XGGNet commited on
Commit
1f37f3d
1 Parent(s): 67b31d2

Delete som_out

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. som_out/bear/cfg.yaml +0 -68
  2. som_out/bear/checkpoints/last.ckpt +0 -3
  3. som_out/bear/code/2024-10-25-234902/flow3d/__init__.py +0 -0
  4. som_out/bear/code/2024-10-25-234902/flow3d/__pycache__/__init__.cpython-310.pyc +0 -0
  5. som_out/bear/code/2024-10-25-234902/flow3d/__pycache__/configs.cpython-310.pyc +0 -0
  6. som_out/bear/code/2024-10-25-234902/flow3d/__pycache__/init_utils.cpython-310.pyc +0 -0
  7. som_out/bear/code/2024-10-25-234902/flow3d/__pycache__/loss_utils.cpython-310.pyc +0 -0
  8. som_out/bear/code/2024-10-25-234902/flow3d/__pycache__/metrics.cpython-310.pyc +0 -0
  9. som_out/bear/code/2024-10-25-234902/flow3d/__pycache__/params.cpython-310.pyc +0 -0
  10. som_out/bear/code/2024-10-25-234902/flow3d/__pycache__/scene_model.cpython-310.pyc +0 -0
  11. som_out/bear/code/2024-10-25-234902/flow3d/__pycache__/tensor_dataclass.cpython-310.pyc +0 -0
  12. som_out/bear/code/2024-10-25-234902/flow3d/__pycache__/trainer.cpython-310.pyc +0 -0
  13. som_out/bear/code/2024-10-25-234902/flow3d/__pycache__/transforms.cpython-310.pyc +0 -0
  14. som_out/bear/code/2024-10-25-234902/flow3d/__pycache__/validator.cpython-310.pyc +0 -0
  15. som_out/bear/code/2024-10-25-234902/flow3d/configs.py +0 -67
  16. som_out/bear/code/2024-10-25-234902/flow3d/data/__init__.py +0 -40
  17. som_out/bear/code/2024-10-25-234902/flow3d/data/__pycache__/__init__.cpython-310.pyc +0 -0
  18. som_out/bear/code/2024-10-25-234902/flow3d/data/__pycache__/base_dataset.cpython-310.pyc +0 -0
  19. som_out/bear/code/2024-10-25-234902/flow3d/data/__pycache__/casual_dataset.cpython-310.pyc +0 -0
  20. som_out/bear/code/2024-10-25-234902/flow3d/data/__pycache__/colmap.cpython-310.pyc +0 -0
  21. som_out/bear/code/2024-10-25-234902/flow3d/data/__pycache__/iphone_dataset.cpython-310.pyc +0 -0
  22. som_out/bear/code/2024-10-25-234902/flow3d/data/__pycache__/utils.cpython-310.pyc +0 -0
  23. som_out/bear/code/2024-10-25-234902/flow3d/data/base_dataset.py +0 -77
  24. som_out/bear/code/2024-10-25-234902/flow3d/data/casual_dataset.py +0 -498
  25. som_out/bear/code/2024-10-25-234902/flow3d/data/colmap.py +0 -369
  26. som_out/bear/code/2024-10-25-234902/flow3d/data/iphone_dataset.py +0 -865
  27. som_out/bear/code/2024-10-25-234902/flow3d/data/utils.py +0 -360
  28. som_out/bear/code/2024-10-25-234902/flow3d/init_utils.py +0 -644
  29. som_out/bear/code/2024-10-25-234902/flow3d/loss_utils.py +0 -158
  30. som_out/bear/code/2024-10-25-234902/flow3d/metrics.py +0 -313
  31. som_out/bear/code/2024-10-25-234902/flow3d/params.py +0 -184
  32. som_out/bear/code/2024-10-25-234902/flow3d/renderer.py +0 -89
  33. som_out/bear/code/2024-10-25-234902/flow3d/scene_model.py +0 -292
  34. som_out/bear/code/2024-10-25-234902/flow3d/tensor_dataclass.py +0 -96
  35. som_out/bear/code/2024-10-25-234902/flow3d/trainer.py +0 -805
  36. som_out/bear/code/2024-10-25-234902/flow3d/trajectories.py +0 -200
  37. som_out/bear/code/2024-10-25-234902/flow3d/transforms.py +0 -129
  38. som_out/bear/code/2024-10-25-234902/flow3d/validator.py +0 -421
  39. som_out/bear/code/2024-10-25-234902/flow3d/vis/__init__.py +0 -0
  40. som_out/bear/code/2024-10-25-234902/flow3d/vis/__pycache__/__init__.cpython-310.pyc +0 -0
  41. som_out/bear/code/2024-10-25-234902/flow3d/vis/__pycache__/playback_panel.cpython-310.pyc +0 -0
  42. som_out/bear/code/2024-10-25-234902/flow3d/vis/__pycache__/render_panel.cpython-310.pyc +0 -0
  43. som_out/bear/code/2024-10-25-234902/flow3d/vis/__pycache__/utils.cpython-310.pyc +0 -0
  44. som_out/bear/code/2024-10-25-234902/flow3d/vis/__pycache__/viewer.cpython-310.pyc +0 -0
  45. som_out/bear/code/2024-10-25-234902/flow3d/vis/playback_panel.py +0 -68
  46. som_out/bear/code/2024-10-25-234902/flow3d/vis/render_panel.py +0 -1165
  47. som_out/bear/code/2024-10-25-234902/flow3d/vis/utils.py +0 -544
  48. som_out/bear/code/2024-10-25-234902/flow3d/vis/viewer.py +0 -69
  49. som_out/bear/code/2024-10-25-234902/scripts/batch_eval_ours_iphone_gcp.sh +0 -13
  50. som_out/bear/code/2024-10-25-234902/scripts/evaluate_iphone.py +0 -447
som_out/bear/cfg.yaml DELETED
@@ -1,68 +0,0 @@
1
- batch_size: 8
2
- data:
3
- camera_type: droid_recon
4
- depth_type: aligned_depth_anything
5
- end: -1
6
- image_type: JPEGImages
7
- load_from_cache: false
8
- mask_erosion_radius: 3
9
- mask_type: Annotations
10
- num_targets_per_frame: 4
11
- res: 480p
12
- root_dir: SOM_data_lcx/Davis_Data
13
- scene_norm_dict: null
14
- seq_name: bear
15
- start: 0
16
- track_2d_type: bootstapir
17
- loss:
18
- w_depth_const: 0.1
19
- w_depth_grad: 1
20
- w_depth_reg: 0.5
21
- w_mask: 1.0
22
- w_rgb: 1.0
23
- w_scale_var: 0.01
24
- w_smooth_bases: 0.1
25
- w_smooth_tracks: 2.0
26
- w_track: 2.0
27
- w_z_accel: 1.0
28
- lr:
29
- bg:
30
- colors: 0.01
31
- means: 0.00016
32
- opacities: 0.05
33
- quats: 0.001
34
- scales: 0.005
35
- fg:
36
- colors: 0.01
37
- means: 0.00016
38
- motion_coefs: 0.01
39
- opacities: 0.01
40
- quats: 0.001
41
- scales: 0.005
42
- motion_bases:
43
- rots: 0.00016
44
- transls: 0.00016
45
- num_bg: 100000
46
- num_dl_workers: 4
47
- num_epochs: 500
48
- num_fg: 40000
49
- num_motion_bases: 10
50
- optim:
51
- control_every: 100
52
- cull_opacity_threshold: 0.1
53
- cull_scale_threshold: 0.5
54
- cull_screen_threshold: 0.15
55
- densify_scale_threshold: 0.01
56
- densify_screen_threshold: 0.05
57
- densify_xys_grad_threshold: 0.0002
58
- max_steps: 5000
59
- reset_opacity_every_n_controls: 30
60
- stop_control_by_screen_steps: 4000
61
- stop_control_steps: 4000
62
- stop_densify_steps: 15000
63
- warmup_steps: 200
64
- port: null
65
- save_videos_every: 50
66
- validate_every: 50
67
- vis_debug: false
68
- work_dir: SOM_output_lcx/Davis_out/bear
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
som_out/bear/checkpoints/last.ckpt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:dc6c1e90687f97e64dd6e436781493c0aba7dd6e726103926e3bb396b30a52ac
3
- size 138448040
 
 
 
 
som_out/bear/code/2024-10-25-234902/flow3d/__init__.py DELETED
File without changes
som_out/bear/code/2024-10-25-234902/flow3d/__pycache__/__init__.cpython-310.pyc DELETED
Binary file (152 Bytes)
 
som_out/bear/code/2024-10-25-234902/flow3d/__pycache__/configs.cpython-310.pyc DELETED
Binary file (2.61 kB)
 
som_out/bear/code/2024-10-25-234902/flow3d/__pycache__/init_utils.cpython-310.pyc DELETED
Binary file (15.6 kB)
 
som_out/bear/code/2024-10-25-234902/flow3d/__pycache__/loss_utils.cpython-310.pyc DELETED
Binary file (4.69 kB)
 
som_out/bear/code/2024-10-25-234902/flow3d/__pycache__/metrics.cpython-310.pyc DELETED
Binary file (10.8 kB)
 
som_out/bear/code/2024-10-25-234902/flow3d/__pycache__/params.cpython-310.pyc DELETED
Binary file (6.71 kB)
 
som_out/bear/code/2024-10-25-234902/flow3d/__pycache__/scene_model.cpython-310.pyc DELETED
Binary file (7.71 kB)
 
som_out/bear/code/2024-10-25-234902/flow3d/__pycache__/tensor_dataclass.cpython-310.pyc DELETED
Binary file (4.24 kB)
 
som_out/bear/code/2024-10-25-234902/flow3d/__pycache__/trainer.cpython-310.pyc DELETED
Binary file (19.3 kB)
 
som_out/bear/code/2024-10-25-234902/flow3d/__pycache__/transforms.cpython-310.pyc DELETED
Binary file (3.72 kB)
 
som_out/bear/code/2024-10-25-234902/flow3d/__pycache__/validator.cpython-310.pyc DELETED
Binary file (9.92 kB)
 
som_out/bear/code/2024-10-25-234902/flow3d/configs.py DELETED
@@ -1,67 +0,0 @@
1
- from dataclasses import dataclass
2
-
3
-
4
- @dataclass
5
- class FGLRConfig:
6
- means: float = 1.6e-4
7
- opacities: float = 1e-2
8
- scales: float = 5e-3
9
- quats: float = 1e-3
10
- colors: float = 1e-2
11
- motion_coefs: float = 1e-2
12
-
13
-
14
- @dataclass
15
- class BGLRConfig:
16
- means: float = 1.6e-4
17
- opacities: float = 5e-2
18
- scales: float = 5e-3
19
- quats: float = 1e-3
20
- colors: float = 1e-2
21
-
22
-
23
- @dataclass
24
- class MotionLRConfig:
25
- rots: float = 1.6e-4
26
- transls: float = 1.6e-4
27
-
28
-
29
- @dataclass
30
- class SceneLRConfig:
31
- fg: FGLRConfig
32
- bg: BGLRConfig
33
- motion_bases: MotionLRConfig
34
-
35
-
36
- @dataclass
37
- class LossesConfig:
38
- w_rgb: float = 1.0
39
- w_depth_reg: float = 0.5
40
- w_depth_const: float = 0.1
41
- w_depth_grad: float = 1
42
- w_track: float = 2.0
43
- w_mask: float = 1.0
44
- w_smooth_bases: float = 0.1
45
- w_smooth_tracks: float = 2.0
46
- w_scale_var: float = 0.01
47
- w_z_accel: float = 1.0
48
-
49
-
50
- @dataclass
51
- class OptimizerConfig:
52
- max_steps: int = 5000
53
- ## Adaptive gaussian control
54
- warmup_steps: int = 200
55
- control_every: int = 100
56
- reset_opacity_every_n_controls: int = 30
57
- stop_control_by_screen_steps: int = 4000
58
- stop_control_steps: int = 4000
59
- ### Densify.
60
- densify_xys_grad_threshold: float = 0.0002
61
- densify_scale_threshold: float = 0.01
62
- densify_screen_threshold: float = 0.05
63
- stop_densify_steps: int = 15000
64
- ### Cull.
65
- cull_opacity_threshold: float = 0.1
66
- cull_scale_threshold: float = 0.5
67
- cull_screen_threshold: float = 0.15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
som_out/bear/code/2024-10-25-234902/flow3d/data/__init__.py DELETED
@@ -1,40 +0,0 @@
1
- from dataclasses import asdict, replace
2
-
3
- from torch.utils.data import Dataset
4
-
5
- from .base_dataset import BaseDataset
6
- from .casual_dataset import CasualDataset, CustomDataConfig, DavisDataConfig
7
- from .iphone_dataset import (
8
- iPhoneDataConfig,
9
- iPhoneDataConfig_Crafter,
10
- iPhoneDataset,
11
- iPhoneDatasetKeypointView,
12
- iPhoneDatasetVideoView,
13
- )
14
-
15
-
16
- def get_train_val_datasets(
17
- data_cfg: iPhoneDataConfig | DavisDataConfig | CustomDataConfig | iPhoneDataConfig_Crafter, load_val: bool
18
- ) -> tuple[BaseDataset, Dataset | None, Dataset | None, Dataset | None]:
19
- train_video_view = None
20
- val_img_dataset = None
21
- val_kpt_dataset = None
22
- if isinstance(data_cfg, iPhoneDataConfig) or isinstance(data_cfg, iPhoneDataConfig_Crafter):
23
- train_dataset = iPhoneDataset(**asdict(data_cfg))
24
- train_video_view = iPhoneDatasetVideoView(train_dataset)
25
- if load_val:
26
- val_img_dataset = (
27
- iPhoneDataset(
28
- **asdict(replace(data_cfg, split="val", load_from_cache=True))
29
- )
30
- if train_dataset.has_validation
31
- else None
32
- )
33
- val_kpt_dataset = iPhoneDatasetKeypointView(train_dataset)
34
- elif isinstance(data_cfg, DavisDataConfig) or isinstance(
35
- data_cfg, CustomDataConfig
36
- ):
37
- train_dataset = CasualDataset(**asdict(data_cfg))
38
- else:
39
- raise ValueError(f"Unknown data config: {data_cfg}")
40
- return train_dataset, train_video_view, val_img_dataset, val_kpt_dataset
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
som_out/bear/code/2024-10-25-234902/flow3d/data/__pycache__/__init__.cpython-310.pyc DELETED
Binary file (1.26 kB)
 
som_out/bear/code/2024-10-25-234902/flow3d/data/__pycache__/base_dataset.cpython-310.pyc DELETED
Binary file (2.98 kB)
 
som_out/bear/code/2024-10-25-234902/flow3d/data/__pycache__/casual_dataset.cpython-310.pyc DELETED
Binary file (14.9 kB)
 
som_out/bear/code/2024-10-25-234902/flow3d/data/__pycache__/colmap.cpython-310.pyc DELETED
Binary file (10.2 kB)
 
som_out/bear/code/2024-10-25-234902/flow3d/data/__pycache__/iphone_dataset.cpython-310.pyc DELETED
Binary file (18.9 kB)
 
som_out/bear/code/2024-10-25-234902/flow3d/data/__pycache__/utils.cpython-310.pyc DELETED
Binary file (9.73 kB)
 
