XGGNet's picture
Add dataset files
c617fd9
import functools
import time
from dataclasses import asdict
from typing import cast
import numpy as np
import torch
import torch.nn.functional as F
from loguru import logger as guru
from nerfview import CameraState
from pytorch_msssim import SSIM
from torch.utils.tensorboard import SummaryWriter # type: ignore
from flow3d.configs import LossesConfig, OptimizerConfig, SceneLRConfig
from flow3d.loss_utils import (
compute_gradient_loss,
compute_se3_smoothness_loss,
compute_z_acc_loss,
masked_l1_loss,
)
from flow3d.metrics import PCK, mLPIPS, mPSNR, mSSIM
from flow3d.scene_model import SceneModel
from flow3d.vis.utils import get_server
from flow3d.vis.viewer import DynamicViewer
class Trainer:
def __init__(
self,
model: SceneModel,
device: torch.device,
lr_cfg: SceneLRConfig,
losses_cfg: LossesConfig,
optim_cfg: OptimizerConfig,
# Logging.
work_dir: str,
port: int | None = None,
log_every: int = 10,
checkpoint_every: int = 200,
validate_every: int = 500,
validate_video_every: int = 1000,
validate_viewer_assets_every: int = 100,
):
self.device = device
self.log_every = log_every
self.checkpoint_every = checkpoint_every
self.validate_every = validate_every
self.validate_video_every = validate_video_every
self.validate_viewer_assets_every = validate_viewer_assets_every
self.model = model
self.num_frames = model.num_frames
self.lr_cfg = lr_cfg
self.losses_cfg = losses_cfg
self.optim_cfg = optim_cfg
self.reset_opacity_every = (
self.optim_cfg.reset_opacity_every_n_controls * self.optim_cfg.control_every
)
self.optimizers, self.scheduler = self.configure_optimizers()
# running stats for adaptive density control
self.running_stats = {
"xys_grad_norm_acc": torch.zeros(self.model.num_gaussians, device=device),
"vis_count": torch.zeros(
self.model.num_gaussians, device=device, dtype=torch.int64
),
"max_radii": torch.zeros(self.model.num_gaussians, device=device),
}
self.work_dir = work_dir
self.writer = SummaryWriter(log_dir=work_dir)
self.global_step = 0
self.epoch = 0
self.viewer = None
if port is not None:
server = get_server(port=port)
self.viewer = DynamicViewer(
server, self.render_fn, model.num_frames, work_dir, mode="training"
)
# metrics
self.ssim = SSIM(data_range=1.0, size_average=True, channel=3)
self.psnr_metric = mPSNR()
self.ssim_metric = mSSIM()
self.lpips_metric = mLPIPS()
self.pck_metric = PCK()
self.bg_psnr_metric = mPSNR()
self.fg_psnr_metric = mPSNR()
self.bg_ssim_metric = mSSIM()
self.fg_ssim_metric = mSSIM()
self.bg_lpips_metric = mLPIPS()
self.fg_lpips_metric = mLPIPS()
def set_epoch(self, epoch: int):
self.epoch = epoch
def save_checkpoint(self, path: str):
model_dict = self.model.state_dict()
optimizer_dict = {k: v.state_dict() for k, v in self.optimizers.items()}
scheduler_dict = {k: v.state_dict() for k, v in self.scheduler.items()}
ckpt = {
"model": model_dict,
"optimizers": optimizer_dict,
"schedulers": scheduler_dict,
"global_step": self.global_step,
"epoch": self.epoch,
}
torch.save(ckpt, path)
guru.info(f"Saved checkpoint at {self.global_step=} to {path}")
@staticmethod
def init_from_checkpoint(
path: str, device: torch.device, *args, **kwargs
) -> tuple["Trainer", int]:
guru.info(f"Loading checkpoint from {path}")
ckpt = torch.load(path)
state_dict = ckpt["model"]
model = SceneModel.init_from_state_dict(state_dict)
model = model.to(device)
