""" |
|
densify gaussians |
|
""" |
|
updated_params = {} |
|
for name, x in self.params.items(): |
|
x_dup = x[should_dup] |
|
x_split = x[should_split].repeat([2] + [1] * (x.ndim - 1)) |
|
if name == "scales": |
|
x_split -= math.log(1.6) |
|
x_new = nn.Parameter(torch.cat([x[~should_split], x_dup, x_split], dim=0)) |
|
updated_params[name] = x_new |
|
self.params[name] = x_new |
|
return updated_params |
|
|
|
def cull_params(self, should_cull): |
|
""" |
|
cull gaussians |
|
""" |
|
updated_params = {} |
|
for name, x in self.params.items(): |
|
x_new = nn.Parameter(x[~should_cull]) |
|
updated_params[name] = x_new |
|
self.params[name] = x_new |
|
return updated_params |
|
|
|
def reset_opacities(self, new_val): |
|
""" |
|
reset all opacities to new_val |
|
""" |
|
self.params["opacities"].data.fill_(new_val) |
|
updated_params = {"opacities": self.params["opacities"]} |
|
return updated_params |
|
|
|
|
|
class MotionBases(nn.Module): |
|
def __init__(self, rots, transls): |
|
super().__init__() |
|
self.num_frames = rots.shape[1] |
|
self.num_bases = rots.shape[0] |
|
assert check_bases_sizes(rots, transls) |
|
self.params = nn.ParameterDict( |
|
{ |
|
"rots": nn.Parameter(rots), |
|
"transls": nn.Parameter(transls), |
|
} |
|
) |
|
|
|
@staticmethod |
|
def init_from_state_dict(state_dict, prefix="params."): |
|
param_keys = ["rots", "transls"] |
|
assert all(f"{prefix}{k}" in state_dict for k in param_keys) |
|
args = {k: state_dict[f"{prefix}{k}"] for k in param_keys} |
|
return MotionBases(**args) |
|
|
|
def compute_transforms(self, ts: torch.Tensor, coefs: torch.Tensor) -> torch.Tensor: |
|
""" |
|
:param ts (B) |
|
:param coefs (G, K) |
|
returns transforms (G, B, 3, 4) |
|
""" |
|
transls = self.params["transls"][:, ts] |
|
rots = self.params["rots"][:, ts] |
|
transls = torch.einsum("pk,kni->pni", coefs, transls) |
|
rots = torch.einsum("pk,kni->pni", coefs, rots) |
|
rotmats = cont_6d_to_rmat(rots) |
|
return torch.cat([rotmats, transls[..., None]], dim=-1) |
|
|
|
|
|
def check_gaussian_sizes( |
|
means: torch.Tensor, |
|
quats: torch.Tensor, |
|
scales: torch.Tensor, |
|
colors: torch.Tensor, |
|
opacities: torch.Tensor, |
|
motion_coefs: torch.Tensor | None = None, |
|
) -> bool: |
|
dims = means.shape[:-1] |
|
leading_dims_match = ( |
|
quats.shape[:-1] == dims |
|
and scales.shape[:-1] == dims |
|
and colors.shape[:-1] == dims |
|
and opacities.shape == dims |
|
) |
|
if motion_coefs is not None and motion_coefs.numel() > 0: |
|
leading_dims_match &= motion_coefs.shape[:-1] == dims |
|
dims_correct = ( |
|
means.shape[-1] == 3 |
|
and (quats.shape[-1] == 4) |
|
and (scales.shape[-1] == 3) |
|
and (colors.shape[-1] == 3) |
|
) |
|
return leading_dims_match and dims_correct |
|
|
|
|
|
def check_bases_sizes(motion_rots: torch.Tensor, motion_transls: torch.Tensor) -> bool: |
|
return ( |
|
motion_rots.shape[-1] == 6 |
|
and motion_transls.shape[-1] == 3 |
|
and motion_rots.shape[:-2] == motion_transls.shape[:-2] |
|
) |
|
|