som_out/bear/code/2024-10-25-234902/flow3d/data/base_dataset.py DELETED
@@ -1,77 +0,0 @@
1
- from abc import abstractmethod
2
-
3
- import torch
4
- from torch.utils.data import Dataset, default_collate
5
-
6
-
7
- class BaseDataset(Dataset):
8
- @property
9
- @abstractmethod
10
- def num_frames(self) -> int: ...
11
-
12
- @property
13
- def keyframe_idcs(self) -> torch.Tensor:
14
- return torch.arange(self.num_frames)
15
-
16
- @abstractmethod
17
- def get_w2cs(self) -> torch.Tensor: ...
18
-
19
- @abstractmethod
20
- def get_Ks(self) -> torch.Tensor: ...
21
-
22
- @abstractmethod
23
- def get_image(self, index: int) -> torch.Tensor: ...
24
-
25
- @abstractmethod
26
- def get_depth(self, index: int) -> torch.Tensor: ...
27
-
28
- @abstractmethod
29
- def get_mask(self, index: int) -> torch.Tensor: ...
30
-
31
- def get_img_wh(self) -> tuple[int, int]: ...
32
-
33
- @abstractmethod
34
- def get_tracks_3d(
35
- self, num_samples: int, **kwargs
36
- ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
37
- """
38
- Returns 3D tracks:
39
- coordinates (N, T, 3),
40
- visibles (N, T),
41
- invisibles (N, T),
42
- confidences (N, T),
43
- colors (N, 3)
44
- """
45
- ...
46
-
47
- @abstractmethod
48
- def get_bkgd_points(
49
- self, num_samples: int, **kwargs
50
- ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
51
- """
52
- Returns background points:
53
- coordinates (N, 3),
54
- normals (N, 3),
55
- colors (N, 3)
56
- """
57
- ...
58
-
59
- @staticmethod
60
- def train_collate_fn(batch):
61
- collated = {}
62
- for k in batch[0]:
63
- if k not in [
64
- "query_tracks_2d",
65
- "target_ts",
66
- "target_w2cs",
67
- "target_Ks",
68
- "target_tracks_2d",
69
- "target_visibles",
70
- "target_track_depths",
71
- "target_invisibles",
72
- "target_confidences",
73
- ]:
74
- collated[k] = default_collate([sample[k] for sample in batch])
75
- else:
76
- collated[k] = [sample[k] for sample in batch]
77
- return collated
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
som_out/bear/code/2024-10-25-234902/flow3d/data/casual_dataset.py DELETED
@@ -1,498 +0,0 @@
1
- import os
2
- from dataclasses import dataclass
3
- from functools import partial
4
- from typing import Literal, cast
5
-
6
- import cv2
7
- import imageio
8
- import numpy as np
9
- import torch
10
- import torch.nn.functional as F
11
- import tyro
12
- from loguru import logger as guru
13
- from roma import roma
14
- from tqdm import tqdm
15
-
16
- from flow3d.data.base_dataset import BaseDataset
17
- from flow3d.data.utils import (
18
- UINT16_MAX,
19
- SceneNormDict,
20
- get_tracks_3d_for_query_frame,
21
- median_filter_2d,
22
- normal_from_depth_image,
23
- normalize_coords,
24
- parse_tapir_track_info,
25
- )
26
- from flow3d.transforms import rt_to_mat4
27
-
28
-
29
- @dataclass
30
- class DavisDataConfig:
31
- seq_name: str
32
- root_dir: str
33
- start: int = 0
34
- end: int = -1
35
- res: str = "480p"
36
- image_type: str = "JPEGImages"
37
- mask_type: str = "Annotations"
38
- depth_type: Literal[
39
- "aligned_depth_anything",
40
- "aligned_depth_anything_v2",
41
- "depth_anything",
42
- "depth_anything_v2",
43
- "unidepth_disp",
44
- "aligned_depthcrafter",
45
- ] = "aligned_depthcrafter"
46
- camera_type: Literal["droid_recon"] = "droid_recon"
47
- track_2d_type: Literal["bootstapir", "tapir"] = "bootstapir"
48
- mask_erosion_radius: int = 3
49
- scene_norm_dict: tyro.conf.Suppress[SceneNormDict | None] = None
50
- num_targets_per_frame: int = 4
51
- load_from_cache: bool = False
52
-
53
-
54
- @dataclass
55
- class CustomDataConfig:
56
- seq_name: str
57
- root_dir: str
58
- start: int = 0
59
- end: int = -1
60
- res: str = ""
61
- image_type: str = "images"
62
- mask_type: str = "masks"
63
- depth_type: Literal[
64
- "aligned_depth_anything",
65
- "aligned_depth_anything_v2",
66
- "depth_anything",
67
- "depth_anything_v2",
68
- "unidepth_disp",
69
- ] = "aligned_depth_anything"
70
- camera_type: Literal["droid_recon"] = "droid_recon"
71
- track_2d_type: Literal["bootstapir", "tapir"] = "bootstapir"
72
- mask_erosion_radius: int = 7
73
- scene_norm_dict: tyro.conf.Suppress[SceneNormDict | None] = None
74
- num_targets_per_frame: int = 4
75
- load_from_cache: bool = False
76
-
77
-
78
- class CasualDataset(BaseDataset):
79
- def __init__(
80
- self,
81
- seq_name: str,
82
- root_dir: str,
83
- start: int = 0,
84
- end: int = -1,
85
- res: str = "480p",
86
- image_type: str = "JPEGImages",
87
- mask_type: str = "Annotations",
88
- depth_type: Literal[
89
- "aligned_depth_anything",
90
- "aligned_depth_anything_v2",
91
- "depth_anything",
92
- "depth_anything_v2",
93
- "unidepth_disp",
94
- "aligned_depthcrafter",
95
- ] = "aligned_depthcrafter",
96
- camera_type: Literal["droid_recon"] = "droid_recon",
97
- track_2d_type: Literal["bootstapir", "tapir"] = "bootstapir",
98
- mask_erosion_radius: int = 3,
99
- scene_norm_dict: SceneNormDict | None = None,
100
- num_targets_per_frame: int = 4,
101
- load_from_cache: bool = False,
102
- **_,
103
- ):
104
- super().__init__()
105
-
106
- self.seq_name = seq_name
107
- self.root_dir = root_dir
108
- self.res = res
109
- self.depth_type = depth_type
110
- self.num_targets_per_frame = num_targets_per_frame
111
- self.load_from_cache = load_from_cache
112
- self.has_validation = False
113
- self.mask_erosion_radius = mask_erosion_radius
114
-
115
- self.img_dir = f"{root_dir}/{image_type}/{res}/{seq_name}"
116
- self.img_ext = os.path.splitext(os.listdir(self.img_dir)[0])[1]
117
- self.depth_dir = f"{root_dir}/{depth_type}/{res}/{seq_name}"
118
- self.mask_dir = f"{root_dir}/{mask_type}/{res}/{seq_name}"
119
- self.tracks_dir = f"{root_dir}/{track_2d_type}/{res}/{seq_name}"
120
- self.cache_dir = f"{root_dir}/flow3d_preprocessed/{res}/{seq_name}"
121
- # self.cache_dir = f"datasets/davis/flow3d_preprocessed/{res}/{seq_name}"
122
- frame_names = [os.path.splitext(p)[0] for p in sorted(os.listdir(self.img_dir))]
123
-
124
- if end == -1:
125
- end = len(frame_names)
126
- self.start = start
127
- self.end = end
128
- self.frame_names = frame_names[start:end]
129
-
130
- self.imgs: list[torch.Tensor | None] = [None for _ in self.frame_names]
131
- self.depths: list[torch.Tensor | None] = [None for _ in self.frame_names]
132
- self.masks: list[torch.Tensor | None] = [None for _ in self.frame_names]
133
-
134
- # load cameras
135
- if camera_type == "droid_recon":
136
- img = self.get_image(0)
137
- H, W = img.shape[:2]
138
- w2cs, Ks, tstamps = load_cameras(
139
- f"{root_dir}/{camera_type}/{seq_name}.npy", H, W
140
- )
141
- else:
142
- raise ValueError(f"Unknown camera type: {camera_type}")
143
- assert (
144
- len(frame_names) == len(w2cs) == len(Ks)
145
- ), f"{len(frame_names)}, {len(w2cs)}, {len(Ks)}"
146
- self.w2cs = w2cs[start:end]
147
- self.Ks = Ks[start:end]
148
- tmask = (tstamps >= start) & (tstamps < end)
149
- self._keyframe_idcs = tstamps[tmask] - start
150
- self.scale = 1
151
-
152
- if scene_norm_dict is None:
153
- cached_scene_norm_dict_path = os.path.join(
154
- self.cache_dir, "scene_norm_dict.pth"
155
- )
156
- if os.path.exists(cached_scene_norm_dict_path) and self.load_from_cache:
157
- guru.info("loading cached scene norm dict...")
158
- scene_norm_dict = torch.load(
159
- os.path.join(self.cache_dir, "scene_norm_dict.pth")
160
- )
161
- else:
162
- tracks_3d = self.get_tracks_3d(5000, step=self.num_frames // 10)[0]
163
- scale, transfm = compute_scene_norm(tracks_3d, self.w2cs)
164
- scene_norm_dict = SceneNormDict(scale=scale, transfm=transfm)
165
- os.makedirs(self.cache_dir, exist_ok=True)
166
- torch.save(scene_norm_dict, cached_scene_norm_dict_path)
167
-
168
- # transform cameras
169
- self.scene_norm_dict = cast(SceneNormDict, scene_norm_dict)
170
- self.scale = self.scene_norm_dict["scale"]
171
- transform = self.scene_norm_dict["transfm"]
172
- guru.info(f"scene norm {self.scale=}, {transform=}")
173
- self.w2cs = torch.einsum("nij,jk->nik", self.w2cs, torch.linalg.inv(transform))
174
- self.w2cs[:, :3, 3] /= self.scale
175
-
176
- @property
177
- def num_frames(self) -> int:
178
- return len(self.frame_names)
179
-
180
- @property
181
- def keyframe_idcs(self) -> torch.Tensor:
182
- return self._keyframe_idcs
183
-
184
- def __len__(self):
185
- return len(self.frame_names)
186
-
187
- def get_w2cs(self) -> torch.Tensor:
188
- return self.w2cs
189
-
190
- def get_Ks(self) -> torch.Tensor:
191
- return self.Ks
192
-
193
- def get_img_wh(self) -> tuple[int, int]:
194
- return self.get_image(0).shape[1::-1]
195
-
196
- def get_image(self, index) -> torch.Tensor:
197
- if self.imgs[index] is None:
198
- self.imgs[index] = self.load_image(index)
199
- img = cast(torch.Tensor, self.imgs[index])
200
- return img
201
-
202
- def get_mask(self, index) -> torch.Tensor:
203
- if self.masks[index] is None:
204
- self.masks[index] = self.load_mask(index)
205
- mask = cast(torch.Tensor, self.masks[index])
206
- return mask
207
-
208
- def get_depth(self, index) -> torch.Tensor:
209
- if self.depths[index] is None:
210
- self.depths[index] = self.load_depth(index)
211
- return self.depths[index] / self.scale
212
-
213
- def load_image(self, index) -> torch.Tensor:
214
- path = f"{self.img_dir}/{self.frame_names[index]}{self.img_ext}"
215
- return torch.from_numpy(imageio.imread(path)).float() / 255.0
216
-
217
- def load_mask(self, index) -> torch.Tensor:
218
- path = f"{self.mask_dir}/{self.frame_names[index]}.png"
219
- r = self.mask_erosion_radius
220
- mask = imageio.imread(path)
221
- fg_mask = mask.reshape((*mask.shape[:2], -1)).max(axis=-1) > 0
222
- bg_mask = ~fg_mask
223
- fg_mask_erode = cv2.erode(
224
- fg_mask.astype(np.uint8), np.ones((r, r), np.uint8), iterations=1
225
- )
226
- bg_mask_erode = cv2.erode(
227
- bg_mask.astype(np.uint8), np.ones((r, r), np.uint8), iterations=1
228
- )
229
- out_mask = np.zeros_like(fg_mask, dtype=np.float32)
230
- out_mask[bg_mask_erode > 0] = -1
231
- out_mask[fg_mask_erode > 0] = 1
232
- return torch.from_numpy(out_mask).float()
233
-
234
- def load_depth(self, index) -> torch.Tensor:
235
- path = f"{self.depth_dir}/{self.frame_names[index]}.npy"
236
- disp = np.load(path)
237
- depth = 1.0 / np.clip(disp, a_min=1e-6, a_max=1e6)
238
- depth = torch.from_numpy(depth).float()
239
- depth = median_filter_2d(depth[None, None], 11, 1)[0, 0]
240
- return depth
241
-
242
- def load_target_tracks(
243
- self, query_index: int, target_indices: list[int], dim: int = 1
244
- ):
245
- """
246
- tracks are 2d, occs and uncertainties
247
- :param dim (int), default 1: dimension to stack the time axis
248
- return (N, T, 4) if dim=1, (T, N, 4) if dim=0
249
- """
250
- q_name = self.frame_names[query_index]
251
- all_tracks = []
252
- for ti in target_indices:
253
- t_name = self.frame_names[ti]
254
- path = f"{self.tracks_dir}/{q_name}_{t_name}.npy"
255
- tracks = np.load(path).astype(np.float32)
256
- all_tracks.append(tracks)
257
- return torch.from_numpy(np.stack(all_tracks, axis=dim))
258
-
259
- def get_tracks_3d(
260
- self, num_samples: int, start: int = 0, end: int = -1, step: int = 1, **kwargs
261
- ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
262
- num_frames = self.num_frames
263
- if end < 0:
264
- end = num_frames + 1 + end
265
- query_idcs = list(range(start, end, step))
266
- target_idcs = list(range(start, end, step))
267
- masks = torch.stack([self.get_mask(i) for i in target_idcs], dim=0)
268
- fg_masks = (masks == 1).float()
269
- depths = torch.stack([self.get_depth(i) for i in target_idcs], dim=0)
270
- inv_Ks = torch.linalg.inv(self.Ks[target_idcs])
271
- c2ws = torch.linalg.inv(self.w2cs[target_idcs])
272
-
273
- num_per_query_frame = int(np.ceil(num_samples / len(query_idcs)))
274
- cur_num = 0
275
- tracks_all_queries = []
276
- for q_idx in query_idcs:
277
- # (N, T, 4)
278
- tracks_2d = self.load_target_tracks(q_idx, target_idcs)
279
- num_sel = int(
280
- min(num_per_query_frame, num_samples - cur_num, len(tracks_2d))
281
- )
282
- if num_sel < len(tracks_2d):
283
- sel_idcs = np.random.choice(len(tracks_2d), num_sel, replace=False)
284
- tracks_2d = tracks_2d[sel_idcs]
285
- cur_num += tracks_2d.shape[0]
286
- img = self.get_image(q_idx)
287
- tidx = target_idcs.index(q_idx)
288
- tracks_tuple = get_tracks_3d_for_query_frame(
289
- tidx, img, tracks_2d, depths, fg_masks, inv_Ks, c2ws
290
- )
291
- tracks_all_queries.append(tracks_tuple)
292
- tracks_3d, colors, visibles, invisibles, confidences = map(
293
- partial(torch.cat, dim=0), zip(*tracks_all_queries)
294
- )
295
- return tracks_3d, visibles, invisibles, confidences, colors
296
-
297
- def get_bkgd_points(
298
- self,
299
- num_samples: int,
300
- use_kf_tstamps: bool = True,
301
- stride: int = 8,
302
- down_rate: int = 8,
303
- min_per_frame: int = 64,
304
- **kwargs,
305
- ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
306
- start = 0
307
- end = self.num_frames
308
- H, W = self.get_image(0).shape[:2]
309
- grid = torch.stack(
310
- torch.meshgrid(
311
- torch.arange(0, W, dtype=torch.float32),
312
- torch.arange(0, H, dtype=torch.float32),
313
- indexing="xy",
314
- ),
315
- dim=-1,
316
- )
317
-
318
- if use_kf_tstamps:
319
- query_idcs = self.keyframe_idcs.tolist()
320
- else:
321
- num_query_frames = self.num_frames // stride
322
- query_endpts = torch.linspace(start, end, num_query_frames + 1)
323
- query_idcs = ((query_endpts[:-1] + query_endpts[1:]) / 2).long().tolist()
324
-
325
- bg_geometry = []
326
- print(f"{query_idcs=}")
327
- for query_idx in tqdm(query_idcs, desc="Loading bkgd points", leave=False):
328
- img = self.get_image(query_idx)
329
- depth = self.get_depth(query_idx)
330
- bg_mask = self.get_mask(query_idx) < 0
331
- bool_mask = (bg_mask * (depth > 0)).to(torch.bool)
332
- w2c = self.w2cs[query_idx]
333
- K = self.Ks[query_idx]
334
-
335
- # get the bounding box of previous points that reproject into frame
336
- # inefficient but works for now
337
- bmax_x, bmax_y, bmin_x, bmin_y = 0, 0, W, H
338
- for p3d, _, _ in bg_geometry:
339
- if len(p3d) < 1:
340
- continue
341
- # reproject into current frame
342
- p2d = torch.einsum(
343
- "ij,jk,pk->pi", K, w2c[:3], F.pad(p3d, (0, 1), value=1.0)
344
- )
345
- p2d = p2d[:, :2] / p2d[:, 2:].clamp(min=1e-6)
346
- xmin, xmax = p2d[:, 0].min().item(), p2d[:, 0].max().item()
347
- ymin, ymax = p2d[:, 1].min().item(), p2d[:, 1].max().item()
348
-
349
- bmin_x = min(bmin_x, int(xmin))
350
- bmin_y = min(bmin_y, int(ymin))
351
- bmax_x = max(bmax_x, int(xmax))
352
- bmax_y = max(bmax_y, int(ymax))
353
-
354
- # don't include points that are covered by previous points
355
- bmin_x = max(0, bmin_x)
356
- bmin_y = max(0, bmin_y)
357
- bmax_x = min(W, bmax_x)
358
- bmax_y = min(H, bmax_y)
359
- overlap_mask = torch.ones_like(bool_mask)
360
- overlap_mask[bmin_y:bmax_y, bmin_x:bmax_x] = 0
361
-
362
- bool_mask &= overlap_mask
363
- if bool_mask.sum() < min_per_frame:
364
- guru.debug(f"skipping {query_idx=}")
365
- continue
366
-
367
- points = (
368
- torch.einsum(
369
- "ij,pj->pi",
370
- torch.linalg.inv(K),
371
- F.pad(grid[bool_mask], (0, 1), value=1.0),
372
- )
373
- * depth[bool_mask][:, None]
374
- )
375
- points = torch.einsum(
376
- "ij,pj->pi", torch.linalg.inv(w2c)[:3], F.pad(points, (0, 1), value=1.0)
377
- )
378
- point_normals = normal_from_depth_image(depth, K, w2c)[bool_mask]
379
- point_colors = img[bool_mask]
380
-
381
- num_sel = max(len(points) // down_rate, min_per_frame)
382
- sel_idcs = np.random.choice(len(points), num_sel, replace=False)
383
- points = points[sel_idcs]
384
- point_normals = point_normals[sel_idcs]
385
- point_colors = point_colors[sel_idcs]
386
- guru.debug(f"{query_idx=} {points.shape=}")
387
- bg_geometry.append((points, point_normals, point_colors))
388
-
389
- bg_points, bg_normals, bg_colors = map(
390
- partial(torch.cat, dim=0), zip(*bg_geometry)
391
- )
392
- if len(bg_points) > num_samples:
393
- sel_idcs = np.random.choice(len(bg_points), num_samples, replace=False)
394
- bg_points = bg_points[sel_idcs]
395
- bg_normals = bg_normals[sel_idcs]
396
- bg_colors = bg_colors[sel_idcs]
397
-
398
- return bg_points, bg_normals, bg_colors
399
-
400
- def __getitem__(self, index: int):
401
- index = np.random.randint(0, self.num_frames)
402
- data = {
403
- # ().
404
- "frame_names": self.frame_names[index],
405
- # ().
406
- "ts": torch.tensor(index),
407
- # (4, 4).
408
- "w2cs": self.w2cs[index],
409
- # (3, 3).
410
- "Ks": self.Ks[index],
411
- # (H, W, 3).
412
- "imgs": self.get_image(index),
413
- "depths": self.get_depth(index),
414
- }
415
- tri_mask = self.get_mask(index)
416
- valid_mask = tri_mask != 0 # not fg or bg
417
- mask = tri_mask == 1 # fg mask
418
- data["masks"] = mask.float()
419
- data["valid_masks"] = valid_mask.float()
420
-
421
- # (P, 2)
422
- query_tracks = self.load_target_tracks(index, [index])[:, 0, :2]