trainer = Trainer(model, device, *args, **kwargs)
if "optimizers" in ckpt:
trainer.load_checkpoint_optimizers(ckpt["optimizers"])
if "schedulers" in ckpt:
trainer.load_checkpoint_schedulers(ckpt["schedulers"])
trainer.global_step = ckpt.get("global_step", 0)
start_epoch = ckpt.get("epoch", 0)
trainer.set_epoch(start_epoch)
return trainer, start_epoch
def load_checkpoint_optimizers(self, opt_ckpt):
for k, v in self.optimizers.items():
v.load_state_dict(opt_ckpt[k])
def load_checkpoint_schedulers(self, sched_ckpt):
for k, v in self.scheduler.items():
v.load_state_dict(sched_ckpt[k])
@torch.inference_mode()
def render_fn(self, camera_state: CameraState, img_wh: tuple[int, int]):
W, H = img_wh
focal = 0.5 * H / np.tan(0.5 * camera_state.fov).item()
K = torch.tensor(
[[focal, 0.0, W / 2.0], [0.0, focal, H / 2.0], [0.0, 0.0, 1.0]],
device=self.device,
)
w2c = torch.linalg.inv(
torch.from_numpy(camera_state.c2w.astype(np.float32)).to(self.device)
)
t = 0
if self.viewer is not None:
t = (
int(self.viewer._playback_guis[0].value)
if not self.viewer._canonical_checkbox.value
else None
)
self.model.training = False
img = self.model.render(t, w2c[None], K[None], img_wh)["img"][0]
return (img.cpu().numpy() * 255.0).astype(np.uint8)
def train_step(self, batch):
if self.viewer is not None:
while self.viewer.state.status == "paused":
time.sleep(0.1)
self.viewer.lock.acquire()
loss, stats, num_rays_per_step, num_rays_per_sec = self.compute_losses(batch)
if loss.isnan():
guru.info(f"Loss is NaN at step {self.global_step}!!")
import ipdb
ipdb.set_trace()
loss.backward()
for opt in self.optimizers.values():
opt.step()
opt.zero_grad(set_to_none=True)
for sched in self.scheduler.values():
sched.step()
self.log_dict(stats)
self.global_step += 1
self.run_control_steps()
if self.viewer is not None:
self.viewer.lock.release()
self.viewer.state.num_train_rays_per_sec = num_rays_per_sec
if self.viewer.mode == "training":
self.viewer.update(self.global_step, num_rays_per_step)
if self.global_step % self.checkpoint_every == 0:
self.save_checkpoint(f"{self.work_dir}/checkpoints/last.ckpt")
return loss.item()
def compute_losses(self, batch):
self.model.training = True
B = batch["imgs"].shape[0]
W, H = img_wh = batch["imgs"].shape[2:0:-1]
N = batch["target_ts"][0].shape[0]
# (B,).
ts = batch["ts"]
# (B, 4, 4).
w2cs = batch["w2cs"]
# (B, 3, 3).
Ks = batch["Ks"]
# (B, H, W, 3).
imgs = batch["imgs"]
# (B, H, W).
valid_masks = batch.get("valid_masks", torch.ones_like(batch["imgs"][..., 0]))
# (B, H, W).
masks = batch["masks"]
masks *= valid_masks
# (B, H, W).
depths = batch["depths"]
# [(P, 2), ...].
query_tracks_2d = batch["query_tracks_2d"]
# [(N,), ...].
target_ts = batch["target_ts"]
# [(N, 4, 4), ...].
target_w2cs = batch["target_w2cs"]
# [(N, 3, 3), ...].
target_Ks = batch["target_Ks"]
# [(N, P, 2), ...].
target_tracks_2d = batch["target_tracks_2d"]
# [(N, P), ...].
target_visibles = batch["target_visibles"]
# [(N, P), ...].
target_invisibles = batch["target_invisibles"]
# [(N, P), ...].
target_confidences = batch["target_confidences"]
# [(N, P), ...].
target_track_depths = batch["target_track_depths"]
_tic = time.time()
# (B, G, 3).
means, quats = self.model.compute_poses_all(ts) # (G, B, 3), (G, B, 4)
device = means.device
means = means.transpose(0, 1)
quats = quats.transpose(0, 1)
# [(N, G, 3), ...].
target_ts_vec = torch.cat(target_ts)
