XGGNet's picture
Add dataset files
c617fd9
raw
history blame
6.23 kB
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from flow3d.transforms import cont_6d_to_rmat
class GaussianParams(nn.Module):
def __init__(
self,
means: torch.Tensor,
quats: torch.Tensor,
scales: torch.Tensor,
colors: torch.Tensor,
opacities: torch.Tensor,
motion_coefs: torch.Tensor | None = None,
scene_center: torch.Tensor | None = None,
scene_scale: torch.Tensor | float = 1.0,
):
super().__init__()
if not check_gaussian_sizes(
means, quats, scales, colors, opacities, motion_coefs
):
import ipdb
ipdb.set_trace()
params_dict = {
"means": nn.Parameter(means),
"quats": nn.Parameter(quats),
"scales": nn.Parameter(scales),
"colors": nn.Parameter(colors),
"opacities": nn.Parameter(opacities),
}
if motion_coefs is not None:
params_dict["motion_coefs"] = nn.Parameter(motion_coefs)
self.params = nn.ParameterDict(params_dict)
self.quat_activation = lambda x: F.normalize(x, dim=-1, p=2)
self.color_activation = torch.sigmoid
self.scale_activation = torch.exp
self.opacity_activation = torch.sigmoid
self.motion_coef_activation = lambda x: F.softmax(x, dim=-1)
if scene_center is None:
scene_center = torch.zeros(3, device=means.device)
self.register_buffer("scene_center", scene_center)
self.register_buffer("scene_scale", torch.as_tensor(scene_scale))
@staticmethod
def init_from_state_dict(state_dict, prefix="params."):
req_keys = ["means", "quats", "scales", "colors", "opacities"]
assert all(f"{prefix}{k}" in state_dict for k in req_keys)
args = {
"motion_coefs": None,
"scene_center": torch.zeros(3),
"scene_scale": torch.tensor(1.0),
}
for k in req_keys + list(args.keys()):
if f"{prefix}{k}" in state_dict:
args[k] = state_dict[f"{prefix}{k}"]
return GaussianParams(**args)
@property
def num_gaussians(self) -> int:
return self.params["means"].shape[0]
def get_colors(self) -> torch.Tensor:
return self.color_activation(self.params["colors"])
def get_scales(self) -> torch.Tensor:
return self.scale_activation(self.params["scales"])
def get_opacities(self) -> torch.Tensor:
return self.opacity_activation(self.params["opacities"])
def get_quats(self) -> torch.Tensor:
return self.quat_activation(self.params["quats"])
def get_coefs(self) -> torch.Tensor:
assert "motion_coefs" in self.params
return self.motion_coef_activation(self.params["motion_coefs"])
def densify_params(self, should_split, should_dup):
"""
densify gaussians
"""
updated_params = {}
for name, x in self.params.items():
x_dup = x[should_dup]
x_split = x[should_split].repeat([2] + [1] * (x.ndim - 1))
if name == "scales":
x_split -= math.log(1.6)
x_new = nn.Parameter(torch.cat([x[~should_split], x_dup, x_split], dim=0))
updated_params[name] = x_new
self.params[name] = x_new
return updated_params
def cull_params(self, should_cull):
"""
cull gaussians
"""
updated_params = {}
for name, x in self.params.items():
x_new = nn.Parameter(x[~should_cull])
updated_params[name] = x_new
self.params[name] = x_new
return updated_params
def reset_opacities(self, new_val):
"""
reset all opacities to new_val
"""
self.params["opacities"].data.fill_(new_val)
updated_params = {"opacities": self.params["opacities"]}
return updated_params
class MotionBases(nn.Module):
def __init__(self, rots, transls):
super().__init__()
self.num_frames = rots.shape[1]
self.num_bases = rots.shape[0]
assert check_bases_sizes(rots, transls)
self.params = nn.ParameterDict(
{
"rots": nn.Parameter(rots),
"transls": nn.Parameter(transls),
}
)
@staticmethod
def init_from_state_dict(state_dict, prefix="params."):
param_keys = ["rots", "transls"]
assert all(f"{prefix}{k}" in state_dict for k in param_keys)
args = {k: state_dict[f"{prefix}{k}"] for k in param_keys}
return MotionBases(**args)
def compute_transforms(self, ts: torch.Tensor, coefs: torch.Tensor) -> torch.Tensor:
"""
:param ts (B)
:param coefs (G, K)
returns transforms (G, B, 3, 4)
"""
transls = self.params["transls"][:, ts] # (K, B, 3)
rots = self.params["rots"][:, ts] # (K, B, 6)
transls = torch.einsum("pk,kni->pni", coefs, transls)
rots = torch.einsum("pk,kni->pni", coefs, rots) # (G, B, 6)
rotmats = cont_6d_to_rmat(rots) # (K, B, 3, 3)
return torch.cat([rotmats, transls[..., None]], dim=-1)
def check_gaussian_sizes(
means: torch.Tensor,
quats: torch.Tensor,
scales: torch.Tensor,
colors: torch.Tensor,
opacities: torch.Tensor,
motion_coefs: torch.Tensor | None = None,
) -> bool:
dims = means.shape[:-1]
leading_dims_match = (
quats.shape[:-1] == dims
and scales.shape[:-1] == dims
and colors.shape[:-1] == dims
and opacities.shape == dims
)
if motion_coefs is not None and motion_coefs.numel() > 0:
leading_dims_match &= motion_coefs.shape[:-1] == dims
dims_correct = (
means.shape[-1] == 3
and (quats.shape[-1] == 4)
and (scales.shape[-1] == 3)
and (colors.shape[-1] == 3)
)
return leading_dims_match and dims_correct
def check_bases_sizes(motion_rots: torch.Tensor, motion_transls: torch.Tensor) -> bool:
return (
motion_rots.shape[-1] == 6
and motion_transls.shape[-1] == 3
and motion_rots.shape[:-2] == motion_transls.shape[:-2]
)