423
- target_inds = torch.from_numpy(
424
- np.random.choice(
425
- self.num_frames, (self.num_targets_per_frame,), replace=False
426
- )
427
- )
428
- # (N, P, 4)
429
- target_tracks = self.load_target_tracks(index, target_inds.tolist(), dim=0)
430
- data["query_tracks_2d"] = query_tracks
431
- data["target_ts"] = target_inds
432
- data["target_w2cs"] = self.w2cs[target_inds]
433
- data["target_Ks"] = self.Ks[target_inds]
434
- data["target_tracks_2d"] = target_tracks[..., :2]
435
- # (N, P).
436
- (
437
- data["target_visibles"],
438
- data["target_invisibles"],
439
- data["target_confidences"],
440
- ) = parse_tapir_track_info(target_tracks[..., 2], target_tracks[..., 3])
441
- # (N, H, W)
442
- target_depths = torch.stack([self.get_depth(i) for i in target_inds], dim=0)
443
- H, W = target_depths.shape[-2:]
444
- data["target_track_depths"] = F.grid_sample(
445
- target_depths[:, None],
446
- normalize_coords(target_tracks[..., None, :2], H, W),
447
- align_corners=True,
448
- padding_mode="border",
449
- )[:, 0, :, 0]
450
- return data
451
-
452
-
453
- def load_cameras(
454
- path: str, H: int, W: int
455
- ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
456
- assert os.path.exists(path), f"Camera file {path} does not exist."
457
- recon = np.load(path, allow_pickle=True).item()
458
- guru.debug(f"{recon.keys()=}")
459
- traj_c2w = recon["traj_c2w"] # (N, 4, 4)
460
- h, w = recon["img_shape"]
461
- sy, sx = H / h, W / w
462
- traj_w2c = np.linalg.inv(traj_c2w)
463
- fx, fy, cx, cy = recon["intrinsics"] # (4,)
464
- K = np.array([[fx * sx, 0, cx * sx], [0, fy * sy, cy * sy], [0, 0, 1]]) # (3, 3)
465
- Ks = np.tile(K[None, ...], (len(traj_c2w), 1, 1)) # (N, 3, 3)
466
- kf_tstamps = recon["tstamps"].astype("int")
467
- return (
468
- torch.from_numpy(traj_w2c).float(),
469
- torch.from_numpy(Ks).float(),
470
- torch.from_numpy(kf_tstamps),
471
- )
472
-
473
-
474
- def compute_scene_norm(
475
- X: torch.Tensor, w2cs: torch.Tensor
476
- ) -> tuple[float, torch.Tensor]:
477
- """
478
- :param X: [N*T, 3]
479
- :param w2cs: [N, 4, 4]
480
- """
481
- X = X.reshape(-1, 3)
482
- scene_center = X.mean(dim=0)
483
- X = X - scene_center[None]
484
- min_scale = X.quantile(0.05, dim=0)
485
- max_scale = X.quantile(0.95, dim=0)
486
- scale = (max_scale - min_scale).max().item() / 2.0
487
- original_up = -F.normalize(w2cs[:, 1, :3].mean(0), dim=-1)
488
- target_up = original_up.new_tensor([0.0, 0.0, 1.0])
489
- R = roma.rotvec_to_rotmat(
490
- F.normalize(original_up.cross(target_up), dim=-1)
491
- * original_up.dot(target_up).acos_()
492
- )
493
- transfm = rt_to_mat4(R, torch.einsum("ij,j->i", -R, scene_center))
494
- return scale, transfm
495
-
496
-
497
- if __name__ == "__main__":
498
- d = CasualDataset("bear", "/shared/vye/datasets/DAVIS", camera_type="droid_recon")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
som_out/bear/code/2024-10-25-234902/flow3d/data/colmap.py DELETED
@@ -1,369 +0,0 @@
1
- import os
2
- import struct
3
- from dataclasses import dataclass
4
- from pathlib import Path
5
- from typing import Dict, Union
6
-
7
- import numpy as np
8
-
9
-
10
- def get_colmap_camera_params(colmap_dir, img_files):
11
- cameras = read_cameras_binary(colmap_dir + "/cameras.bin")
12
- images = read_images_binary(colmap_dir + "/images.bin")
13
- colmap_image_idcs = {v.name: k for k, v in images.items()}
14
- img_names = [os.path.basename(img_file) for img_file in img_files]
15
- num_imgs = len(img_names)
16
- K_all = np.zeros((num_imgs, 4, 4))
17
- extrinsics_all = np.zeros((num_imgs, 4, 4))
18
- for idx, name in enumerate(img_names):
19
- key = colmap_image_idcs[name]
20
- image = images[key]
21
- assert image.name == name
22
- K, extrinsics = get_intrinsics_extrinsics(image, cameras)
23
- K_all[idx] = K
24
- extrinsics_all[idx] = extrinsics
25
-
26
- return K_all, extrinsics_all
27
-
28
-
29
- @dataclass(frozen=True)
30
- class CameraModel:
31
- model_id: int
32
- model_name: str
33
- num_params: int
34
-
35
-
36
- @dataclass(frozen=True)
37
- class Camera:
38
- id: int
39
- model: str
40
- width: int
41
- height: int
42
- params: np.ndarray
43
-
44
-
45
- @dataclass(frozen=True)
46
- class BaseImage:
47
- id: int
48
- qvec: np.ndarray
49
- tvec: np.ndarray
50
- camera_id: int
51
- name: str
52
- xys: np.ndarray
53
- point3D_ids: np.ndarray
54
-
55
-
56
- @dataclass(frozen=True)
57
- class Point3D:
58
- id: int
59
- xyz: np.ndarray
60
- rgb: np.ndarray
61
- error: Union[float, np.ndarray]
62
- image_ids: np.ndarray
63
- point2D_idxs: np.ndarray
64
-
65
-
66
- class Image(BaseImage):
67
- def qvec2rotmat(self):
68
- return qvec2rotmat(self.qvec)
69
-
70
-
71
- CAMERA_MODELS = {
72
- CameraModel(model_id=0, model_name="SIMPLE_PINHOLE", num_params=3),
73
- CameraModel(model_id=1, model_name="PINHOLE", num_params=4),
74
- CameraModel(model_id=2, model_name="SIMPLE_RADIAL", num_params=4),
75
- CameraModel(model_id=3, model_name="RADIAL", num_params=5),
76
- CameraModel(model_id=4, model_name="OPENCV", num_params=8),
77
- CameraModel(model_id=5, model_name="OPENCV_FISHEYE", num_params=8),
78
- CameraModel(model_id=6, model_name="FULL_OPENCV", num_params=12),
79
- CameraModel(model_id=7, model_name="FOV", num_params=5),
80
- CameraModel(model_id=8, model_name="SIMPLE_RADIAL_FISHEYE", num_params=4),
81
- CameraModel(model_id=9, model_name="RADIAL_FISHEYE", num_params=5),
82
- CameraModel(model_id=10, model_name="THIN_PRISM_FISHEYE", num_params=12),
83
- }
84
- CAMERA_MODEL_IDS = dict(
85
- [(camera_model.model_id, camera_model) for camera_model in CAMERA_MODELS]
86
- )
87
-
88
-
89
- def read_next_bytes(fid, num_bytes, format_char_sequence, endian_character="<"):
90
- """Read and unpack the next bytes from a binary file.
91
- :param fid:
92
- :param num_bytes: Sum of combination of {2, 4, 8}, e.g. 2, 6, 16, 30, etc.
93
- :param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}.
94
- :param endian_character: Any of {@, =, <, >, !}
95
- :return: Tuple of read and unpacked values.
96
- """
97
- data = fid.read(num_bytes)
98
- return struct.unpack(endian_character + format_char_sequence, data)
99
-
100
-
101
- def read_cameras_text(path: Union[str, Path]) -> Dict[int, Camera]:
102
- """
103
- see: src/base/reconstruction.cc
104
- void Reconstruction::WriteCamerasText(const std::string& path)
105
- void Reconstruction::ReadCamerasText(const std::string& path)
106
- """
107
- cameras = {}
108
- with open(path, "r") as fid:
109
- while True:
110
- line = fid.readline()
111
- if not line:
112
- break
113
- line = line.strip()
114
- if len(line) > 0 and line[0] != "#":
115
- elems = line.split()
116
- camera_id = int(elems[0])
117
- model = elems[1]
118
- width = int(elems[2])
119
- height = int(elems[3])
120
- params = np.array(tuple(map(float, elems[4:])))
121
- cameras[camera_id] = Camera(
122
- id=camera_id, model=model, width=width, height=height, params=params
123
- )
124
- return cameras
125
-
126
-
127
- def read_cameras_binary(path_to_model_file: Union[str, Path]) -> Dict[int, Camera]:
128
- """
129
- see: src/base/reconstruction.cc
130
- void Reconstruction::WriteCamerasBinary(const std::string& path)
131
- void Reconstruction::ReadCamerasBinary(const std::string& path)
132
- """
133
- cameras = {}
134
- with open(path_to_model_file, "rb") as fid:
135
- num_cameras = read_next_bytes(fid, 8, "Q")[0]
136
- for camera_line_index in range(num_cameras):
137
- camera_properties = read_next_bytes(
138
- fid, num_bytes=24, format_char_sequence="iiQQ"
139
- )
140
- camera_id = camera_properties[0]
141
- model_id = camera_properties[1]
142
- model_name = CAMERA_MODEL_IDS[camera_properties[1]].model_name
143
- width = camera_properties[2]
144
- height = camera_properties[3]
145
- num_params = CAMERA_MODEL_IDS[model_id].num_params
146
- params = read_next_bytes(
147
- fid, num_bytes=8 * num_params, format_char_sequence="d" * num_params
148
- )
149
- cameras[camera_id] = Camera(
150
- id=camera_id,
151
- model=model_name,
152
- width=width,
153
- height=height,
154
- params=np.array(params),
155
- )
156
- assert len(cameras) == num_cameras
157
- return cameras
158
-
159
-
160
- def read_images_text(path: Union[str, Path]) -> Dict[int, Image]:
161
- """
162
- see: src/base/reconstruction.cc
163
- void Reconstruction::ReadImagesText(const std::string& path)
164
- void Reconstruction::WriteImagesText(const std::string& path)
165
- """
166
- images = {}
167
- with open(path, "r") as fid:
168
- while True:
169
- line = fid.readline()
170
- if not line:
171
- break
172
- line = line.strip()
173
- if len(line) > 0 and line[0] != "#":
174
- elems = line.split()
175
- image_id = int(elems[0])
176
- qvec = np.array(tuple(map(float, elems[1:5])))
177
- tvec = np.array(tuple(map(float, elems[5:8])))
178
- camera_id = int(elems[8])
179
- image_name = elems[9]
180
- elems = fid.readline().split()
181
- xys = np.column_stack(
182
- [tuple(map(float, elems[0::3])), tuple(map(float, elems[1::3]))]
183
- )
184
- point3D_ids = np.array(tuple(map(int, elems[2::3])))
185
- images[image_id] = Image(
186
- id=image_id,
187
- qvec=qvec,
188
- tvec=tvec,
189
- camera_id=camera_id,
190
- name=image_name,
191
- xys=xys,
192
- point3D_ids=point3D_ids,
193
- )
194
- return images
195
-
196
-
197
- def read_images_binary(path_to_model_file: Union[str, Path]) -> Dict[int, Image]:
198
- """
199
- see: src/base/reconstruction.cc
200
- void Reconstruction::ReadImagesBinary(const std::string& path)
201
- void Reconstruction::WriteImagesBinary(const std::string& path)
202
- """
203
- images = {}
204
- with open(path_to_model_file, "rb") as fid:
205
- num_reg_images = read_next_bytes(fid, 8, "Q")[0]
206
- for image_index in range(num_reg_images):
207
- binary_image_properties = read_next_bytes(
208
- fid, num_bytes=64, format_char_sequence="idddddddi"
209
- )
210
- image_id = binary_image_properties[0]
211
- qvec = np.array(binary_image_properties[1:5])
212
- tvec = np.array(binary_image_properties[5:8])
213
- camera_id = binary_image_properties[8]
214
- image_name = ""
215
- current_char = read_next_bytes(fid, 1, "c")[0]
216
- while current_char != b"\x00": # look for the ASCII 0 entry
217
- image_name += current_char.decode("utf-8")
218
- current_char = read_next_bytes(fid, 1, "c")[0]
219
- num_points2D = read_next_bytes(fid, num_bytes=8, format_char_sequence="Q")[
220
- 0
221
- ]
222
- x_y_id_s = read_next_bytes(
223
- fid,
224
- num_bytes=24 * num_points2D,
225
- format_char_sequence="ddq" * num_points2D,
226
- )
227
- xys = np.column_stack(
228
- [tuple(map(float, x_y_id_s[0::3])), tuple(map(float, x_y_id_s[1::3]))]
229
- )
230
- point3D_ids = np.array(tuple(map(int, x_y_id_s[2::3])))
231
- images[image_id] = Image(
232
- id=image_id,
233
- qvec=qvec,
234
- tvec=tvec,
235
- camera_id=camera_id,
236
- name=image_name,
237
- xys=xys,
238
- point3D_ids=point3D_ids,
239
- )
240
- return images
241
-
242
-
243
- def read_points3D_text(path: Union[str, Path]):
244
- """
245
- see: src/base/reconstruction.cc
246
- void Reconstruction::ReadPoints3DText(const std::string& path)
247
- void Reconstruction::WritePoints3DText(const std::string& path)
248
- """
249
- points3D = {}
250
- with open(path, "r") as fid:
251
- while True:
252
- line = fid.readline()
253
- if not line:
254
- break
255
- line = line.strip()
256
- if len(line) > 0 and line[0] != "#":
257
- elems = line.split()
258
- point3D_id = int(elems[0])
259
- xyz = np.array(tuple(map(float, elems[1:4])))
260
- rgb = np.array(tuple(map(int, elems[4:7])))
261
- error = float(elems[7])
262
- image_ids = np.array(tuple(map(int, elems[8::2])))
263
- point2D_idxs = np.array(tuple(map(int, elems[9::2])))
264
- points3D[point3D_id] = Point3D(
265
- id=point3D_id,
266
- xyz=xyz,
267
- rgb=rgb,
268
- error=error,
269
- image_ids=image_ids,
270
- point2D_idxs=point2D_idxs,
271
- )
272
- return points3D
273
-
274
-
275
- def read_points3d_binary(path_to_model_file: Union[str, Path]) -> Dict[int, Point3D]:
276
- """
277
- see: src/base/reconstruction.cc
278
- void Reconstruction::ReadPoints3DBinary(const std::string& path)
279
- void Reconstruction::WritePoints3DBinary(const std::string& path)
280
- """
281
- points3D = {}
282
- with open(path_to_model_file, "rb") as fid:
283
- num_points = read_next_bytes(fid, 8, "Q")[0]
284
- for point_line_index in range(num_points):
285
- binary_point_line_properties = read_next_bytes(
286
- fid, num_bytes=43, format_char_sequence="QdddBBBd"
287
- )
288
- point3D_id = binary_point_line_properties[0]
289
- xyz = np.array(binary_point_line_properties[1:4])
290
- rgb = np.array(binary_point_line_properties[4:7])
291
- error = np.array(binary_point_line_properties[7])
292
- track_length = read_next_bytes(fid, num_bytes=8, format_char_sequence="Q")[
293
- 0
294
- ]
295
- track_elems = read_next_bytes(
296
- fid,
297
- num_bytes=8 * track_length,
298
- format_char_sequence="ii" * track_length,
299
- )
300
- image_ids = np.array(tuple(map(int, track_elems[0::2])))
301
- point2D_idxs = np.array(tuple(map(int, track_elems[1::2])))
302
- points3D[point3D_id] = Point3D(
303
- id=point3D_id,
304
- xyz=xyz,
305
- rgb=rgb,
306
- error=error,
307
- image_ids=image_ids,
308
- point2D_idxs=point2D_idxs,
309
- )
310
- return points3D
311
-
312
-
313
- def qvec2rotmat(qvec):
314
- return np.array(
315
- [
316
- [
317
- 1 - 2 * qvec[2] ** 2 - 2 * qvec[3] ** 2,
318
- 2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3],
319
- 2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2],
320
- ],
321
- [
322
- 2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3],
323
- 1 - 2 * qvec[1] ** 2 - 2 * qvec[3] ** 2,
324
- 2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1],
325
- ],
326
- [
327
- 2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2],
328
- 2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1],
329
- 1 - 2 * qvec[1] ** 2 - 2 * qvec[2] ** 2,
330
- ],
331
- ]
332
- )
333
-
334
-
335
- def get_intrinsics_extrinsics(img, cameras):
336
- # world to cam transformation
337
- R = qvec2rotmat(img.qvec)
338
- # translation
339
- t = img.tvec
340
- cam = cameras[img.camera_id]
341
-
342
- if cam.model in ("SIMPLE_PINHOLE", "SIMPLE_RADIAL", "RADIAL"):
343
- fx = fy = cam.params[0]
344
- cx = cam.params[1]
345
- cy = cam.params[2]
346
- elif cam.model in (
347
- "PINHOLE",
348
- "OPENCV",
349
- "OPENCV_FISHEYE",
350
- "FULL_OPENCV",
351
- ):
352
- fx = cam.params[0]
353
- fy = cam.params[1]
354
- cx = cam.params[2]
355
- cy = cam.params[3]
356
- else:
357
- raise Exception("Camera model not supported")
358
-
359
- # intrinsics
360
- K = np.identity(4)
361
- K[0, 0] = fx
362
- K[1, 1] = fy
363
- K[0, 2] = cx
364
- K[1, 2] = cy
365
-
366
- extrinsics = np.eye(4)
367
- extrinsics[:3, :3] = R
368
- extrinsics[:3, 3] = t
369
- return K, extrinsics
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
som_out/bear/code/2024-10-25-234902/flow3d/data/iphone_dataset.py DELETED
@@ -1,865 +0,0 @@
1
- import json
2
- import os
3
- import os.path as osp
4
- from dataclasses import dataclass
5
- from glob import glob
6
- from itertools import product
7
- from typing import Literal
8
-
9
- import imageio.v3 as iio
10
- import numpy as np
11
- import roma
12
- import torch
13
- import torch.nn.functional as F
14
- import tyro
15
- from loguru import logger as guru
16
- from torch.utils.data import Dataset
17
- from tqdm import tqdm
18
-
19
- from flow3d.data.base_dataset import BaseDataset
20
- from flow3d.data.colmap import get_colmap_camera_params
21
- from flow3d.data.utils import (
22
- SceneNormDict,
23
- masked_median_blur,
24
- normal_from_depth_image,
25
- normalize_coords,
26
- parse_tapir_track_info,
27
- )
28
- from flow3d.transforms import rt_to_mat4
29
-
30
-
31
- @dataclass
32
- class iPhoneDataConfig:
33
- data_dir: str
34
- start: int = 0
35
- end: int = -1
36
- split: Literal["train", "val"] = "train"
37
- depth_type: Literal[
38
- "midas",
39
- "depth_anything",
40
- "lidar",
41
- "depth_anything_colmap",
42
- "depth_crafter_colmap",
43
- ] = "depth_anything_colmap"
44
- camera_type: Literal["original", "refined"] = "refined"
45
- use_median_filter: bool = False
46
- num_targets_per_frame: int = 4
47
- scene_norm_dict: tyro.conf.Suppress[SceneNormDict | None] = None
48
- load_from_cache: bool = False
49
- skip_load_imgs: bool = False
50
-
51
-
52
- @dataclass
53
- class iPhoneDataConfig_Crafter:
54
- data_dir: str
55
- start: int = 0
56
- end: int = -1
57
- split: Literal["train", "val"] = "train"
58
- depth_type: Literal[
59
- "midas",
60
- "depth_anything",
61
- "lidar",
62
- "depth_anything_colmap",
63
- "depth_crafter_colmap",
64
- ] = "depth_crafter_colmap"
65
- camera_type: Literal["original", "refined"] = "refined"
66
- use_median_filter: bool = False
67
- num_targets_per_frame: int = 4
68