# (B * N, G, 3).
target_means, _ = self.model.compute_poses_all(target_ts_vec)
target_means = target_means.transpose(0, 1)
target_mean_list = target_means.split(N)
num_frames = self.model.num_frames
loss = 0.0
bg_colors = []
rendered_all = []
self._batched_xys = []
self._batched_radii = []
self._batched_img_wh = []
for i in range(B):
bg_color = torch.ones(1, 3, device=device)
rendered = self.model.render(
ts[i].item(),
w2cs[None, i],
Ks[None, i],
img_wh,
target_ts=target_ts[i],
target_w2cs=target_w2cs[i],
bg_color=bg_color,
means=means[i],
quats=quats[i],
target_means=target_mean_list[i].transpose(0, 1),
return_depth=True,
return_mask=self.model.has_bg,
)
rendered_all.append(rendered)
bg_colors.append(bg_color)
if (
self.model._current_xys is not None
and self.model._current_radii is not None
and self.model._current_img_wh is not None
):
self._batched_xys.append(self.model._current_xys)
self._batched_radii.append(self.model._current_radii)
self._batched_img_wh.append(self.model._current_img_wh)
# Necessary to make viewer work.
num_rays_per_step = H * W * B
num_rays_per_sec = num_rays_per_step / (time.time() - _tic)
# (B, H, W, N, *).
rendered_all = {
key: (
torch.cat([out_dict[key] for out_dict in rendered_all], dim=0)
if rendered_all[0][key] is not None
else None
)
for key in rendered_all[0]
}
bg_colors = torch.cat(bg_colors, dim=0)
# Compute losses.
# (B * N).
frame_intervals = (ts.repeat_interleave(N) - target_ts_vec).abs()
if not self.model.has_bg:
imgs = (
imgs * masks[..., None]
+ (1.0 - masks[..., None]) * bg_colors[:, None, None]
)
else:
imgs = (
imgs * valid_masks[..., None]
+ (1.0 - valid_masks[..., None]) * bg_colors[:, None, None]
)
# (P_all, 2).
tracks_2d = torch.cat([x.reshape(-1, 2) for x in target_tracks_2d], dim=0)
# (P_all,)
visibles = torch.cat([x.reshape(-1) for x in target_visibles], dim=0)
# (P_all,)
confidences = torch.cat([x.reshape(-1) for x in target_confidences], dim=0)
# RGB loss.
rendered_imgs = cast(torch.Tensor, rendered_all["img"])
if self.model.has_bg:
rendered_imgs = (
rendered_imgs * valid_masks[..., None]
+ (1.0 - valid_masks[..., None]) * bg_colors[:, None, None]
)
rgb_loss = 0.8 * F.l1_loss(rendered_imgs, imgs) + 0.2 * (
1 - self.ssim(rendered_imgs.permute(0, 3, 1, 2), imgs.permute(0, 3, 1, 2))
)
loss += rgb_loss * self.losses_cfg.w_rgb
# Mask loss.
if not self.model.has_bg:
mask_loss = F.mse_loss(rendered_all["acc"], masks[..., None]) # type: ignore
else:
mask_loss = F.mse_loss(
rendered_all["acc"], torch.ones_like(rendered_all["acc"]) # type: ignore
) + masked_l1_loss(
rendered_all["mask"],
masks[..., None],
quantile=0.98, # type: ignore
)
loss += mask_loss * self.losses_cfg.w_mask
# (B * N, H * W, 3).
pred_tracks_3d = (
rendered_all["tracks_3d"].permute(0, 3, 1, 2, 4).reshape(-1, H * W, 3) # type: ignore
)
pred_tracks_2d = torch.einsum(
"bij,bpj->bpi", torch.cat(target_Ks), pred_tracks_3d
)
# (B * N, H * W, 1).
mapped_depth = torch.clamp(pred_tracks_2d[..., 2:], min=1e-6)
# (B * N, H * W, 2).
pred_tracks_2d = pred_tracks_2d[..., :2] / mapped_depth
# (B * N).
w_interval = torch.exp(-2 * frame_intervals / num_frames)