- scene_norm_dict: tyro.conf.Suppress[SceneNormDict | None] = None
69
- load_from_cache: bool = False
70
- skip_load_imgs: bool = False
71
-
72
-
73
- class iPhoneDataset(BaseDataset):
74
- def __init__(
75
- self,
76
- data_dir: str,
77
- start: int = 0,
78
- end: int = -1,
79
- factor: int = 1,
80
- split: Literal["train", "val"] = "train",
81
- depth_type: Literal[
82
- "midas",
83
- "depth_anything",
84
- "lidar",
85
- "depth_anything_colmap",
86
- "depth_crafter_colmap",
87
- ] = "depth_crafter_colmap",
88
- camera_type: Literal["original", "refined"] = "refined",
89
- use_median_filter: bool = False,
90
- num_targets_per_frame: int = 1,
91
- scene_norm_dict: SceneNormDict | None = None,
92
- load_from_cache: bool = False,
93
- skip_load_imgs: bool = False,
94
- **_,
95
- ):
96
- super().__init__()
97
-
98
- self.data_dir = data_dir
99
- self.training = split == "train"
100
- self.split = split
101
- self.factor = factor
102
- self.start = start
103
- self.end = end
104
- self.depth_type = depth_type
105
- self.camera_type = camera_type
106
- self.use_median_filter = use_median_filter
107
- self.num_targets_per_frame = num_targets_per_frame
108
- self.scene_norm_dict = scene_norm_dict
109
- self.load_from_cache = load_from_cache
110
- self.cache_dir = osp.join(data_dir, "flow3d_preprocessed", "cache")
111
- os.makedirs(self.cache_dir, exist_ok=True)
112
-
113
- print("!!!!depth_type!!!", depth_type)
114
-
115
- # Test if the current data has validation set.
116
- with open(osp.join(data_dir, "splits", "val.json")) as f:
117
- split_dict = json.load(f)
118
- self.has_validation = len(split_dict["frame_names"]) > 0
119
-
120
- # Load metadata.
121
- with open(osp.join(data_dir, "splits", f"{split}.json")) as f:
122
- split_dict = json.load(f)
123
- full_len = len(split_dict["frame_names"])
124
- end = min(end, full_len) if end > 0 else full_len
125
- self.end = end
126
- self.frame_names = split_dict["frame_names"][start:end]
127
- time_ids = [t for t in split_dict["time_ids"] if t >= start and t < end]
128
- self.time_ids = torch.tensor(time_ids) - start
129
- guru.info(f"{self.time_ids.min()=} {self.time_ids.max()=}")
130
- # with open(osp.join(data_dir, "dataset.json")) as f:
131
- # dataset_dict = json.load(f)
132
- # self.num_frames = dataset_dict["num_exemplars"]
133
- guru.info(f"{self.num_frames=}")
134
- with open(osp.join(data_dir, "extra.json")) as f:
135
- extra_dict = json.load(f)
136
- self.fps = float(extra_dict["fps"])
137
-
138
- # Load cameras.
139
- if self.camera_type == "original":
140
- Ks, w2cs = [], []
141
- for frame_name in self.frame_names:
142
- with open(osp.join(data_dir, "camera", f"{frame_name}.json")) as f:
143
- camera_dict = json.load(f)
144
- focal_length = camera_dict["focal_length"]
145
- principal_point = camera_dict["principal_point"]
146
- Ks.append(
147
- [
148
- [focal_length, 0.0, principal_point[0]],
149
- [0.0, focal_length, principal_point[1]],
150
- [0.0, 0.0, 1.0],
151
- ]
152
- )
153
- orientation = np.array(camera_dict["orientation"])
154
- position = np.array(camera_dict["position"])
155
- w2cs.append(
156
- np.block(
157
- [
158
- [orientation, -orientation @ position[:, None]],
159
- [np.zeros((1, 3)), np.ones((1, 1))],
160
- ]
161
- ).astype(np.float32)
162
- )
163
- self.Ks = torch.tensor(Ks)
164
- self.Ks[:, :2] /= factor
165
- self.w2cs = torch.from_numpy(np.array(w2cs))
166
- elif self.camera_type == "refined":
167
- Ks, w2cs = get_colmap_camera_params(
168
- osp.join(data_dir, "flow3d_preprocessed/colmap/sparse/"),
169
- [frame_name + ".png" for frame_name in self.frame_names],
170
- )
171
- self.Ks = torch.from_numpy(Ks[:, :3, :3].astype(np.float32))
172
- self.Ks[:, :2] /= factor
173
- self.w2cs = torch.from_numpy(w2cs.astype(np.float32))
174
- if not skip_load_imgs:
175
- # Load images.
176
- imgs = torch.from_numpy(
177
- np.array(
178
- [
179
- iio.imread(
180
- osp.join(self.data_dir, f"rgb/{factor}x/{frame_name}.png")
181
- )
182
- for frame_name in tqdm(
183
- self.frame_names,
184
- desc=f"Loading {self.split} images",
185
- leave=False,
186
- )
187
- ],
188
- )
189
- )
190
- self.imgs = imgs[..., :3] / 255.0
191
- self.valid_masks = imgs[..., 3] / 255.0
192
- # Load masks.
193
- self.masks = (
194
- torch.from_numpy(
195
- np.array(
196
- [
197
- iio.imread(
198
- osp.join(
199
- self.data_dir,
200
- "flow3d_preprocessed/track_anything/",
201
- f"{factor}x/{frame_name}.png",
202
- )
203
- )
204
- for frame_name in tqdm(
205
- self.frame_names,
206
- desc=f"Loading {self.split} masks",
207
- leave=False,
208
- )
209
- ],
210
- )
211
- )
212
- / 255.0
213
- )
214
- if self.training:
215
- # Load depths.
216
- def load_depth(frame_name):
217
- if self.depth_type == "lidar":
218
- depth = np.load(
219
- osp.join(
220
- self.data_dir,
221
- f"depth/{factor}x/{frame_name}.npy",
222
- )
223
- )[..., 0]
224
- else:
225
- depth = np.load(
226
- osp.join(
227
- self.data_dir,
228
- # f"flow3d_preprocessed/aligned_{self.depth_type}_allrect/",
229
- # TODO: 1023
230
- f"flow3d_preprocessed/aligned_{self.depth_type}/",
231
- # f"flow3d_preprocessed/noaligned_{self.depth_type}/",
232
- f"{factor}x/{frame_name}.npy",
233
- )
234
- )
235
- depth[depth < 1e-3] = 1e-3
236
- depth = 1.0 / depth
237
- return depth
238
-
239
- self.depths = torch.from_numpy(
240
- np.array(
241
- [
242
- load_depth(frame_name)
243
- for frame_name in tqdm(
244
- self.frame_names,
245
- desc=f"Loading {self.split} depths",
246
- leave=False,
247
- )
248
- ],
249
- np.float32,
250
- )
251
- )
252
- max_depth_values_per_frame = self.depths.reshape(
253
- self.num_frames, -1
254
- ).max(1)[0]
255
- max_depth_value = max_depth_values_per_frame.median() * 2.5
256
- print("max_depth_value", max_depth_value)
257
- self.depths = torch.clamp(self.depths, 0, max_depth_value)
258
- # Median filter depths.
259
- # NOTE(hangg): This operator is very expensive.
260
- if self.use_median_filter:
261
- for i in tqdm(
262
- range(self.num_frames), desc="Processing depths", leave=False
263
- ):
264
- depth = masked_median_blur(
265
- self.depths[[i]].unsqueeze(1).to("cuda"),
266
- (
267
- self.masks[[i]]
268
- * self.valid_masks[[i]]
269
- * (self.depths[[i]] > 0)
270
- )
271
- .unsqueeze(1)
272
- .to("cuda"),
273
- )[0, 0].cpu()
274
- self.depths[i] = depth * self.masks[i] + self.depths[i] * (
275
- 1 - self.masks[i]
276
- )
277
- # Load the query pixels from 2D tracks.
278
- self.query_tracks_2d = [
279
- torch.from_numpy(
280
- np.load(
281
- osp.join(
282
- self.data_dir,
283
- "flow3d_preprocessed/2d_tracks/",
284
- f"{factor}x/{frame_name}_{frame_name}.npy",
285
- )
286
- ).astype(np.float32)
287
- )
288
- for frame_name in self.frame_names
289
- ]
290
- guru.info(
291
- f"{len(self.query_tracks_2d)=} {self.query_tracks_2d[0].shape=}"
292
- )
293
-
294
- # Load sam features.
295
- # sam_feat_dir = osp.join(
296
- # data_dir, f"flow3d_preprocessed/sam_features/{factor}x"
297
- # )
298
- # assert osp.exists(sam_feat_dir), f"SAM features not exist!"
299
- # sam_features, original_size, input_size = load_sam_features(
300
- # sam_feat_dir, self.frame_names
301
- # )
302
- # guru.info(f"{sam_features.shape=} {original_size=} {input_size=}")
303
- # self.sam_features = sam_features
304
- # self.sam_original_size = original_size
305
- # self.sam_input_size = input_size
306
- else:
307
- # Load covisible masks.
308
- self.covisible_masks = (
309
- torch.from_numpy(
310
- np.array(
311
- [
312
- iio.imread(
313
- osp.join(
314
- self.data_dir,
315
- "flow3d_preprocessed/covisible/",
316
- f"{factor}x/{split}/{frame_name}.png",
317
- )
318
- )
319
- for frame_name in tqdm(
320
- self.frame_names,
321
- desc=f"Loading {self.split} covisible masks",
322
- leave=False,
323
- )
324
- ],
325
- )
326
- )
327
- / 255.0
328
- )
329
-
330
- if self.scene_norm_dict is None:
331
- cached_scene_norm_dict_path = osp.join(
332
- self.cache_dir, "scene_norm_dict.pth"
333
- )
334
- if osp.exists(cached_scene_norm_dict_path) and self.load_from_cache:
335
- print("loading cached scene norm dict...")
336
- self.scene_norm_dict = torch.load(
337
- osp.join(self.cache_dir, "scene_norm_dict.pth")
338
- )
339
- elif self.training:
340
- # Compute the scene scale and transform for normalization.
341
- # Normalize the scene based on the foreground 3D tracks.
342
- subsampled_tracks_3d = self.get_tracks_3d(
343
- num_samples=10000, step=self.num_frames // 10, show_pbar=False
344
- )[0]
345
- scene_center = subsampled_tracks_3d.mean((0, 1))
346
- tracks_3d_centered = subsampled_tracks_3d - scene_center
347
- min_scale = tracks_3d_centered.quantile(0.05, dim=0)
348
- max_scale = tracks_3d_centered.quantile(0.95, dim=0)
349
- scale = torch.max(max_scale - min_scale).item() / 2.0
350
- original_up = -F.normalize(self.w2cs[:, 1, :3].mean(0), dim=-1)
351
- target_up = original_up.new_tensor([0.0, 0.0, 1.0])
352
- R = roma.rotvec_to_rotmat(
353
- F.normalize(original_up.cross(target_up, dim=-1), dim=-1)
354
- * original_up.dot(target_up).acos_()
355
- )
356
- transfm = rt_to_mat4(R, torch.einsum("ij,j->i", -R, scene_center))
357
- self.scene_norm_dict = SceneNormDict(scale=scale, transfm=transfm)
358
- torch.save(self.scene_norm_dict, cached_scene_norm_dict_path)
359
- else:
360
- raise ValueError("scene_norm_dict must be provided for validation.")
361
-
362
- # Normalize the scene.
363
- scale = self.scene_norm_dict["scale"]
364
- transfm = self.scene_norm_dict["transfm"]
365
- self.w2cs = self.w2cs @ torch.linalg.inv(transfm)
366
- self.w2cs[:, :3, 3] /= scale
367
- if self.training and not skip_load_imgs:
368
- self.depths /= scale
369
-
370
- if not skip_load_imgs:
371
- guru.info(
372
- f"{self.imgs.shape=} {self.valid_masks.shape=} {self.masks.shape=}"
373
- )
374
-
375
- @property
376
- def num_frames(self) -> int:
377
- return len(self.frame_names)
378
-
379
- def __len__(self):
380
- return self.imgs.shape[0]
381
-
382
- def get_w2cs(self) -> torch.Tensor:
383
- return self.w2cs
384
-
385
- def get_Ks(self) -> torch.Tensor:
386
- return self.Ks
387
-
388
- def get_image(self, index: int) -> torch.Tensor:
389
- return self.imgs[index]
390
-
391
- def get_depth(self, index: int) -> torch.Tensor:
392
- return self.depths[index]
393
-
394
- def get_masks(self, index: int) -> torch.Tensor:
395
- return self.masks[index]
396
-
397
- def get_img_wh(self) -> tuple[int, int]:
398
- return iio.imread(
399
- osp.join(self.data_dir, f"rgb/{self.factor}x/{self.frame_names[0]}.png")
400
- ).shape[1::-1]
401
-
402
- # def get_sam_features(self) -> list[torch.Tensor, tuple[int, int], tuple[int, int]]:
403
- # return self.sam_features, self.sam_original_size, self.sam_input_size
404
-
405
- def get_tracks_3d(
406
- self, num_samples: int, step: int = 1, show_pbar: bool = True, **kwargs
407
- ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
408
- """Get 3D tracks from the dataset.
409
-
410
- Args:
411
- num_samples (int | None): The number of samples to fetch. If None,
412
- fetch all samples. If not None, fetch roughly a same number of
413
- samples across each frame. Note that this might result in
414
- number of samples less than what is specified.
415
- step (int): The step to temporally subsample the track.
416
- """
417
- assert (
418
- self.split == "train"
419
- ), "fetch_tracks_3d is only available for the training split."
420
- cached_track_3d_path = osp.join(self.cache_dir, f"tracks_3d_{num_samples}.pth")
421
- if osp.exists(cached_track_3d_path) and step == 1 and self.load_from_cache:
422
- print("loading cached 3d tracks data...")
423
- start, end = self.start, self.end
424
- cached_track_3d_data = torch.load(cached_track_3d_path)
425
- tracks_3d, visibles, invisibles, confidences, track_colors = (
426
- cached_track_3d_data["tracks_3d"][:, start:end],
427
- cached_track_3d_data["visibles"][:, start:end],
428
- cached_track_3d_data["invisibles"][:, start:end],
429
- cached_track_3d_data["confidences"][:, start:end],
430
- cached_track_3d_data["track_colors"],
431
- )
432
- return tracks_3d, visibles, invisibles, confidences, track_colors
433
-
434
- # Load 2D tracks.
435
- raw_tracks_2d = []
436
- candidate_frames = list(range(0, self.num_frames, step))
437
- num_sampled_frames = len(candidate_frames)
438
- for i in (
439
- tqdm(candidate_frames, desc="Loading 2D tracks", leave=False)
440
- if show_pbar
441
- else candidate_frames
442
- ):
443
- curr_num_samples = self.query_tracks_2d[i].shape[0]
444
- num_samples_per_frame = (
445
- int(np.floor(num_samples / num_sampled_frames))
446
- if i != candidate_frames[-1]
447
- else num_samples
448
- - (num_sampled_frames - 1)
449
- * int(np.floor(num_samples / num_sampled_frames))
450
- )
451
- if num_samples_per_frame < curr_num_samples:
452
- track_sels = np.random.choice(
453
- curr_num_samples, (num_samples_per_frame,), replace=False
454
- )
455
- else:
456
- track_sels = np.arange(0, curr_num_samples)
457
- curr_tracks_2d = []
458
- for j in range(0, self.num_frames, step):
459
- if i == j:
460
- target_tracks_2d = self.query_tracks_2d[i]
461
- else:
462
- target_tracks_2d = torch.from_numpy(
463
- np.load(
464
- osp.join(
465
- self.data_dir,
466
- "flow3d_preprocessed/2d_tracks/",
467
- f"{self.factor}x/"
468
- f"{self.frame_names[i]}_"
469
- f"{self.frame_names[j]}.npy",
470
- )
471
- ).astype(np.float32)
472
- )
473
- curr_tracks_2d.append(target_tracks_2d[track_sels])
474
- raw_tracks_2d.append(torch.stack(curr_tracks_2d, dim=1))
475
- guru.info(f"{step=} {len(raw_tracks_2d)=} {raw_tracks_2d[0].shape=}")
476
-
477
- # Process 3D tracks.
478
- inv_Ks = torch.linalg.inv(self.Ks)[::step]
479
- c2ws = torch.linalg.inv(self.w2cs)[::step]
480
- H, W = self.imgs.shape[1:3]
481
- filtered_tracks_3d, filtered_visibles, filtered_track_colors = [], [], []
482
- filtered_invisibles, filtered_confidences = [], []
483
- masks = self.masks * self.valid_masks * (self.depths > 0)
484
- masks = (masks > 0.5).float()
485
- for i, tracks_2d in enumerate(raw_tracks_2d):
486
- tracks_2d = tracks_2d.swapdims(0, 1)
487
- tracks_2d, occs, dists = (
488
- tracks_2d[..., :2],
489
- tracks_2d[..., 2],
490
- tracks_2d[..., 3],
491
- )
492
- # visibles = postprocess_occlusions(occs, dists)
493
- visibles, invisibles, confidences = parse_tapir_track_info(occs, dists)
494
- # Unproject 2D tracks to 3D.
495
- track_depths = F.grid_sample(
496
- self.depths[::step, None],
497
- normalize_coords(tracks_2d[..., None, :], H, W),
498
- align_corners=True,
499
- padding_mode="border",
500
- )[:, 0]
501
- tracks_3d = (
502
- torch.einsum(
503
- "nij,npj->npi",
504
- inv_Ks,
505
- F.pad(tracks_2d, (0, 1), value=1.0),
506
- )
507
- * track_depths
508
- )
509
- tracks_3d = torch.einsum(
510
- "nij,npj->npi", c2ws, F.pad(tracks_3d, (0, 1), value=1.0)
511
- )[..., :3]
512
- # Filter out out-of-mask tracks.
513
- is_in_masks = (
514
- F.grid_sample(
515
- masks[::step, None],
516
- normalize_coords(tracks_2d[..., None, :], H, W),
517
- align_corners=True,
518
- ).squeeze()
519
- == 1
520
- )
521
- visibles *= is_in_masks
522
- invisibles *= is_in_masks
523
- confidences *= is_in_masks.float()
524
- # Get track's color from the query frame.
525
- track_colors = (
526
- F.grid_sample(
527
- self.imgs[i * step : i * step + 1].permute(0, 3, 1, 2),
528
- normalize_coords(tracks_2d[i : i + 1, None, :], H, W),
529
- align_corners=True,
530
- padding_mode="border",
531
- )
532
- .squeeze()
533
- .T
534
- )
535
- # at least visible 5% of the time, otherwise discard
536
- visible_counts = visibles.sum(0)
537
- valid = visible_counts >= min(
538
- int(0.05 * self.num_frames),
539
- visible_counts.float().quantile(0.1).item(),
540
- )
541
-
542
- filtered_tracks_3d.append(tracks_3d[:, valid])
543
- filtered_visibles.append(visibles[:, valid])
544
- filtered_invisibles.append(invisibles[:, valid])
545
- filtered_confidences.append(confidences[:, valid])
546
- filtered_track_colors.append(track_colors[valid])
547
-
548
- filtered_tracks_3d = torch.cat(filtered_tracks_3d, dim=1).swapdims(0, 1)
549
- filtered_visibles = torch.cat(filtered_visibles, dim=1).swapdims(0, 1)
550
- filtered_invisibles = torch.cat(filtered_invisibles, dim=1).swapdims(0, 1)
551
- filtered_confidences = torch.cat(filtered_confidences, dim=1).swapdims(0, 1)
552
- filtered_track_colors = torch.cat(filtered_track_colors, dim=0)
553
- if step == 1:
554
- torch.save(
555
- {
556
- "tracks_3d": filtered_tracks_3d,
557
- "visibles": filtered_visibles,
558
- "invisibles": filtered_invisibles,
559
- "confidences": filtered_confidences,
560
- "track_colors": filtered_track_colors,
561
- },
562
- cached_track_3d_path,
563
- )
564
- return (
565
- filtered_tracks_3d,
566
- filtered_visibles,
567
- filtered_invisibles,
568
- filtered_confidences,
569
- filtered_track_colors,
570
- )
571
-
572
- def get_bkgd_points(
573
- self, num_samples: int, **kwargs