# w_track_loss = min(1, (self.max_steps - self.global_step) / 6000)
track_weights = confidences[..., None] * w_interval
# (B, H, W).
masks_flatten = torch.zeros_like(masks)
for i in range(B):
# This takes advantage of the fact that the query 2D tracks are
# always on the grid.
query_pixels = query_tracks_2d[i].to(torch.int64)
masks_flatten[i, query_pixels[:, 1], query_pixels[:, 0]] = 1.0
# (B * N, H * W).
masks_flatten = (
masks_flatten.reshape(-1, H * W).tile(1, N).reshape(-1, H * W) > 0.5
)
track_2d_loss = masked_l1_loss(
pred_tracks_2d[masks_flatten][visibles],
tracks_2d[visibles],
mask=track_weights[visibles],
quantile=0.98,
) / max(H, W)
loss += track_2d_loss * self.losses_cfg.w_track
depth_masks = (
masks[..., None] if not self.model.has_bg else valid_masks[..., None]
)
pred_depth = cast(torch.Tensor, rendered_all["depth"])
pred_disp = 1.0 / (pred_depth + 1e-5)
tgt_disp = 1.0 / (depths[..., None] + 1e-5)
depth_loss = masked_l1_loss(
pred_disp,
tgt_disp,
mask=depth_masks,
quantile=0.98,
)
# depth_loss = cauchy_loss_with_uncertainty(
# pred_disp.squeeze(-1),
# tgt_disp.squeeze(-1),
# depth_masks.squeeze(-1),
# self.depth_uncertainty_activation(self.depth_uncertainties)[ts],
# bias=1e-3,
# )
loss += depth_loss * self.losses_cfg.w_depth_reg
# mapped depth loss (using cached depth with EMA)
# mapped_depth_loss = 0.0
mapped_depth_gt = torch.cat([x.reshape(-1) for x in target_track_depths], dim=0)
mapped_depth_loss = masked_l1_loss(
1 / (mapped_depth[masks_flatten][visibles] + 1e-5),
1 / (mapped_depth_gt[visibles, None] + 1e-5),
track_weights[visibles],
)
loss += mapped_depth_loss * self.losses_cfg.w_depth_const
# depth_gradient_loss = 0.0
depth_gradient_loss = compute_gradient_loss(
pred_disp,
tgt_disp,
mask=depth_masks > 0.5,
quantile=0.95,
)
# depth_gradient_loss = compute_gradient_loss(
# pred_disps,
# ref_disps,
# mask=depth_masks.squeeze(-1) > 0.5,
# c=depth_uncertainty.detach(),
# mode="l1",
# bias=1e-3,
# )
loss += depth_gradient_loss * self.losses_cfg.w_depth_grad
# bases should be smooth.
small_accel_loss = compute_se3_smoothness_loss(
self.model.motion_bases.params["rots"],
self.model.motion_bases.params["transls"],
)
loss += small_accel_loss * self.losses_cfg.w_smooth_bases
# tracks should be smooth
ts = torch.clamp(ts, min=1, max=num_frames - 2)
ts_neighbors = torch.cat((ts - 1, ts, ts + 1))
transfms_nbs = self.model.compute_transforms(ts_neighbors) # (G, 3n, 3, 4)
means_fg_nbs = torch.einsum(
"pnij,pj->pni",
transfms_nbs,
F.pad(self.model.fg.params["means"], (0, 1), value=1.0),
)
means_fg_nbs = means_fg_nbs.reshape(
means_fg_nbs.shape[0], 3, -1, 3
) # [G, 3, n, 3]
if self.losses_cfg.w_smooth_tracks > 0:
small_accel_loss_tracks = 0.5 * (
(2 * means_fg_nbs[:, 1:-1] - means_fg_nbs[:, :-2] - means_fg_nbs[:, 2:])
.norm(dim=-1)
.mean()
)
loss += small_accel_loss_tracks * self.losses_cfg.w_smooth_tracks
# Constrain the std of scales.
# TODO: do we want to penalize before or after exp?
loss += (
self.losses_cfg.w_scale_var
* torch.var(self.model.fg.params["scales"], dim=-1).mean()
)
if self.model.bg is not None:
loss += (
self.losses_cfg.w_scale_var
* torch.var(self.model.bg.params["scales"], dim=-1).mean()
)
# # sparsity loss
# loss += 0.01 * self.opacity_activation(self.opacities).abs().mean()
# Acceleration along ray direction should be small.
z_accel_loss = compute_z_acc_loss(means_fg_nbs, w2cs)
loss += self.losses_cfg.w_z_accel * z_accel_loss
# Prepare stats for logging.
stats = {
"train/loss": loss.item(),
"train/rgb_loss": rgb_loss.item(),
"train/mask_loss": mask_loss.item(),
"train/depth_loss": depth_loss.item(),
"train/depth_gradient_loss": depth_gradient_loss.item(),
"train/mapped_depth_loss": mapped_depth_loss.item(),
"train/track_2d_loss": track_2d_loss.item(),
"train/small_accel_loss": small_accel_loss.item(),
"train/z_acc_loss": z_accel_loss.item(),
"train/num_gaussians": self.model.num_gaussians,
"train/num_fg_gaussians": self.model.num_fg_gaussians,
"train/num_bg_gaussians": self.model.num_bg_gaussians,
}
# Compute metrics.
with torch.no_grad():
psnr = self.psnr_metric(
rendered_imgs, imgs, masks if not self.model.has_bg else valid_masks
)
self.psnr_metric.reset()
stats["train/psnr"] = psnr
if self.model.has_bg:
bg_psnr = self.bg_psnr_metric(rendered_imgs, imgs, 1.0 - masks)
fg_psnr = self.fg_psnr_metric(rendered_imgs, imgs, masks)
self.bg_psnr_metric.reset()
self.fg_psnr_metric.reset()
stats["train/bg_psnr"] = bg_psnr
stats["train/fg_psnr"] = fg_psnr
stats.update(
**{
"train/num_rays_per_sec": num_rays_per_sec,
"train/num_rays_per_step": float(num_rays_per_step),
}
)
return loss, stats, num_rays_per_step, num_rays_per_sec
def log_dict(self, stats: dict):
for k, v in stats.items():
self.writer.add_scalar(k, v, self.global_step)
def run_control_steps(self):
global_step = self.global_step
# Adaptive gaussian control.
cfg = self.optim_cfg
num_frames = self.model.num_frames
ready = self._prepare_control_step()
if (
ready
and global_step > cfg.warmup_steps
and global_step % cfg.control_every == 0
and global_step < cfg.stop_control_steps
):
if (
global_step < cfg.stop_densify_steps
and global_step % self.reset_opacity_every > num_frames
):
self._densify_control_step(global_step)
if global_step % self.reset_opacity_every > min(3 * num_frames, 1000):
self._cull_control_step(global_step)
if global_step % self.reset_opacity_every == 0:
self._reset_opacity_control_step()
# Reset stats after every control.
for k in self.running_stats:
self.running_stats[k].zero_()
@torch.no_grad()
def _prepare_control_step(self) -> bool:
# Prepare for adaptive gaussian control based on the current stats.
if not (
self.model._current_radii is not None
and self.model._current_xys is not None
):
guru.warning("Model not training, skipping control step preparation")
return False
batch_size = len(self._batched_xys)
# these quantities are for each rendered view and have shapes (C, G, *)
# must be aggregated over all views
for _current_xys, _current_radii, _current_img_wh in zip(
self._batched_xys, self._batched_radii, self._batched_img_wh
):
sel = _current_radii > 0
gidcs = torch.where(sel)[1]
# normalize grads to [-1, 1] screen space
xys_grad = _current_xys.grad.clone()
xys_grad[..., 0] *= _current_img_wh[0] / 2.0 * batch_size
xys_grad[..., 1] *= _current_img_wh[1] / 2.0 * batch_size
self.running_stats["xys_grad_norm_acc"].index_add_(
0, gidcs, xys_grad[sel].norm(dim=-1)
)
self.running_stats["vis_count"].index_add_(
0, gidcs, torch.ones_like(gidcs, dtype=torch.int64)
)
max_radii = torch.maximum(
self.running_stats["max_radii"].index_select(0, gidcs),
_current_radii[sel] / max(_current_img_wh),
)
self.running_stats["max_radii"].index_put((gidcs,), max_radii)
return True
@torch.no_grad()
def _densify_control_step(self, global_step):
assert (self.running_stats["vis_count"] > 0).any()
cfg = self.optim_cfg
xys_grad_avg = self.running_stats["xys_grad_norm_acc"] / self.running_stats[
"vis_count"
].clamp_min(1)