574
- ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
575
- H, W = self.imgs.shape[1:3]
576
- grid = torch.stack(
577
- torch.meshgrid(
578
- torch.arange(W, dtype=torch.float32),
579
- torch.arange(H, dtype=torch.float32),
580
- indexing="xy",
581
- ),
582
- dim=-1,
583
- )
584
- candidate_frames = list(range(self.num_frames))
585
- num_sampled_frames = len(candidate_frames)
586
- bkgd_points, bkgd_point_normals, bkgd_point_colors = [], [], []
587
- for i in tqdm(candidate_frames, desc="Loading bkgd points", leave=False):
588
- img = self.imgs[i]
589
- depth = self.depths[i]
590
- bool_mask = ((1.0 - self.masks[i]) * self.valid_masks[i] * (depth > 0)).to(
591
- torch.bool
592
- )
593
- w2c = self.w2cs[i]
594
- K = self.Ks[i]
595
- points = (
596
- torch.einsum(
597
- "ij,pj->pi",
598
- torch.linalg.inv(K),
599
- F.pad(grid[bool_mask], (0, 1), value=1.0),
600
- )
601
- * depth[bool_mask][:, None]
602
- )
603
- points = torch.einsum(
604
- "ij,pj->pi", torch.linalg.inv(w2c)[:3], F.pad(points, (0, 1), value=1.0)
605
- )
606
- point_normals = normal_from_depth_image(depth, K, w2c)[bool_mask]
607
- point_colors = img[bool_mask]
608
- curr_num_samples = points.shape[0]
609
- num_samples_per_frame = (
610
- int(np.floor(num_samples / num_sampled_frames))
611
- if i != candidate_frames[-1]
612
- else num_samples
613
- - (num_sampled_frames - 1)
614
- * int(np.floor(num_samples / num_sampled_frames))
615
- )
616
- if num_samples_per_frame < curr_num_samples:
617
- point_sels = np.random.choice(
618
- curr_num_samples, (num_samples_per_frame,), replace=False
619
- )
620
- else:
621
- point_sels = np.arange(0, curr_num_samples)
622
- bkgd_points.append(points[point_sels])
623
- bkgd_point_normals.append(point_normals[point_sels])
624
- bkgd_point_colors.append(point_colors[point_sels])
625
- bkgd_points = torch.cat(bkgd_points, dim=0)
626
- bkgd_point_normals = torch.cat(bkgd_point_normals, dim=0)
627
- bkgd_point_colors = torch.cat(bkgd_point_colors, dim=0)
628
- return bkgd_points, bkgd_point_normals, bkgd_point_colors
629
-
630
- def get_video_dataset(self) -> Dataset:
631
- return iPhoneDatasetVideoView(self)
632
-
633
- def __getitem__(self, index: int):
634
- if self.training:
635
- index = np.random.randint(0, self.num_frames)
636
- data = {
637
- # ().
638
- "frame_names": self.frame_names[index],
639
- # ().
640
- "ts": self.time_ids[index],
641
- # (4, 4).
642
- "w2cs": self.w2cs[index],
643
- # (3, 3).
644
- "Ks": self.Ks[index],
645
- # (H, W, 3).
646
- "imgs": self.imgs[index],
647
- # (H, W).
648
- "valid_masks": self.valid_masks[index],
649
- # (H, W).
650
- "masks": self.masks[index],
651
- }
652
- if self.training:
653
- # (H, W).
654
- data["depths"] = self.depths[index]
655
- # (P, 2).
656
- data["query_tracks_2d"] = self.query_tracks_2d[index][:, :2]
657
- target_inds = torch.from_numpy(
658
- np.random.choice(
659
- self.num_frames, (self.num_targets_per_frame,), replace=False
660
- )
661
- )
662
- # (N, P, 4).
663
- target_tracks_2d = torch.stack(
664
- [
665
- torch.from_numpy(
666
- np.load(
667
- osp.join(
668
- self.data_dir,
669
- "flow3d_preprocessed/2d_tracks/",
670
- f"{self.factor}x/"
671
- f"{self.frame_names[index]}_"
672
- f"{self.frame_names[target_index.item()]}.npy",
673
- )
674
- ).astype(np.float32)
675
- )
676
- for target_index in target_inds
677
- ],
678
- dim=0,
679
- )
680
- # (N,).
681
- target_ts = self.time_ids[target_inds]
682
- data["target_ts"] = target_ts
683
- # (N, 4, 4).
684
- data["target_w2cs"] = self.w2cs[target_ts]
685
- # (N, 3, 3).
686
- data["target_Ks"] = self.Ks[target_ts]
687
- # (N, P, 2).
688
- data["target_tracks_2d"] = target_tracks_2d[..., :2]
689
- # (N, P).
690
- (
691
- data["target_visibles"],
692
- data["target_invisibles"],
693
- data["target_confidences"],
694
- ) = parse_tapir_track_info(
695
- target_tracks_2d[..., 2], target_tracks_2d[..., 3]
696
- )
697
- # (N, P).
698
- data["target_track_depths"] = F.grid_sample(
699
- self.depths[target_inds, None],
700
- normalize_coords(
701
- target_tracks_2d[..., None, :2],
702
- self.imgs.shape[1],
703
- self.imgs.shape[2],
704
- ),
705
- align_corners=True,
706
- padding_mode="border",
707
- )[:, 0, :, 0]
708
- else:
709
- # (H, W).
710
- data["covisible_masks"] = self.covisible_masks[index]
711
- return data
712
-
713
- def preprocess(self, data):
714
- return data
715
-
716
-
717
- class iPhoneDatasetKeypointView(Dataset):
718
- """Return a dataset view of the annotated keypoints."""
719
-
720
- def __init__(self, dataset: iPhoneDataset):
721
- super().__init__()
722
- self.dataset = dataset
723
- assert self.dataset.split == "train"
724
- # Load 2D keypoints.
725
- keypoint_paths = sorted(
726
- glob(osp.join(self.dataset.data_dir, "keypoint/2x/train/0_*.json"))
727
- )
728
- keypoints = []
729
- for keypoint_path in keypoint_paths:
730
- with open(keypoint_path) as f:
731
- keypoints.append(json.load(f))
732
- time_ids = [
733
- int(osp.basename(p).split("_")[1].split(".")[0]) for p in keypoint_paths
734
- ]
735
- # only use time ids that are in the dataset.
736
- start = self.dataset.start
737
- time_ids = [t - start for t in time_ids if t - start in self.dataset.time_ids]
738
- self.time_ids = torch.tensor(time_ids)
739
- self.time_pairs = torch.tensor(list(product(self.time_ids, repeat=2)))
740
- self.index_pairs = torch.tensor(
741
- list(product(range(len(self.time_ids)), repeat=2))
742
- )
743
- self.keypoints = torch.tensor(keypoints, dtype=torch.float32)
744
- self.keypoints[..., :2] *= 2.0 / self.dataset.factor
745
-
746
- def __len__(self):
747
- return len(self.time_pairs)
748
-
749
- def __getitem__(self, index: int):
750
- ts = self.time_pairs[index]
751
- return {
752
- "ts": ts,
753
- "w2cs": self.dataset.w2cs[ts],
754
- "Ks": self.dataset.Ks[ts],
755
- "imgs": self.dataset.imgs[ts],
756
- "keypoints": self.keypoints[self.index_pairs[index]],
757
- }
758
-
759
-
760
- class iPhoneDatasetVideoView(Dataset):
761
- """Return a dataset view of the video trajectory."""
762
-
763
- def __init__(self, dataset: iPhoneDataset):
764
- super().__init__()
765
- self.dataset = dataset
766
- self.fps = self.dataset.fps
767
- assert self.dataset.split == "train"
768
-
769
- def __len__(self):
770
- return self.dataset.num_frames
771
-
772
- def __getitem__(self, index):
773
- return {
774
- "frame_names": self.dataset.frame_names[index],
775
- "ts": index,
776
- "w2cs": self.dataset.w2cs[index],
777
- "Ks": self.dataset.Ks[index],
778
- "imgs": self.dataset.imgs[index],
779
- "depths": self.dataset.depths[index],
780
- "masks": self.dataset.masks[index],
781
- }
782
-
783
-
784
- """
785
- class iPhoneDataModule(BaseDataModule[iPhoneDataset]):
786
- def __init__(
787
- self,
788
- data_dir: str,
789
- factor: int = 1,
790
- start: int = 0,
791
- end: int = -1,
792
- depth_type: Literal[
793
- "midas",
794
- "depth_anything",
795
- "lidar",
796
- "depth_anything_colmap",
797
- ] = "depth_anything_colmap",
798
- camera_type: Literal["original", "refined"] = "refined",
799
- use_median_filter: bool = False,
800
- num_targets_per_frame: int = 1,
801
- load_from_cache: bool = False,
802
- **kwargs,
803
- ):
804
- super().__init__(dataset_cls=iPhoneDataset, **kwargs)
805
- self.data_dir = data_dir
806
- self.start = start
807
- self.end = end
808
- self.factor = factor
809
- self.depth_type = depth_type
810
- self.camera_type = camera_type
811
- self.use_median_filter = use_median_filter
812
- self.num_targets_per_frame = num_targets_per_frame
813
- self.load_from_cache = load_from_cache
814
-
815
- self.val_loader_tasks = ["img", "keypoint"]
816
-
817
- def setup(self, *_, **__) -> None:
818
- guru.info("Loading train dataset...")
819
- self.train_dataset = self.dataset_cls(
820
- data_dir=self.data_dir,
821
- training=True,
822
- split="train",
823
- start=self.start,
824
- end=self.end,
825
- factor=self.factor,
826
- depth_type=self.depth_type, # type: ignore
827
- camera_type=self.camera_type, # type: ignore
828
- use_median_filter=self.use_median_filter,
829
- num_targets_per_frame=self.num_targets_per_frame,
830
- max_steps=self.max_steps * self.batch_size,
831
- load_from_cache=self.load_from_cache,
832
- )
833
- if self.train_dataset.has_validation:
834
- guru.info("Loading val dataset...")
835
- self.val_dataset = self.dataset_cls(
836
- data_dir=self.data_dir,
837
- training=False,
838
- split="val",
839
- start=self.start,
840
- end=self.end,
841
- factor=self.factor,
842
- depth_type=self.depth_type, # type: ignore
843
- camera_type=self.camera_type, # type: ignore
844
- use_median_filter=self.use_median_filter,
845
- scene_norm_dict=self.train_dataset.scene_norm_dict,
846
- load_from_cache=self.load_from_cache,
847
- )
848
- else:
849
- # Dummy validation set.
850
- self.val_dataset = TensorDataset(torch.zeros(0)) # type: ignore
851
- self.keypoint_dataset = iPhoneDatasetKeypointView(self.train_dataset)
852
- self.video_dataset = self.train_dataset.get_video_dataset()
853
- guru.success("Loading finished!")
854
-
855
- def train_dataloader(self) -> DataLoader:
856
- return DataLoader(
857
- self.train_dataset,
858
- batch_size=self.batch_size,
859
- num_workers=self.num_workers,
860
- collate_fn=iPhoneDataset.train_collate_fn,
861
- )
862
-
863
- def val_dataloader(self) -> list[DataLoader]:
864
- return [DataLoader(self.val_dataset), DataLoader(self.keypoint_dataset)]
865
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
som_out/bear/code/2024-10-25-234902/flow3d/data/utils.py DELETED
@@ -1,360 +0,0 @@
1
- from typing import List, Optional, Tuple, TypedDict
2
-
3
- import numpy as np
4
- import torch
5
- import torch.nn as nn
6
- import torch.nn.functional as F
7
- from torch.nn.modules.utils import _pair, _quadruple
8
-
9
- UINT16_MAX = 65535
10
-
11
-
12
- class SceneNormDict(TypedDict):
13
- scale: float
14
- transfm: torch.Tensor
15
-
16
-
17
- def to_device(batch, device):
18
- if isinstance(batch, dict):
19
- return {k: to_device(v, device) for k, v in batch.items()}
20
- if isinstance(batch, (list, tuple)):
21
- return [to_device(v, device) for v in batch]
22
- if isinstance(batch, torch.Tensor):
23
- return batch.to(device)
24
- return batch
25
-
26
-
27
- def normalize_coords(coords, h, w):
28
- assert coords.shape[-1] == 2
29
- return coords / torch.tensor([w - 1.0, h - 1.0], device=coords.device) * 2 - 1.0
30
-
31
-
32
- def postprocess_occlusions(occlusions, expected_dist):
33
- """Postprocess occlusions to boolean visible flag.
34
-
35
- Args:
36
- occlusions: [-inf, inf], np.float32
37
- expected_dist:, [-inf, inf], np.float32
38
-
39
- Returns:
40
- visibles: bool
41
- """
42
-
43
- def sigmoid(x):
44
- if x.dtype == np.ndarray:
45
- return 1 / (1 + np.exp(-x))
46
- else:
47
- return torch.sigmoid(x)
48
-
49
- visibles = (1 - sigmoid(occlusions)) * (1 - sigmoid(expected_dist)) > 0.5
50
- return visibles
51
-
52
-
53
- def parse_tapir_track_info(occlusions, expected_dist):
54
- """
55
- return:
56
- valid_visible: mask of visible & confident points
57
- valid_invisible: mask of invisible & confident points
58
- confidence: clamped confidence scores (all < 0.5 -> 0)
59
- """
60
- visiblility = 1 - F.sigmoid(occlusions)
61
- confidence = 1 - F.sigmoid(expected_dist)
62
- valid_visible = visiblility * confidence > 0.5
63
- valid_invisible = (1 - visiblility) * confidence > 0.5
64
- # set all confidence < 0.5 to 0
65
- confidence = confidence * (valid_visible | valid_invisible).float()
66
- return valid_visible, valid_invisible, confidence
67
-
68
-
69
- def get_tracks_3d_for_query_frame(
70
- query_index: int,
71
- query_img: torch.Tensor,
72
- tracks_2d: torch.Tensor,
73
- depths: torch.Tensor,
74
- masks: torch.Tensor,
75
- inv_Ks: torch.Tensor,
76
- c2ws: torch.Tensor,
77
- ):
78
- """
79
- :param query_index (int)
80
- :param query_img [H, W, 3]
81
- :param tracks_2d [N, T, 4]
82
- :param depths [T, H, W]
83
- :param masks [T, H, W]
84
- :param inv_Ks [T, 3, 3]
85
- :param c2ws [T, 4, 4]
86
- returns (
87
- tracks_3d [N, T, 3]
88
- track_colors [N, 3]
89
- visibles [N, T]
90
- invisibles [N, T]
91
- confidences [N, T]
92
- )
93
- """
94
- T, H, W = depths.shape
95
- query_img = query_img[None].permute(0, 3, 1, 2) # (1, 3, H, W)
96
- tracks_2d = tracks_2d.swapaxes(0, 1) # (T, N, 4)
97
- tracks_2d, occs, dists = (
98
- tracks_2d[..., :2],
99
- tracks_2d[..., 2],
100
- tracks_2d[..., 3],
101
- )
102
- # visibles = postprocess_occlusions(occs, dists)
103
- # (T, N), (T, N), (T, N)
104
- visibles, invisibles, confidences = parse_tapir_track_info(occs, dists)
105
- # Unproject 2D tracks to 3D.
106
- # (T, 1, H, W), (T, 1, N, 2) -> (T, 1, 1, N)
107
- track_depths = F.grid_sample(
108
- depths[:, None],
109
- normalize_coords(tracks_2d[:, None], H, W),
110
- align_corners=True,
111
- padding_mode="border",
112
- )[:, 0, 0]
113
- tracks_3d = (
114
- torch.einsum(
115
- "nij,npj->npi",
116
- inv_Ks,
117
- F.pad(tracks_2d, (0, 1), value=1.0),
118
- )
119
- * track_depths[..., None]
120
- )
121
- tracks_3d = torch.einsum("nij,npj->npi", c2ws, F.pad(tracks_3d, (0, 1), value=1.0))[
122
- ..., :3
123
- ]
124
- # Filter out out-of-mask tracks.
125
- # (T, 1, H, W), (T, 1, N, 2) -> (T, 1, 1, N)
126
- is_in_masks = (
127
- F.grid_sample(
128
- masks[:, None],
129
- normalize_coords(tracks_2d[:, None], H, W),
130
- align_corners=True,
131
- )[:, 0, 0]
132
- == 1
133
- )
134
- visibles *= is_in_masks
135
- invisibles *= is_in_masks
136
- confidences *= is_in_masks.float()
137
-
138
- # valid if in the fg mask at least 40% of the time
139
- # in_mask_counts = is_in_masks.sum(0)
140
- # t = 0.25
141
- # thresh = min(t * T, in_mask_counts.float().quantile(t).item())
142
- # valid = in_mask_counts > thresh
143
- valid = is_in_masks[query_index]
144
- # valid if visible 5% of the time
145
- visible_counts = visibles.sum(0)
146
- valid = valid & (
147
- visible_counts
148
- >= min(
149
- int(0.05 * T),
150
- visible_counts.float().quantile(0.1).item(),
151
- )
152
- )
153
-
154
- # Get track's color from the query frame.
155
- # (1, 3, H, W), (1, 1, N, 2) -> (1, 3, 1, N) -> (N, 3)
156
- track_colors = F.grid_sample(
157
- query_img,
158
- normalize_coords(tracks_2d[query_index : query_index + 1, None], H, W),
159
- align_corners=True,
160
- padding_mode="border",
161
- )[0, :, 0].T
162
- return (
163
- tracks_3d[:, valid].swapdims(0, 1),
164
- track_colors[valid],
165
- visibles[:, valid].swapdims(0, 1),
166
- invisibles[:, valid].swapdims(0, 1),
167
- confidences[:, valid].swapdims(0, 1),
168
- )
169
-
170
-
171
- def _get_padding(x, k, stride, padding, same: bool):
172
- if same:
173
- ih, iw = x.size()[2:]
174
- if ih % stride[0] == 0:
175
- ph = max(k[0] - stride[0], 0)
176
- else:
177
- ph = max(k[0] - (ih % stride[0]), 0)
178
- if iw % stride[1] == 0:
179
- pw = max(k[1] - stride[1], 0)
180
- else:
181
- pw = max(k[1] - (iw % stride[1]), 0)
182
- pl = pw // 2
183
- pr = pw - pl
184
- pt = ph // 2
185
- pb = ph - pt
186
- padding = (pl, pr, pt, pb)
187
- else:
188
- padding = padding
189
- return padding
190
-
191
-
192
- def median_filter_2d(x, kernel_size=3, stride=1, padding=1, same: bool = True):
193
- """
194
- :param x [B, C, H, W]
195
- """
196
- k = _pair(kernel_size)
197
- stride = _pair(stride) # convert to tuple
198
- padding = _quadruple(padding) # convert to l, r, t, b
199
- # using existing pytorch functions and tensor ops so that we get autograd,
200
- # would likely be more efficient to implement from scratch at C/Cuda level
201
- x = F.pad(x, _get_padding(x, k, stride, padding, same), mode="reflect")
202
- x = x.unfold(2, k[0], stride[0]).unfold(3, k[1], stride[1])
203
- x = x.contiguous().view(x.size()[:4] + (-1,)).median(dim=-1)[0]
204
- return x
205
-
206
-
207
- def masked_median_blur(image, mask, kernel_size=11):
208
- """
209
- Args:
210
- image: [B, C, H, W]
211
- mask: [B, C, H, W]
212
- kernel_size: int
213
- """
214
- assert image.shape == mask.shape
215
- if not isinstance(image, torch.Tensor):
216
- raise TypeError(f"Input type is not a torch.Tensor. Got {type(image)}")
217
-
218
- if not len(image.shape) == 4:
219
- raise ValueError(f"Invalid input shape, we expect BxCxHxW. Got: {image.shape}")
220
-
221
- padding: Tuple[int, int] = _compute_zero_padding((kernel_size, kernel_size))
222
-
223
- # prepare kernel
224
- kernel: torch.Tensor = get_binary_kernel2d((kernel_size, kernel_size)).to(image)
225
- b, c, h, w = image.shape
226
-
227
- # map the local window to single vector
228
- features: torch.Tensor = F.conv2d(
229
- image.reshape(b * c, 1, h, w), kernel, padding=padding, stride=1
230
- )
231
- masks: torch.Tensor = F.conv2d(
232
- mask.reshape(b * c, 1, h, w), kernel, padding=padding, stride=1
233
- )
234
- features = features.view(b, c, -1, h, w).permute(
235
- 0, 1, 3, 4, 2
236
- ) # BxCxxHxWx(K_h * K_w)