is_grad_too_high = xys_grad_avg > cfg.densify_xys_grad_threshold
# Split gaussians.
scales = self.model.get_scales_all()
is_scale_too_big = scales.amax(dim=-1) > cfg.densify_scale_threshold
if global_step < cfg.stop_control_by_screen_steps:
is_radius_too_big = (
self.running_stats["max_radii"] > cfg.densify_screen_threshold
)
else:
is_radius_too_big = torch.zeros_like(is_grad_too_high, dtype=torch.bool)
should_split = is_grad_too_high & (is_scale_too_big | is_radius_too_big)
should_dup = is_grad_too_high & ~is_scale_too_big
num_fg = self.model.num_fg_gaussians
should_fg_split = should_split[:num_fg]
num_fg_splits = int(should_fg_split.sum().item())
should_fg_dup = should_dup[:num_fg]
num_fg_dups = int(should_fg_dup.sum().item())
should_bg_split = should_split[num_fg:]
num_bg_splits = int(should_bg_split.sum().item())
should_bg_dup = should_dup[num_fg:]
num_bg_dups = int(should_bg_dup.sum().item())
fg_param_map = self.model.fg.densify_params(should_fg_split, should_fg_dup)
for param_name, new_params in fg_param_map.items():
full_param_name = f"fg.params.{param_name}"
optimizer = self.optimizers[full_param_name]
dup_in_optim(
optimizer,
[new_params],
should_fg_split,
num_fg_splits * 2 + num_fg_dups,
)
if self.model.bg is not None:
bg_param_map = self.model.bg.densify_params(should_bg_split, should_bg_dup)
for param_name, new_params in bg_param_map.items():
full_param_name = f"bg.params.{param_name}"
optimizer = self.optimizers[full_param_name]
dup_in_optim(
optimizer,
[new_params],
should_bg_split,
num_bg_splits * 2 + num_bg_dups,
)
# update running stats
for k, v in self.running_stats.items():
v_fg, v_bg = v[:num_fg], v[num_fg:]
new_v = torch.cat(
[
v_fg[~should_fg_split],
v_fg[should_fg_dup],
v_fg[should_fg_split].repeat(2),
v_bg[~should_bg_split],
v_bg[should_bg_dup],
v_bg[should_bg_split].repeat(2),
],
dim=0,
)
self.running_stats[k] = new_v
guru.info(
f"Split {should_split.sum().item()} gaussians, "
f"Duplicated {should_dup.sum().item()} gaussians, "
f"{self.model.num_gaussians} gaussians left"
)
@torch.no_grad()
def _cull_control_step(self, global_step):
# Cull gaussians.
cfg = self.optim_cfg
opacities = self.model.get_opacities_all()
device = opacities.device
is_opacity_too_small = opacities < cfg.cull_opacity_threshold
is_radius_too_big = torch.zeros_like(is_opacity_too_small, dtype=torch.bool)
is_scale_too_big = torch.zeros_like(is_opacity_too_small, dtype=torch.bool)
cull_scale_threshold = (
torch.ones(len(is_scale_too_big), device=device) * cfg.cull_scale_threshold
)
num_fg = self.model.num_fg_gaussians
cull_scale_threshold[num_fg:] *= self.model.bg_scene_scale
if global_step > self.reset_opacity_every:
scales = self.model.get_scales_all()
is_scale_too_big = scales.amax(dim=-1) > cull_scale_threshold
if global_step < cfg.stop_control_by_screen_steps:
is_radius_too_big = (
self.running_stats["max_radii"] > cfg.cull_screen_threshold
)
should_cull = is_opacity_too_small | is_radius_too_big | is_scale_too_big
should_fg_cull = should_cull[:num_fg]
should_bg_cull = should_cull[num_fg:]
fg_param_map = self.model.fg.cull_params(should_fg_cull)
for param_name, new_params in fg_param_map.items():
full_param_name = f"fg.params.{param_name}"
optimizer = self.optimizers[full_param_name]
remove_from_optim(optimizer, [new_params], should_fg_cull)
if self.model.bg is not None:
bg_param_map = self.model.bg.cull_params(should_bg_cull)
for param_name, new_params in bg_param_map.items():
full_param_name = f"bg.params.{param_name}"
optimizer = self.optimizers[full_param_name]
remove_from_optim(optimizer, [new_params], should_bg_cull)
# update running stats
for k, v in self.running_stats.items():
self.running_stats[k] = v[~should_cull]
guru.info(
f"Culled {should_cull.sum().item()} gaussians, "
f"{self.model.num_gaussians} gaussians left"
)
@torch.no_grad()
def _reset_opacity_control_step(self):
# Reset gaussian opacities.
new_val = torch.logit(torch.tensor(0.8 * self.optim_cfg.cull_opacity_threshold))
for part in ["fg", "bg"]:
part_params = getattr(self.model, part).reset_opacities(new_val)
# Modify optimizer states by new assignment.
for param_name, new_params in part_params.items():
full_param_name = f"{part}.params.{param_name}"
optimizer = self.optimizers[full_param_name]
reset_in_optim(optimizer, [new_params])
guru.info("Reset opacities")
def configure_optimizers(self):
def _exponential_decay(step, *, lr_init, lr_final):
t = np.clip(step / self.optim_cfg.max_steps, 0.0, 1.0)
lr = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t)
return lr / lr_init
lr_dict = asdict(self.lr_cfg)
optimizers = {}
schedulers = {}
# named parameters will be [part].params.[field]
# e.g. fg.params.means
# lr config is a nested dict for each fg/bg part
for name, params in self.model.named_parameters():
part, _, field = name.split(".")
lr = lr_dict[part][field]
optim = torch.optim.Adam([{"params": params, "lr": lr, "name": name}])
if "scales" in name:
fnc = functools.partial(_exponential_decay, lr_final=0.1 * lr)
else:
fnc = lambda _, **__: 1.0
optimizers[name] = optim
schedulers[name] = torch.optim.lr_scheduler.LambdaLR(
optim, functools.partial(fnc, lr_init=lr)
)
return optimizers, schedulers
def dup_in_optim(optimizer, new_params: list, should_dup: torch.Tensor, num_dups: int):
assert len(optimizer.param_groups) == len(new_params)
for i, p_new in enumerate(new_params):
old_params = optimizer.param_groups[i]["params"][0]
param_state = optimizer.state[old_params]
if len(param_state) == 0:
return
for key in param_state:
if key == "step":
continue
p = param_state[key]
param_state[key] = torch.cat(
[p[~should_dup], p.new_zeros(num_dups, *p.shape[1:])],
dim=0,
)
del optimizer.state[old_params]
optimizer.state[p_new] = param_state
optimizer.param_groups[i]["params"] = [p_new]
del old_params
torch.cuda.empty_cache()
def remove_from_optim(optimizer, new_params: list, _should_cull: torch.Tensor):
assert len(optimizer.param_groups) == len(new_params)
for i, p_new in enumerate(new_params):
old_params = optimizer.param_groups[i]["params"][0]
param_state = optimizer.state[old_params]
if len(param_state) == 0:
return
for key in param_state:
if key == "step":
continue
param_state[key] = param_state[key][~_should_cull]
del optimizer.state[old_params]
optimizer.state[p_new] = param_state
optimizer.param_groups[i]["params"] = [p_new]
del old_params
torch.cuda.empty_cache()
def reset_in_optim(optimizer, new_params: list):
assert len(optimizer.param_groups) == len(new_params)
for i, p_new in enumerate(new_params):
old_params = optimizer.param_groups[i]["params"][0]
param_state = optimizer.state[old_params]
if len(param_state) == 0:
return
for key in param_state:
param_state[key] = torch.zeros_like(param_state[key])
del optimizer.state[old_params]
optimizer.state[p_new] = param_state
optimizer.param_groups[i]["params"] = [p_new]
del old_params
torch.cuda.empty_cache()