237
- min_value, max_value = features.min(), features.max()
238
- masks = masks.view(b, c, -1, h, w).permute(0, 1, 3, 4, 2) # BxCxHxWx(K_h * K_w)
239
- index_invalid = (1 - masks).nonzero(as_tuple=True)
240
- index_b, index_c, index_h, index_w, index_k = index_invalid
241
- features[(index_b[::2], index_c[::2], index_h[::2], index_w[::2], index_k[::2])] = (
242
- min_value
243
- )
244
- features[
245
- (index_b[1::2], index_c[1::2], index_h[1::2], index_w[1::2], index_k[1::2])
246
- ] = max_value
247
- # compute the median along the feature axis
248
- median: torch.Tensor = torch.median(features, dim=-1)[0]
249
-
250
- return median
251
-
252
-
253
- def _compute_zero_padding(kernel_size: Tuple[int, int]) -> Tuple[int, int]:
254
- r"""Utility function that computes zero padding tuple."""
255
- computed: List[int] = [(k - 1) // 2 for k in kernel_size]
256
- return computed[0], computed[1]
257
-
258
-
259
- def get_binary_kernel2d(
260
- window_size: tuple[int, int] | int,
261
- *,
262
- device: Optional[torch.device] = None,
263
- dtype: torch.dtype = torch.float32,
264
- ) -> torch.Tensor:
265
- """
266
- from kornia
267
- Create a binary kernel to extract the patches.
268
- If the window size is HxW will create a (H*W)x1xHxW kernel.
269
- """
270
- ky, kx = _unpack_2d_ks(window_size)
271
-
272
- window_range = kx * ky
273
-
274
- kernel = torch.zeros((window_range, window_range), device=device, dtype=dtype)
275
- idx = torch.arange(window_range, device=device)
276
- kernel[idx, idx] += 1.0
277
- return kernel.view(window_range, 1, ky, kx)
278
-
279
-
280
- def _unpack_2d_ks(kernel_size: tuple[int, int] | int) -> tuple[int, int]:
281
- if isinstance(kernel_size, int):
282
- ky = kx = kernel_size
283
- else:
284
- assert len(kernel_size) == 2, "2D Kernel size should have a length of 2."
285
- ky, kx = kernel_size
286
-
287
- ky = int(ky)
288
- kx = int(kx)
289
-
290
- return (ky, kx)
291
-
292
-
293
- ## Functions from GaussianShader.
294
- def ndc_2_cam(ndc_xyz, intrinsic, W, H):
295
- inv_scale = torch.tensor([[W - 1, H - 1]], device=ndc_xyz.device)
296
- cam_z = ndc_xyz[..., 2:3]
297
- cam_xy = ndc_xyz[..., :2] * inv_scale * cam_z
298
- cam_xyz = torch.cat([cam_xy, cam_z], dim=-1)
299
- cam_xyz = cam_xyz @ torch.inverse(intrinsic[0, ...].t())
300
- return cam_xyz
301
-
302
-
303
- def depth2point_cam(sampled_depth, ref_intrinsic):
304
- B, N, C, H, W = sampled_depth.shape
305
- valid_z = sampled_depth
306
- valid_x = torch.arange(W, dtype=torch.float32, device=sampled_depth.device) / (
307
- W - 1
308
- )
309
- valid_y = torch.arange(H, dtype=torch.float32, device=sampled_depth.device) / (
310
- H - 1
311
- )
312
- valid_y, valid_x = torch.meshgrid(valid_y, valid_x, indexing="ij")
313
- # B,N,H,W
314
- valid_x = valid_x[None, None, None, ...].expand(B, N, C, -1, -1)
315
- valid_y = valid_y[None, None, None, ...].expand(B, N, C, -1, -1)
316
- ndc_xyz = torch.stack([valid_x, valid_y, valid_z], dim=-1).view(
317
- B, N, C, H, W, 3
318
- ) # 1, 1, 5, 512, 640, 3
319
- cam_xyz = ndc_2_cam(ndc_xyz, ref_intrinsic, W, H) # 1, 1, 5, 512, 640, 3
320
- return ndc_xyz, cam_xyz
321
-
322
-
323
- def depth2point_world(depth_image, intrinsic_matrix, extrinsic_matrix):
324
- # depth_image: (H, W), intrinsic_matrix: (3, 3), extrinsic_matrix: (4, 4)
325
- _, xyz_cam = depth2point_cam(
326
- depth_image[None, None, None, ...], intrinsic_matrix[None, ...]
327
- )
328
- xyz_cam = xyz_cam.reshape(-1, 3)
329
- xyz_world = torch.cat(
330
- [xyz_cam, torch.ones_like(xyz_cam[..., 0:1])], dim=-1
331
- ) @ torch.inverse(extrinsic_matrix).transpose(0, 1)
332
- xyz_world = xyz_world[..., :3]
333
-
334
- return xyz_world
335
-
336
-
337
- def depth_pcd2normal(xyz):
338
- hd, wd, _ = xyz.shape
339
- bottom_point = xyz[..., 2:hd, 1 : wd - 1, :]
340
- top_point = xyz[..., 0 : hd - 2, 1 : wd - 1, :]
341
- right_point = xyz[..., 1 : hd - 1, 2:wd, :]
342
- left_point = xyz[..., 1 : hd - 1, 0 : wd - 2, :]
343
- left_to_right = right_point - left_point
344
- bottom_to_top = top_point - bottom_point
345
- xyz_normal = torch.cross(left_to_right, bottom_to_top, dim=-1)
346
- xyz_normal = torch.nn.functional.normalize(xyz_normal, p=2, dim=-1)
347
- xyz_normal = torch.nn.functional.pad(
348
- xyz_normal.permute(2, 0, 1), (1, 1, 1, 1), mode="constant"
349
- ).permute(1, 2, 0)
350
- return xyz_normal
351
-
352
-
353
- def normal_from_depth_image(depth, intrinsic_matrix, extrinsic_matrix):
354
- # depth: (H, W), intrinsic_matrix: (3, 3), extrinsic_matrix: (4, 4)
355
- # xyz_normal: (H, W, 3)
356
- xyz_world = depth2point_world(depth, intrinsic_matrix, extrinsic_matrix) # (HxW, 3)
357
- xyz_world = xyz_world.reshape(*depth.shape, 3)
358
- xyz_normal = depth_pcd2normal(xyz_world)
359
-
360
- return xyz_normal
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
som_out/bear/code/2024-10-25-234902/flow3d/init_utils.py DELETED
@@ -1,644 +0,0 @@
1
- import time
2
- from typing import Literal
3
-
4
- import cupy as cp
5
- import imageio.v3 as iio
6
- import numpy as np
7
-
8
- # from pytorch3d.ops import sample_farthest_points
9
- import roma
10
- import torch
11
- import torch.nn.functional as F
12
- from cuml import HDBSCAN, KMeans
13
- from loguru import logger as guru
14
- from matplotlib.pyplot import get_cmap
15
- from tqdm import tqdm
16
- from viser import ViserServer
17
-
18
- from flow3d.loss_utils import (
19
- compute_accel_loss,
20
- compute_se3_smoothness_loss,
21
- compute_z_acc_loss,
22
- get_weights_for_procrustes,
23
- knn,
24
- masked_l1_loss,
25
- )
26
- from flow3d.params import GaussianParams, MotionBases
27
- from flow3d.tensor_dataclass import StaticObservations, TrackObservations
28
- from flow3d.transforms import cont_6d_to_rmat, rt_to_mat4, solve_procrustes
29
- from flow3d.vis.utils import draw_keypoints_video, get_server, project_2d_tracks
30
-
31
-
32
- def init_fg_from_tracks_3d(
33
- cano_t: int, tracks_3d: TrackObservations, motion_coefs: torch.Tensor
34
- ) -> GaussianParams:
35
- """
36
- using dataclasses individual tensors so we know they're consistent
37
- and are always masked/filtered together
38
- """
39
- num_fg = tracks_3d.xyz.shape[0]
40
-
41
- # Initialize gaussian colors.
42
- colors = torch.logit(tracks_3d.colors)
43
- # Initialize gaussian scales: find the average of the three nearest
44
- # neighbors in the first frame for each point and use that as the
45
- # scale.
46
- dists, _ = knn(tracks_3d.xyz[:, cano_t], 3)
47
- dists = torch.from_numpy(dists)
48
- scales = dists.mean(dim=-1, keepdim=True)
49
- scales = scales.clamp(torch.quantile(scales, 0.05), torch.quantile(scales, 0.95))
50
- scales = torch.log(scales.repeat(1, 3))
51
- # Initialize gaussian means.
52
- means = tracks_3d.xyz[:, cano_t]
53
- # Initialize gaussian orientations as random.
54
- quats = torch.rand(num_fg, 4)
55
- # Initialize gaussian opacities.
56
- opacities = torch.logit(torch.full((num_fg,), 0.7))
57
- gaussians = GaussianParams(means, quats, scales, colors, opacities, motion_coefs)
58
- return gaussians
59
-
60
-
61
- def init_bg(
62
- points: StaticObservations,
63
- ) -> GaussianParams:
64
- """
65
- using dataclasses instead of individual tensors so we know they're consistent
66
- and are always masked/filtered together
67
- """
68
- num_init_bg_gaussians = points.xyz.shape[0]
69
- bg_scene_center = points.xyz.mean(0)
70
- bg_points_centered = points.xyz - bg_scene_center
71
- bg_min_scale = bg_points_centered.quantile(0.05, dim=0)
72
- bg_max_scale = bg_points_centered.quantile(0.95, dim=0)
73
- bg_scene_scale = torch.max(bg_max_scale - bg_min_scale).item() / 2.0
74
- bkdg_colors = torch.logit(points.colors)
75
-
76
- # Initialize gaussian scales: find the average of the three nearest
77
- # neighbors in the first frame for each point and use that as the
78
- # scale.
79
- dists, _ = knn(points.xyz, 3)
80
- dists = torch.from_numpy(dists)
81
- bg_scales = dists.mean(dim=-1, keepdim=True)
82
- bkdg_scales = torch.log(bg_scales.repeat(1, 3))
83
-
84
- bg_means = points.xyz
85
-
86
- # Initialize gaussian orientations by normals.
87
- local_normals = points.normals.new_tensor([[0.0, 0.0, 1.0]]).expand_as(
88
- points.normals
89
- )
90
- bg_quats = roma.rotvec_to_unitquat(
91
- F.normalize(local_normals.cross(points.normals), dim=-1)
92
- * (local_normals * points.normals).sum(-1, keepdim=True).acos_()
93
- ).roll(1, dims=-1)
94
- bg_opacities = torch.logit(torch.full((num_init_bg_gaussians,), 0.7))
95
- gaussians = GaussianParams(
96
- bg_means,
97
- bg_quats,
98
- bkdg_scales,
99
- bkdg_colors,
100
- bg_opacities,
101
- scene_center=bg_scene_center,
102
- scene_scale=bg_scene_scale,
103
- )
104
- return gaussians
105
-
106
-
107
- def init_motion_params_with_procrustes(
108
- tracks_3d: TrackObservations,
109
- num_bases: int,
110
- rot_type: Literal["quat", "6d"],
111
- cano_t: int,
112
- cluster_init_method: str = "kmeans",
113
- min_mean_weight: float = 0.1,
114
- vis: bool = False,
115
- port: int | None = None,
116
- ) -> tuple[MotionBases, torch.Tensor, TrackObservations]:
117
- device = tracks_3d.xyz.device
118
- num_frames = tracks_3d.xyz.shape[1]
119
- # sample centers and get initial se3 motion bases by solving procrustes
120
- means_cano = tracks_3d.xyz[:, cano_t].clone() # [num_gaussians, 3]
121
-
122
- # remove outliers
123
- scene_center = means_cano.median(dim=0).values
124
- print(f"{scene_center=}")
125
- dists = torch.norm(means_cano - scene_center, dim=-1)
126
- dists_th = torch.quantile(dists, 0.95)
127
- valid_mask = dists < dists_th
128
-
129
- # remove tracks that are not visible in any frame
130
- valid_mask = valid_mask & tracks_3d.visibles.any(dim=1)
131
- print(f"{valid_mask.sum()=}")
132
-
133
- tracks_3d = tracks_3d.filter_valid(valid_mask)
134
-
135
- if vis and port is not None:
136
- server = get_server(port)
137
- try:
138
- pts = tracks_3d.xyz.cpu().numpy()
139
- clrs = tracks_3d.colors.cpu().numpy()
140
- while True:
141
- for t in range(num_frames):
142
- server.scene.add_point_cloud("points", pts[:, t], clrs)
143
- time.sleep(0.3)
144
- except KeyboardInterrupt:
145
- pass
146
-
147
- means_cano = means_cano[valid_mask]
148
-
149
- sampled_centers, num_bases, labels = sample_initial_bases_centers(
150
- cluster_init_method, cano_t, tracks_3d, num_bases
151
- )
152
-
153
- # assign each point to the label to compute the cluster weight
154
- ids, counts = labels.unique(return_counts=True)
155
- ids = ids[counts > 100]
156
- num_bases = len(ids)
157
- sampled_centers = sampled_centers[:, ids]
158
- print(f"{num_bases=} {sampled_centers.shape=}")
159
-
160
- # compute basis weights from the distance to the cluster centers
161
- dists2centers = torch.norm(means_cano[:, None] - sampled_centers, dim=-1)
162
- motion_coefs = 10 * torch.exp(-dists2centers)
163
-
164
- init_rots, init_ts = [], []
165
-
166
- if rot_type == "quat":
167
- id_rot = torch.tensor([1.0, 0.0, 0.0, 0.0], device=device)
168
- rot_dim = 4
169
- else:
170
- id_rot = torch.tensor([1.0, 0.0, 0.0, 0.0, 1.0, 0.0], device=device)
171
- rot_dim = 6
172
-
173
- init_rots = id_rot.reshape(1, 1, rot_dim).repeat(num_bases, num_frames, 1)
174
- init_ts = torch.zeros(num_bases, num_frames, 3, device=device)
175
- errs_before = np.full((num_bases, num_frames), -1.0)
176
- errs_after = np.full((num_bases, num_frames), -1.0)
177
-
178
- tgt_ts = list(range(cano_t - 1, -1, -1)) + list(range(cano_t, num_frames))
179
- print(f"{tgt_ts=}")
180
- skipped_ts = {}
181
- for n, cluster_id in enumerate(ids):
182
- mask_in_cluster = labels == cluster_id
183
- cluster = tracks_3d.xyz[mask_in_cluster].transpose(
184
- 0, 1
185
- ) # [num_frames, n_pts, 3]
186
- visibilities = tracks_3d.visibles[mask_in_cluster].swapaxes(
187
- 0, 1
188
- ) # [num_frames, n_pts]
189
- confidences = tracks_3d.confidences[mask_in_cluster].swapaxes(
190
- 0, 1
191
- ) # [num_frames, n_pts]
192
- weights = get_weights_for_procrustes(cluster, visibilities)
193
- prev_t = cano_t
194
- cluster_skip_ts = []
195
- for cur_t in tgt_ts:
196
- # compute pairwise transform from cano_t
197
- procrustes_weights = (
198
- weights[cano_t]
199
- * weights[cur_t]
200
- * (confidences[cano_t] + confidences[cur_t])
201
- / 2
202
- )
203
- if procrustes_weights.sum() < min_mean_weight * num_frames:
204
- init_rots[n, cur_t] = init_rots[n, prev_t]
205
- init_ts[n, cur_t] = init_ts[n, prev_t]
206
- cluster_skip_ts.append(cur_t)
207
- else:
208
- se3, (err, err_before) = solve_procrustes(
209
- cluster[cano_t],
210
- cluster[cur_t],
211
- weights=procrustes_weights,
212
- enforce_se3=True,
213
- rot_type=rot_type,
214
- )
215
- init_rot, init_t, _ = se3
216
- assert init_rot.shape[-1] == rot_dim
217
- # double cover
218
- if rot_type == "quat" and torch.linalg.norm(
219
- init_rot - init_rots[n][prev_t]
220
- ) > torch.linalg.norm(-init_rot - init_rots[n][prev_t]):
221
- init_rot = -init_rot
222
- init_rots[n, cur_t] = init_rot
223
- init_ts[n, cur_t] = init_t
224
- if err == np.nan:
225
- print(f"{cur_t=} {err=}")
226
- print(f"{procrustes_weights.isnan().sum()=}")
227
- if err_before == np.nan:
228
- print(f"{cur_t=} {err_before=}")
229
- print(f"{procrustes_weights.isnan().sum()=}")
230
- errs_after[n, cur_t] = err
231
- errs_before[n, cur_t] = err_before
232
- prev_t = cur_t
233
- skipped_ts[cluster_id.item()] = cluster_skip_ts
234
-
235
- guru.info(f"{skipped_ts=}")
236
- guru.info(
237
- "procrustes init median error: {:.5f} => {:.5f}".format(
238
- np.median(errs_before[errs_before > 0]),
239
- np.median(errs_after[errs_after > 0]),
240
- )
241
- )
242
- guru.info(
243
- "procrustes init mean error: {:.5f} => {:.5f}".format(
244
- np.mean(errs_before[errs_before > 0]), np.mean(errs_after[errs_after > 0])
245
- )
246
- )
247
- guru.info(f"{init_rots.shape=}, {init_ts.shape=}, {motion_coefs.shape=}")
248
-
249
- if vis:
250
- server = get_server(port)
251
- center_idcs = torch.argmin(dists2centers, dim=0)
252
- print(f"{dists2centers.shape=} {center_idcs.shape=}")
253
- vis_se3_init_3d(server, init_rots, init_ts, means_cano[center_idcs])
254
- vis_tracks_3d(server, tracks_3d.xyz[center_idcs].numpy(), name="center_tracks")
255
- import ipdb
256
-
257
- ipdb.set_trace()
258
-
259
- bases = MotionBases(init_rots, init_ts)
260
- return bases, motion_coefs, tracks_3d
261
-
262
-
263
- def run_initial_optim(
264
- fg: GaussianParams,
265
- bases: MotionBases,
266
- tracks_3d: TrackObservations,
267
- Ks: torch.Tensor,
268
- w2cs: torch.Tensor,
269
- num_iters: int = 1000,
270
- use_depth_range_loss: bool = False,
271
- ):
272
- """
273
- :param motion_rots: [num_bases, num_frames, 4|6]
274
- :param motion_transls: [num_bases, num_frames, 3]
275
- :param motion_coefs: [num_bases, num_frames]
276
- :param means: [num_gaussians, 3]
277
- """
278
- optimizer = torch.optim.Adam(
279
- [
280
- {"params": bases.params["rots"], "lr": 1e-2},
281
- {"params": bases.params["transls"], "lr": 3e-2},
282
- {"params": fg.params["motion_coefs"], "lr": 1e-2},
283
- {"params": fg.params["means"], "lr": 1e-3},
284
- ],
285
- )
286
- scheduler = torch.optim.lr_scheduler.ExponentialLR(
287
- optimizer, gamma=0.1 ** (1 / num_iters)
288
- )
289
- G = fg.params.means.shape[0]
290
- num_frames = bases.num_frames
291
- device = bases.params["rots"].device
292
-
293
- w_smooth_func = lambda i, min_v, max_v, th: (
294
- min_v if i <= th else (max_v - min_v) * (i - th) / (num_iters - th) + min_v
295
- )
296
-
297
- gt_2d, gt_depth = project_2d_tracks(
298
- tracks_3d.xyz.swapaxes(0, 1), Ks, w2cs, return_depth=True
299
- )
300
- # (G, T, 2)
301
- gt_2d = gt_2d.swapaxes(0, 1)
302
- # (G, T)
303
- gt_depth = gt_depth.swapaxes(0, 1)
304
-
305
- ts = torch.arange(0, num_frames, device=device)
306
- ts_clamped = torch.clamp(ts, min=1, max=num_frames - 2)
307
- ts_neighbors = torch.cat((ts_clamped - 1, ts_clamped, ts_clamped + 1)) # i (3B,)
308
-
309
- pbar = tqdm(range(0, num_iters))
310
- for i in pbar:
311
- coefs = fg.get_coefs()
312
- transfms = bases.compute_transforms(ts, coefs)
313
- positions = torch.einsum(
314
- "pnij,pj->pni",
315
- transfms,
316
- F.pad(fg.params["means"], (0, 1), value=1.0),
317
- )
318
-
319
- loss = 0.0
320
- track_3d_loss = masked_l1_loss(
321
- positions,
322
- tracks_3d.xyz,
323
- (tracks_3d.visibles.float() * tracks_3d.confidences)[..., None],
324
- )
325
- loss += track_3d_loss * 1.0
326
-
327
- pred_2d, pred_depth = project_2d_tracks(
328
- positions.swapaxes(0, 1), Ks, w2cs, return_depth=True
329
- )
330
- pred_2d = pred_2d.swapaxes(0, 1)
331
- pred_depth = pred_depth.swapaxes(0, 1)
332
-
333
- loss_2d = (
334
- masked_l1_loss(
335
- pred_2d,
336
- gt_2d,
337
- (tracks_3d.invisibles.float() * tracks_3d.confidences)[..., None],
338
- quantile=0.95,
339
- )
340
- / Ks[0, 0, 0]
341
- )
342
- loss += 0.5 * loss_2d
343
-
344
- if use_depth_range_loss:
345
- near_depths = torch.quantile(gt_depth, 0.0, dim=0, keepdim=True)
346
- far_depths = torch.quantile(gt_depth, 0.98, dim=0, keepdim=True)
347
- loss_depth_in_range = 0
348
- if (pred_depth < near_depths).any():
349
- loss_depth_in_range += (near_depths - pred_depth)[
350
- pred_depth < near_depths
351
- ].mean()
352
- if (pred_depth > far_depths).any():
353
- loss_depth_in_range += (pred_depth - far_depths)[
354
- pred_depth > far_depths
355
- ].mean()
356
-
357
- loss += loss_depth_in_range * w_smooth_func(i, 0.05, 0.5, 400)
358
-
359
- motion_coef_sparse_loss = 1 - (coefs**2).sum(dim=-1).mean()
360
- loss += motion_coef_sparse_loss * 0.01
361
-
362
- # motion basis should be smooth.
363
- w_smooth = w_smooth_func(i, 0.01, 0.1, 400)
364
- small_acc_loss = compute_se3_smoothness_loss(
365
- bases.params["rots"], bases.params["transls"]
366
- )
367
- loss += small_acc_loss * w_smooth
368
-
369
- small_acc_loss_tracks = compute_accel_loss(positions)
370
- loss += small_acc_loss_tracks * w_smooth * 0.5
371
-
372
- transfms_nbs = bases.compute_transforms(ts_neighbors, coefs)
373
- means_nbs = torch.einsum(
374
- "pnij,pj->pni", transfms_nbs, F.pad(fg.params["means"], (0, 1), value=1.0)
375
- ) # (G, 3n, 3)
376
- means_nbs = means_nbs.reshape(means_nbs.shape[0], 3, -1, 3) # [G, 3, n, 3]
377
- z_accel_loss = compute_z_acc_loss(means_nbs, w2cs)
378
- loss += z_accel_loss * 0.1
379
-
380
- optimizer.zero_grad()
381
- loss.backward()
382
- optimizer.step()
383
- scheduler.step()
384
-
385
- pbar.set_description(
386
- f"{loss.item():.3f} "
387
- f"{track_3d_loss.item():.3f} "
388
- f"{motion_coef_sparse_loss.item():.3f} "
389
- f"{small_acc_loss.item():.3f} "
390
- f"{small_acc_loss_tracks.item():.3f} "
391
- f"{z_accel_loss.item():.3f} "
392
- )
393
-
394
-
395
- def random_quats(N: int) -> torch.Tensor:
396
- u = torch.rand(N, 1)
397
- v = torch.rand(N, 1)
398
- w = torch.rand(N, 1)
399
- quats = torch.cat(
400
- [
401
- torch.sqrt(1.0 - u) * torch.sin(2.0 * np.pi * v),
402
- torch.sqrt(1.0 - u) * torch.cos(2.0 * np.pi * v),
403
- torch.sqrt(u) * torch.sin(2.0 * np.pi * w),
404
- torch.sqrt(u) * torch.cos(2.0 * np.pi * w),
405
- ],
406
- -1,
407
- )
408
- return quats
409
-
410
-
411
- def compute_means(ts, fg: GaussianParams, bases: MotionBases):
412
- transfms = bases.compute_transforms(ts, fg.get_coefs())
413
- means = torch.einsum(
414
- "pnij,pj->pni",
415
- transfms,
416
- F.pad(fg.params["means"], (0, 1), value=1.0),
417
- )
418
- return means
419
-
420
-
421
- def vis_init_params(
422
- server,
423
- fg: GaussianParams,
424
- bases: MotionBases,
425
- name="init_params",
426
- num_vis: int = 100,
427
- ):
428
- idcs = np.random.choice(fg.num_gaussians, num_vis)
429
- labels = np.linspace(0, 1, num_vis)
430
- ts = torch.arange(bases.num_frames, device=bases.params["rots"].device)
431
- with torch.no_grad():
432
- pred_means = compute_means(ts, fg, bases)
433
- vis_means = pred_means[idcs].detach().cpu().numpy()
434
- vis_tracks_3d(server, vis_means, labels, name=name)
435
-
436
-
437
- @torch.no_grad()
438
- def vis_se3_init_3d(server, init_rots, init_ts, basis_centers):
439
- """
440
- :param init_rots: [num_bases, num_frames, 4|6]
441
- :param init_ts: [num_bases, num_frames, 3]
442
- :param basis_centers: [num_bases, 3]
443
- """
444
- # visualize the initial centers across time
445
- rot_dim = init_rots.shape[-1]
446
- assert rot_dim in [4, 6]
447
- num_bases = init_rots.shape[0]
448
- assert init_ts.shape[0] == num_bases
449
- assert basis_centers.shape[0] == num_bases
450
- labels = np.linspace(0, 1, num_bases)
451
- if rot_dim == 4:
452
- quats = F.normalize(init_rots, dim=-1, p=2)
453
- rmats = roma.unitquat_to_rotmat(quats.roll(-1, dims=-1))
454
- else:
455
- rmats = cont_6d_to_rmat(init_rots)
456
- transls = init_ts
457
- transfms = rt_to_mat4(rmats, transls)
458
- center_tracks3d = torch.einsum(
459
- "bnij,bj->bni", transfms, F.pad(basis_centers, (0, 1), value=1.0)
460
- )[..., :3]
461
- vis_tracks_3d(server, center_tracks3d.cpu().numpy(), labels, name="se3_centers")
462
-
463
-
464
- @torch.no_grad()
465
- def vis_tracks_2d_video(
466
- path,
467
- imgs: np.ndarray,
468
- tracks_3d: np.ndarray,
469
- Ks: np.ndarray,
470
- w2cs: np.ndarray,
471
- occs=None,
472
- radius: int = 3,
473
- ):
474
- num_tracks = tracks_3d.shape[0]
475
- labels = np.linspace(0, 1, num_tracks)
476
- cmap = get_cmap("gist_rainbow")
477
- colors = cmap(labels)[:, :3]
478
- tracks_2d = (
479
- project_2d_tracks(tracks_3d.swapaxes(0, 1), Ks, w2cs).cpu().numpy() # type: ignore
480
- )
481
- frames = np.asarray(
482
- draw_keypoints_video(imgs, tracks_2d, colors, occs, radius=radius)
483
- )
484
- iio.imwrite(path, frames, fps=15)
485
-
486
-
487
- def vis_tracks_3d(
488
- server: ViserServer,
489
- vis_tracks: np.ndarray,
490
- vis_label: np.ndarray | None = None,
491
- name: str = "tracks",
492
- ):
493
- """
494
- :param vis_tracks (np.ndarray): (N, T, 3)
495
- :param vis_label (np.ndarray): (N)
496
- """
497
- cmap = get_cmap("gist_rainbow")
498
- if vis_label is None:
499
- vis_label = np.linspace(0, 1, len(vis_tracks))
500
- colors = cmap(np.asarray(vis_label))[:, :3]
501
- guru.info(f"{colors.shape=}, {vis_tracks.shape=}")
502
- N, T = vis_tracks.shape[:2]
503
- vis_tracks = np.asarray(vis_tracks)
504
- for i in range(N):
505
- server.scene.add_spline_catmull_rom(
506
- f"/{name}/{i}/spline", vis_tracks[i], color=colors[i], segments=T - 1
507
- )
508
- server.scene.add_point_cloud(
509
- f"/{name}/{i}/start",
510
- vis_tracks[i, [0]],
511
- colors=colors[i : i + 1],
512
- point_size=0.05,
513
- point_shape="circle",
514
- )
515
- server.scene.add_point_cloud(
516
- f"/{name}/{i}/end",
517
- vis_tracks[i, [-1]],
518
- colors=colors[i : i + 1],
519
- point_size=0.05,
520
- point_shape="diamond",
521
- )
522
-
523
-
524
- def sample_initial_bases_centers(
525
- mode: str, cano_t: int, tracks_3d: TrackObservations, num_bases: int
526
- ):
527
- """
528
- :param mode: "farthest" | "hdbscan" | "kmeans"
529
- :param tracks_3d: [G, T, 3]
530
- :param cano_t: canonical index
531
- :param num_bases: number of SE3 bases
532
- """
533
- assert mode in ["farthest", "hdbscan", "kmeans"]
534
- means_canonical = tracks_3d.xyz[:, cano_t].clone()
535
- # if mode == "farthest":
536
- # vis_mask = tracks_3d.visibles[:, cano_t]
537
- # sampled_centers, _ = sample_farthest_points(
538
- # means_canonical[vis_mask][None],
539
- # K=num_bases,
540
- # random_start_point=True,
541
- # ) # [1, num_bases, 3]
542
- # dists2centers = torch.norm(means_canonical[:, None] - sampled_centers, dim=-1).T
543
- # return sampled_centers, num_bases, dists2centers
544
-
545
- # linearly interpolate missing 3d points
546
- xyz = cp.asarray(tracks_3d.xyz)
547
- print(f"{xyz.shape=}")
548
- visibles = cp.asarray(tracks_3d.visibles)
549
-
550
- num_tracks = xyz.shape[0]
551
- xyz_interp = batched_interp_masked(xyz, visibles)
552
-
553
- # num_vis = 50
554
- # server = get_server(port=8890)
555
- # idcs = np.random.choice(num_tracks, num_vis)
556
- # labels = np.linspace(0, 1, num_vis)
557
- # vis_tracks_3d(server, tracks_3d.xyz[idcs].get(), labels, name="raw_tracks")
558
- # vis_tracks_3d(server, xyz_interp[idcs].get(), labels, name="interp_tracks")
559
- # import ipdb; ipdb.set_trace()
560
-
561
- velocities = xyz_interp[:, 1:] - xyz_interp[:, :-1]
562
- vel_dirs = (
563
- velocities / (cp.linalg.norm(velocities, axis=-1, keepdims=True) + 1e-5)
564
- ).reshape((num_tracks, -1))
565
-
566
- # [num_bases, num_gaussians]
567
- if mode == "kmeans":
568
- model = KMeans(n_clusters=num_bases)
569
- else:
570
- model = HDBSCAN(min_cluster_size=20, max_cluster_size=num_tracks // 4)
571
- model.fit(vel_dirs)
572
- labels = model.labels_
573
- num_bases = labels.max().item() + 1
574
- sampled_centers = torch.stack(
575
- [
576
- means_canonical[torch.tensor(labels == i)].median(dim=0).values
577
- for i in range(num_bases)
578
- ]
579
- )[None]
580
- print("number of {} clusters: ".format(mode), num_bases)
581
- return sampled_centers, num_bases, torch.tensor(labels)
582
-
583
-
584
- def interp_masked(vals: cp.ndarray, mask: cp.ndarray, pad: int = 1) -> cp.ndarray:
585
- """
586
- hacky way to interpolate batched with cupy
587
- by concatenating the batches and pad with dummy values
588
- :param vals: [B, M, *]
589
- :param mask: [B, M]
590
- """
591
- assert mask.ndim == 2
592
- assert vals.shape[:2] == mask.shape
593
-
594
- B, M = mask.shape
595
-
596
- # get the first and last valid values for each track
597
- sh = vals.shape[2:]
598
- vals = vals.reshape((B, M, -1))
599
- D = vals.shape[-1]
600
- first_val_idcs = cp.argmax(mask, axis=-1)
601
- last_val_idcs = M - 1 - cp.argmax(cp.flip(mask, axis=-1), axis=-1)
602
- bidcs = cp.arange(B)
603
-
604
- v0 = vals[bidcs, first_val_idcs][:, None]
605
- v1 = vals[bidcs, last_val_idcs][:, None]
606
- m0 = mask[bidcs, first_val_idcs][:, None]
607
- m1 = mask[bidcs, last_val_idcs][:, None]
608
- if pad > 1:
609
- v0 = cp.tile(v0, [1, pad, 1])
610
- v1 = cp.tile(v1, [1, pad, 1])
611
- m0 = cp.tile(m0, [1, pad])
612
- m1 = cp.tile(m1, [1, pad])
613
-
614
- vals_pad = cp.concatenate([v0, vals, v1], axis=1)
615
- mask_pad = cp.concatenate([m0, mask, m1], axis=1)
616
-
617
- M_pad = vals_pad.shape[1]
618
- vals_flat = vals_pad.reshape((B * M_pad, -1))
619
- mask_flat = mask_pad.reshape((B * M_pad,))
620
- idcs = cp.where(mask_flat)[0]
621
-
622
- cx = cp.arange(B * M_pad)
623
- out = cp.zeros((B * M_pad, D), dtype=vals_flat.dtype)
624
- for d in range(D):
625
- out[:, d] = cp.interp(cx, idcs, vals_flat[idcs, d])
626
-
627
- out = out.reshape((B, M_pad, *sh))[:, pad:-pad]
628
- return out
629
-
630
-
631
- def batched_interp_masked(
632
- vals: cp.ndarray, mask: cp.ndarray, batch_num: int = 4096, batch_time: int = 64
633
- ):
634
- assert mask.ndim == 2
635
- B, M = mask.shape
636
- out = cp.zeros_like(vals)
637
- for b in tqdm(range(0, B, batch_num), leave=False):
638
- for m in tqdm(range(0, M, batch_time), leave=False):
639
- x = interp_masked(
640
- vals[b : b + batch_num, m : m + batch_time],
641
- mask[b : b + batch_num, m : m + batch_time],
642
- ) # (batch_num, batch_time, *)
643
- out[b : b + batch_num, m : m + batch_time] = x
644
- return out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
som_out/bear/code/2024-10-25-234902/flow3d/loss_utils.py DELETED
@@ -1,158 +0,0 @@
1
- import numpy as np
2
- import torch
3
- import torch.nn.functional as F
4
- from sklearn.neighbors import NearestNeighbors
5
-
6
-
7
- def masked_mse_loss(pred, gt, mask=None, normalize=True, quantile: float = 1.0):
8
- if mask is None:
9
- return trimmed_mse_loss(pred, gt, quantile)
10
- else:
11
- sum_loss = F.mse_loss(pred, gt, reduction="none").mean(dim=-1, keepdim=True)
12
- quantile_mask = (
13
- (sum_loss < torch.quantile(sum_loss, quantile)).squeeze(-1)
14
- if quantile < 1
15
- else torch.ones_like(sum_loss, dtype=torch.bool).squeeze(-1)
16
- )
17
- ndim = sum_loss.shape[-1]
18
- if normalize:
19
- return torch.sum((sum_loss * mask)[quantile_mask]) / (
20
- ndim * torch.sum(mask[quantile_mask]) + 1e-8
21
- )
22
- else:
23
- return torch.mean((sum_loss * mask)[quantile_mask])
24
-
25
-
26
- def masked_l1_loss(pred, gt, mask=None, normalize=True, quantile: float = 1.0):
27
- if mask is None:
28
- return trimmed_l1_loss(pred, gt, quantile)
29
- else:
30
- sum_loss = F.l1_loss(pred, gt, reduction="none").mean(dim=-1, keepdim=True)
31
- quantile_mask = (
32
- (sum_loss < torch.quantile(sum_loss, quantile)).squeeze(-1)
33
- if quantile < 1
34
- else torch.ones_like(sum_loss, dtype=torch.bool).squeeze(-1)
35
- )
36
- ndim = sum_loss.shape[-1]
37
- if normalize:
38
- return torch.sum((sum_loss * mask)[quantile_mask]) / (
39
- ndim * torch.sum(mask[quantile_mask]) + 1e-8
40
- )
41
- else:
42
- return torch.mean((sum_loss * mask)[quantile_mask])
43
-
44
-
45
- def masked_huber_loss(pred, gt, delta, mask=None, normalize=True):
46
- if mask is None:
47
- return F.huber_loss(pred, gt, delta=delta)
48
- else:
49
- sum_loss = F.huber_loss(pred, gt, delta=delta, reduction="none")
50
- ndim = sum_loss.shape[-1]
51
- if normalize:
52
- return torch.sum(sum_loss * mask) / (ndim * torch.sum(mask) + 1e-8)
53
- else:
54
- return torch.mean(sum_loss * mask)
55
-
56
-
57
- def trimmed_mse_loss(pred, gt, quantile=0.9):
58
- loss = F.mse_loss(pred, gt, reduction="none").mean(dim=-1)
59
- loss_at_quantile = torch.quantile(loss, quantile)
60
- trimmed_loss = loss[loss < loss_at_quantile].mean()
61
- return trimmed_loss
62
-
63
-
64
- def trimmed_l1_loss(pred, gt, quantile=0.9):
65
- loss = F.l1_loss(pred, gt, reduction="none").mean(dim=-1)
66
- loss_at_quantile = torch.quantile(loss, quantile)
67
- trimmed_loss = loss[loss < loss_at_quantile].mean()
68
- return trimmed_loss
69
-
70
-
71
- def compute_gradient_loss(pred, gt, mask, quantile=0.98):
72
- """
73
- Compute gradient loss
74
- pred: (batch_size, H, W, D) or (batch_size, H, W)
75
- gt: (batch_size, H, W, D) or (batch_size, H, W)
76
- mask: (batch_size, H, W), bool or float
77
- """
78
- # NOTE: messy need to be cleaned up
79
- mask_x = mask[:, :, 1:] * mask[:, :, :-1]
80
- mask_y = mask[:, 1:, :] * mask[:, :-1, :]
81
- pred_grad_x = pred[:, :, 1:] - pred[:, :, :-1]
82
- pred_grad_y = pred[:, 1:, :] - pred[:, :-1, :]
83
- gt_grad_x = gt[:, :, 1:] - gt[:, :, :-1]
84
- gt_grad_y = gt[:, 1:, :] - gt[:, :-1, :]
85
- loss = masked_l1_loss(
86
- pred_grad_x[mask_x][..., None], gt_grad_x[mask_x][..., None], quantile=quantile
87
- ) + masked_l1_loss(
88
- pred_grad_y[mask_y][..., None], gt_grad_y[mask_y][..., None], quantile=quantile
89
- )
90
- return loss
91
-
92
-
93
- def knn(x: torch.Tensor, k: int) -> tuple[np.ndarray, np.ndarray]:
94
- x = x.cpu().numpy()
95
- knn_model = NearestNeighbors(
96
- n_neighbors=k + 1, algorithm="auto", metric="euclidean"
97
- ).fit(x)
98
- distances, indices = knn_model.kneighbors(x)
99
- return distances[:, 1:].astype(np.float32), indices[:, 1:].astype(np.float32)
100
-
101
-
102
- def get_weights_for_procrustes(clusters, visibilities=None):
103
- clusters_median = clusters.median(dim=-2, keepdim=True)[0]
104
- dists2clusters_center = torch.norm(clusters - clusters_median, dim=-1)
105
- dists2clusters_center /= dists2clusters_center.median(dim=-1, keepdim=True)[0]
106
- weights = torch.exp(-dists2clusters_center)
107
- weights /= weights.mean(dim=-1, keepdim=True) + 1e-6
108
- if visibilities is not None:
109
- weights *= visibilities.float() + 1e-6
110
- invalid = dists2clusters_center > np.quantile(
111
- dists2clusters_center.cpu().numpy(), 0.9
112
- )
113
- invalid |= torch.isnan(weights)
114
- weights[invalid] = 0
115
- return weights
116
-
117
-
118
- def compute_z_acc_loss(means_ts_nb: torch.Tensor, w2cs: torch.Tensor):
119
- """
120
- :param means_ts (G, 3, B, 3)
121
- :param w2cs (B, 4, 4)
122
- return (float)
123
- """
124
- camera_center_t = torch.linalg.inv(w2cs)[:, :3, 3] # (B, 3)
125
- ray_dir = F.normalize(
126
- means_ts_nb[:, 1] - camera_center_t, p=2.0, dim=-1
127
- ) # [G, B, 3]
128
- # acc = 2 * means[:, 1] - means[:, 0] - means[:, 2] # [G, B, 3]
129
- # acc_loss = (acc * ray_dir).sum(dim=-1).abs().mean()
130
- acc_loss = (
131
- ((means_ts_nb[:, 1] - means_ts_nb[:, 0]) * ray_dir).sum(dim=-1) ** 2
132
- ).mean() + (
133
- ((means_ts_nb[:, 2] - means_ts_nb[:, 1]) * ray_dir).sum(dim=-1) ** 2
134
- ).mean()
135
- return acc_loss
136
-
137
-
138
- def compute_se3_smoothness_loss(
139
- rots: torch.Tensor,
140
- transls: torch.Tensor,
141
- weight_rot: float = 1.0,
142
- weight_transl: float = 2.0,
143
- ):
144
- """
145
- central differences
146
- :param motion_transls (K, T, 3)
147
- :param motion_rots (K, T, 6)
148
- """
149
- r_accel_loss = compute_accel_loss(rots)
150
- t_accel_loss = compute_accel_loss(transls)
151
- return r_accel_loss * weight_rot + t_accel_loss * weight_transl
152
-
153
-
154
- def compute_accel_loss(transls):
155
- accel = 2 * transls[:, 1:-1] - transls[:, :-2] - transls[:, 2:]
156
- loss = accel.norm(dim=-1).mean()
157
- return loss
158
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
som_out/bear/code/2024-10-25-234902/flow3d/metrics.py DELETED
@@ -1,313 +0,0 @@
1
- from typing import Literal
2
-
3
- import numpy as np
4
- import torch
5
- import torch.nn.functional as F
6
- from torchmetrics.functional.image.lpips import _NoTrainLpips
7
- from torchmetrics.image import PeakSignalNoiseRatio, StructuralSimilarityIndexMeasure
8
- from torchmetrics.metric import Metric
9
- from torchmetrics.utilities import dim_zero_cat
10
- from torchmetrics.utilities.imports import _TORCHVISION_AVAILABLE
11
-
12
-
13
- def compute_psnr(
14
- preds: torch.Tensor,
15
- targets: torch.Tensor,
16
- masks: torch.Tensor | None = None,
17
- ) -> float:
18
- """
19
- Args:
20
- preds (torch.Tensor): (..., 3) predicted images in [0, 1].
21
- targets (torch.Tensor): (..., 3) target images in [0, 1].
22
- masks (torch.Tensor | None): (...,) optional binary masks where the
23
- 1-regions will be taken into account.
24
-
25
- Returns:
26
- psnr (float): Peak signal-to-noise ratio.
27
- """
28
- if masks is None:
29
- masks = torch.ones_like(preds[..., 0])
30
- return (
31
- -10.0
32
- * torch.log(
33
- F.mse_loss(
34
- preds * masks[..., None],
35
- targets * masks[..., None],
36
- reduction="sum",
37
- )
38
- / masks.sum().clamp(min=1.0)
39
- / 3.0
40
- )
41
- / np.log(10.0)
42
- ).item()
43
-
44
-
45
- def compute_pose_errors(
46
- preds: torch.Tensor, targets: torch.Tensor
47
- ) -> tuple[float, float, float]:
48
- """
49
- Args:
50
- preds: (N, 4, 4) predicted camera poses.
51
- targets: (N, 4, 4) target camera poses.
52
-
53
- Returns:
54
- ate (float): Absolute trajectory error.
55
- rpe_t (float): Relative pose error in translation.
56
- rpe_r (float): Relative pose error in rotation (degree).
57
- """
58
- # Compute ATE.
59
- ate = torch.linalg.norm(preds[:, :3, -1] - targets[:, :3, -1], dim=-1).mean().item()
60
- # Compute RPE_t and RPE_r.
61
- # NOTE(hangg): It's important to use numpy here for the accuracy of RPE_r.
62
- # torch has numerical issues for acos when the value is close to 1.0, i.e.
63
- # RPE_r is supposed to be very small, and will result in artificially large
64
- # error.
65
- preds = preds.detach().cpu().numpy()
66
- targets = targets.detach().cpu().numpy()
67
- pred_rels = np.linalg.inv(preds[:-1]) @ preds[1:]
68
- pred_rels = np.linalg.inv(preds[:-1]) @ preds[1:]
69
- target_rels = np.linalg.inv(targets[:-1]) @ targets[1:]
70
- error_rels = np.linalg.inv(target_rels) @ pred_rels
71
- traces = error_rels[:, :3, :3].trace(axis1=-2, axis2=-1)
72
- rpe_t = np.linalg.norm(error_rels[:, :3, -1], axis=-1).mean().item()
73
- rpe_r = (
74
- np.arccos(np.clip((traces - 1.0) / 2.0, -1.0, 1.0)).mean().item()
75
- / np.pi
76
- * 180.0
77
- )
78
- return ate, rpe_t, rpe_r
79
-
80
-
81
- class mPSNR(PeakSignalNoiseRatio):
82
- sum_squared_error: list[torch.Tensor]
83
- total: list[torch.Tensor]
84
-
85
- def __init__(self, **kwargs) -> None:
86
- super().__init__(
87
- data_range=1.0,
88
- base=10.0,
89
- dim=None,
90
- reduction="elementwise_mean",
91
- **kwargs,
92
- )
93
- self.add_state("sum_squared_error", default=[], dist_reduce_fx="cat")
94
- self.add_state("total", default=[], dist_reduce_fx="cat")
95
-
96
- def __len__(self) -> int:
97
- return len(self.total)
98
-
99
- def update(
100
- self,
101
- preds: torch.Tensor,
102
- targets: torch.Tensor,
103
- masks: torch.Tensor | None = None,
104
- ):
105
- """Update state with predictions and targets.
106
-
107
- Args:
108
- preds (torch.Tensor): (..., 3) float32 predicted images.
109
- targets (torch.Tensor): (..., 3) float32 target images.
110
- masks (torch.Tensor | None): (...,) optional binary masks where the
111
- 1-regions will be taken into account.
112
- """
113
- if masks is None:
114
- masks = torch.ones_like(preds[..., 0])
115
- self.sum_squared_error.append(
116
- torch.sum(torch.pow((preds - targets) * masks[..., None], 2))
117
- )
118
- self.total.append(masks.sum().to(torch.int64) * 3)
119
-
120
- def compute(self) -> torch.Tensor:
121
- """Compute peak signal-to-noise ratio over state."""
122
- sum_squared_error = dim_zero_cat(self.sum_squared_error)
123
- total = dim_zero_cat(self.total)
124
- return -10.0 * torch.log(sum_squared_error / total).mean() / np.log(10.0)
125
-
126
-
127
- class mSSIM(StructuralSimilarityIndexMeasure):
128
- similarity: list
129
-
130
- def __init__(self, **kwargs) -> None:
131
- super().__init__(
132
- reduction=None,
133
- data_range=1.0,
134
- return_full_image=False,
135
- **kwargs,
136
- )
137
- assert isinstance(self.sigma, float)
138
-
139
- def __len__(self) -> int:
140
- return sum([s.shape[0] for s in self.similarity])
141
-
142
- def update(
143
- self,
144
- preds: torch.Tensor,
145
- targets: torch.Tensor,
146
- masks: torch.Tensor | None = None,
147
- ):
148
- """Update state with predictions and targets.
149
-
150
- Args:
151
- preds (torch.Tensor): (B, H, W, 3) float32 predicted images.
152
- targets (torch.Tensor): (B, H, W, 3) float32 target images.
153
- masks (torch.Tensor | None): (B, H, W) optional binary masks where
154
- the 1-regions will be taken into account.
155
- """
156
- if masks is None:
157
- masks = torch.ones_like(preds[..., 0])
158
-
159
- # Construct a 1D Gaussian blur filter.
160
- assert isinstance(self.kernel_size, int)
161
- hw = self.kernel_size // 2
162
- shift = (2 * hw - self.kernel_size + 1) / 2
163
- assert isinstance(self.sigma, float)
164
- f_i = (
165
- (torch.arange(self.kernel_size, device=preds.device) - hw + shift)
166
- / self.sigma
167
- ) ** 2
168
- filt = torch.exp(-0.5 * f_i)
169
- filt /= torch.sum(filt)
170
-
171
- # Blur in x and y (faster than the 2D convolution).
172
- def convolve2d(z, m, f):
173
- # z: (B, H, W, C), m: (B, H, W), f: (Hf, Wf).
174
- z = z.permute(0, 3, 1, 2)
175
- m = m[:, None]
176
- f = f[None, None].expand(z.shape[1], -1, -1, -1)
177
- z_ = torch.nn.functional.conv2d(
178
- z * m, f, padding="valid", groups=z.shape[1]
179
- )
180
- m_ = torch.nn.functional.conv2d(m, torch.ones_like(f[:1]), padding="valid")
181
- return torch.where(
182
- m_ != 0, z_ * torch.ones_like(f).sum() / (m_ * z.shape[1]), 0
183
- ).permute(0, 2, 3, 1), (m_ != 0)[:, 0].to(z.dtype)
184
-
185
- filt_fn1 = lambda z, m: convolve2d(z, m, filt[:, None])
186
- filt_fn2 = lambda z, m: convolve2d(z, m, filt[None, :])
187
- filt_fn = lambda z, m: filt_fn1(*filt_fn2(z, m))
188
-
189
- mu0 = filt_fn(preds, masks)[0]
190
- mu1 = filt_fn(targets, masks)[0]
191
- mu00 = mu0 * mu0
192
- mu11 = mu1 * mu1
193
- mu01 = mu0 * mu1
194
- sigma00 = filt_fn(preds**2, masks)[0] - mu00
195
- sigma11 = filt_fn(targets**2, masks)[0] - mu11
196
- sigma01 = filt_fn(preds * targets, masks)[0] - mu01
197
-
198
- # Clip the variances and covariances to valid values.
199
- # Variance must be non-negative:
200
- sigma00 = sigma00.clamp(min=0.0)
201
- sigma11 = sigma11.clamp(min=0.0)
202
- sigma01 = torch.sign(sigma01) * torch.minimum(
203
- torch.sqrt(sigma00 * sigma11), torch.abs(sigma01)
204
- )
205
-
206
- assert isinstance(self.data_range, float)
207
- c1 = (self.k1 * self.data_range) ** 2
208
- c2 = (self.k2 * self.data_range) ** 2
209
- numer = (2 * mu01 + c1) * (2 * sigma01 + c2)
210
- denom = (mu00 + mu11 + c1) * (sigma00 + sigma11 + c2)
211
- ssim_map = numer / denom
212
-
213
- self.similarity.append(ssim_map.mean(dim=(1, 2, 3)))
214
-
215
- def compute(self) -> torch.Tensor:
216
- """Compute final SSIM metric."""
217
- return torch.cat(self.similarity).mean()
218
-
219
-
220
- class mLPIPS(Metric):
221
- sum_scores: list[torch.Tensor]
222
- total: list[torch.Tensor]
223
-
224
- def __init__(
225
- self,
226
- net_type: Literal["vgg", "alex", "squeeze"] = "alex",
227
- **kwargs,
228
- ):
229
- super().__init__(**kwargs)
230
-
231
- if not _TORCHVISION_AVAILABLE:
232
- raise ModuleNotFoundError(
233
- "LPIPS metric requires that torchvision is installed."
234
- " Either install as `pip install torchmetrics[image]` or `pip install torchvision`."
235
- )
236
-
237
- valid_net_type = ("vgg", "alex", "squeeze")
238
- if net_type not in valid_net_type:
239
- raise ValueError(
240
- f"Argument `net_type` must be one of {valid_net_type}, but got {net_type}."
241
- )
242
- self.net = _NoTrainLpips(net=net_type, spatial=True)
243
-
244
- self.add_state("sum_scores", [], dist_reduce_fx="cat")
245
- self.add_state("total", [], dist_reduce_fx="cat")
246
-
247
- def __len__(self) -> int:
248
- return len(self.total)
249
-
250
- def update(
251
- self,
252
- preds: torch.Tensor,
253
- targets: torch.Tensor,
254
- masks: torch.Tensor | None = None,
255
- ):
256
- """Update internal states with lpips scores.
257
-
258
- Args:
259
- preds (torch.Tensor): (B, H, W, 3) float32 predicted images.
260
- targets (torch.Tensor): (B, H, W, 3) float32 target images.
261
- masks (torch.Tensor | None): (B, H, W) optional float32 binary
262
- masks where the 1-regions will be taken into account.
263
- """
264
- if masks is None:
265
- masks = torch.ones_like(preds[..., 0])
266
- scores = self.net(
267
- (preds * masks[..., None]).permute(0, 3, 1, 2),
268
- (targets * masks[..., None]).permute(0, 3, 1, 2),
269
- normalize=True,
270
- )
271
- self.sum_scores.append((scores * masks[:, None]).sum())
272
- self.total.append(masks.sum().to(torch.int64))
273
-
274
- def compute(self) -> torch.Tensor:
275
- """Compute final perceptual similarity metric."""
276
- return (
277
- torch.tensor(self.sum_scores, device=self.device)
278
- / torch.tensor(self.total, device=self.device)
279
- ).mean()
280
-
281
-
282
- class PCK(Metric):
283
- correct: list[torch.Tensor]
284
- total: list[int]
285
-
286
- def __init__(self, **kwargs):
287
- super().__init__(**kwargs)
288
- self.add_state("correct", default=[], dist_reduce_fx="cat")
289
- self.add_state("total", default=[], dist_reduce_fx="cat")
290
-
291
- def __len__(self) -> int:
292
- return len(self.total)
293
-
294
- def update(self, preds: torch.Tensor, targets: torch.Tensor, threshold: float):
295
- """Update internal states with PCK scores.
296
-
297
- Args:
298
- preds (torch.Tensor): (N, 2) predicted 2D keypoints.
299
- targets (torch.Tensor): (N, 2) targets 2D keypoints.
300
- threshold (float): PCK threshold.
301
- """
302
-
303
- self.correct.append(
304
- (torch.linalg.norm(preds - targets, dim=-1) < threshold).sum()
305
- )
306
- self.total.append(preds.shape[0])
307
-
308
- def compute(self) -> torch.Tensor:
309
- """Compute PCK over state."""
310
- return (
311
- torch.tensor(self.correct, device=self.device)
312
- / torch.clamp(torch.tensor(self.total, device=self.device), min=1e-8)
313
- ).mean()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
som_out/bear/code/2024-10-25-234902/flow3d/params.py DELETED
@@ -1,184 +0,0 @@
1
- import math
2
-
3
- import torch
4
- import torch.nn as nn
5
- import torch.nn.functional as F
6
-
7
- from flow3d.transforms import cont_6d_to_rmat
8
-
9
-
10
- class GaussianParams(nn.Module):
11
- def __init__(
12
- self,
13
- means: torch.Tensor,
14
- quats: torch.Tensor,
15
- scales: torch.Tensor,
16
- colors: torch.Tensor,
17
- opacities: torch.Tensor,
18
- motion_coefs: torch.Tensor | None = None,
19
- scene_center: torch.Tensor | None = None,
20
- scene_scale: torch.Tensor | float = 1.0,
21
- ):
22
- super().__init__()
23
- if not check_gaussian_sizes(
24
- means, quats, scales, colors, opacities, motion_coefs
25
- ):
26
- import ipdb
27
-
28
- ipdb.set_trace()
29
- params_dict = {
30
- "means": nn.Parameter(means),
31
- "quats": nn.Parameter(quats),
32
- "scales": nn.Parameter(scales),
33
- "colors": nn.Parameter(colors),
34
- "opacities": nn.Parameter(opacities),
35
- }
36
- if motion_coefs is not None:
37
- params_dict["motion_coefs"] = nn.Parameter(motion_coefs)
38
- self.params = nn.ParameterDict(params_dict)
39
- self.quat_activation = lambda x: F.normalize(x, dim=-1, p=2)
40
- self.color_activation = torch.sigmoid
41
- self.scale_activation = torch.exp
42
- self.opacity_activation = torch.sigmoid
43
- self.motion_coef_activation = lambda x: F.softmax(x, dim=-1)
44
-
45
- if scene_center is None:
46
- scene_center = torch.zeros(3, device=means.device)
47
- self.register_buffer("scene_center", scene_center)
48
- self.register_buffer("scene_scale", torch.as_tensor(scene_scale))
49
-
50
- @staticmethod
51
- def init_from_state_dict(state_dict, prefix="params."):
52
- req_keys = ["means", "quats", "scales", "colors", "opacities"]
53
- assert all(f"{prefix}{k}" in state_dict for k in req_keys)
54
- args = {
55
- "motion_coefs": None,
56
- "scene_center": torch.zeros(3),
57
- "scene_scale": torch.tensor(1.0),
58
- }
59
- for k in req_keys + list(args.keys()):
60
- if f"{prefix}{k}" in state_dict:
61
- args[k] = state_dict[f"{prefix}{k}"]
62
- return GaussianParams(**args)
63
-
64
- @property
65
- def num_gaussians(self) -> int:
66
- return self.params["means"].shape[0]
67
-
68
- def get_colors(self) -> torch.Tensor:
69
- return self.color_activation(self.params["colors"])
70
-
71
- def get_scales(self) -> torch.Tensor:
72
- return self.scale_activation(self.params["scales"])
73
-
74
- def get_opacities(self) -> torch.Tensor:
75
- return self.opacity_activation(self.params["opacities"])
76
-
77
- def get_quats(self) -> torch.Tensor:
78
- return self.quat_activation(self.params["quats"])
79
-
80
- def get_coefs(self) -> torch.Tensor:
81
- assert "motion_coefs" in self.params
82
- return self.motion_coef_activation(self.params["motion_coefs"])
83
-
84
- def densify_params(self, should_split, should_dup):
85
- """
86
- densify gaussians
87
- """
88
- updated_params = {}
89
- for name, x in self.params.items():
90
- x_dup = x[should_dup]
91
- x_split = x[should_split].repeat([2] + [1] * (x.ndim - 1))
92
- if name == "scales":
93
- x_split -= math.log(1.6)
94
- x_new = nn.Parameter(torch.cat([x[~should_split], x_dup, x_split], dim=0))
95
- updated_params[name] = x_new
96
- self.params[name] = x_new
97
- return updated_params
98
-
99
- def cull_params(self, should_cull):
100
- """
101
- cull gaussians
102
- """
103
- updated_params = {}
104
- for name, x in self.params.items():
105
- x_new = nn.Parameter(x[~should_cull])
106
- updated_params[name] = x_new
107
- self.params[name] = x_new
108
- return updated_params
109
-
110
- def reset_opacities(self, new_val):
111
- """
112
- reset all opacities to new_val
113
- """
114
- self.params["opacities"].data.fill_(new_val)
115
- updated_params = {"opacities": self.params["opacities"]}
116
- return updated_params
117
-
118
-
119
- class MotionBases(nn.Module):
120
- def __init__(self, rots, transls):
121
- super().__init__()
122
- self.num_frames = rots.shape[1]
123
- self.num_bases = rots.shape[0]
124
- assert check_bases_sizes(rots, transls)
125
- self.params = nn.ParameterDict(
126
- {
127
- "rots": nn.Parameter(rots),
128
- "transls": nn.Parameter(transls),
129
- }
130
- )
131
-
132
- @staticmethod
133
- def init_from_state_dict(state_dict, prefix="params."):
134
- param_keys = ["rots", "transls"]
135
- assert all(f"{prefix}{k}" in state_dict for k in param_keys)
136
- args = {k: state_dict[f"{prefix}{k}"] for k in param_keys}
137
- return MotionBases(**args)
138
-
139
- def compute_transforms(self, ts: torch.Tensor, coefs: torch.Tensor) -> torch.Tensor:
140
- """
141
- :param ts (B)
142
- :param coefs (G, K)
143
- returns transforms (G, B, 3, 4)
144
- """
145
- transls = self.params["transls"][:, ts] # (K, B, 3)
146
- rots = self.params["rots"][:, ts] # (K, B, 6)
147
- transls = torch.einsum("pk,kni->pni", coefs, transls)
148
- rots = torch.einsum("pk,kni->pni", coefs, rots) # (G, B, 6)
149
- rotmats = cont_6d_to_rmat(rots) # (K, B, 3, 3)
150
- return torch.cat([rotmats, transls[..., None]], dim=-1)
151
-
152
-
153
- def check_gaussian_sizes(
154
- means: torch.Tensor,
155
- quats: torch.Tensor,
156
- scales: torch.Tensor,
157
- colors: torch.Tensor,
158
- opacities: torch.Tensor,
159
- motion_coefs: torch.Tensor | None = None,
160
- ) -> bool:
161
- dims = means.shape[:-1]
162
- leading_dims_match = (
163
- quats.shape[:-1] == dims
164
- and scales.shape[:-1] == dims
165
- and colors.shape[:-1] == dims
166
- and opacities.shape == dims
167
- )
168
- if motion_coefs is not None and motion_coefs.numel() > 0:
169
- leading_dims_match &= motion_coefs.shape[:-1] == dims
170
- dims_correct = (
171
- means.shape[-1] == 3
172
- and (quats.shape[-1] == 4)
173
- and (scales.shape[-1] == 3)
174
- and (colors.shape[-1] == 3)
175
- )
176
- return leading_dims_match and dims_correct
177
-
178
-
179
- def check_bases_sizes(motion_rots: torch.Tensor, motion_transls: torch.Tensor) -> bool:
180
- return (
181
- motion_rots.shape[-1] == 6
182
- and motion_transls.shape[-1] == 3
183
- and motion_rots.shape[:-2] == motion_transls.shape[:-2]
184
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
som_out/bear/code/2024-10-25-234902/flow3d/renderer.py DELETED
@@ -1,89 +0,0 @@
1
- import numpy as np
2
- import torch
3
- import torch.nn.functional as F
4
- from loguru import logger as guru
5
- from nerfview import CameraState
6
-
7
- from flow3d.scene_model import SceneModel
8
- from flow3d.vis.utils import draw_tracks_2d_th, get_server
9
- from flow3d.vis.viewer import DynamicViewer
10
-
11
-
12
- class Renderer:
13
- def __init__(
14
- self,
15
- model: SceneModel,
16
- device: torch.device,
17
- # Logging.
18
- work_dir: str,
19
- port: int | None = None,
20
- ):
21
- self.device = device
22
-
23
- self.model = model
24
- self.num_frames = model.num_frames
25
-
26
- self.work_dir = work_dir
27
- self.global_step = 0
28
- self.epoch = 0
29
-
30
- self.viewer = None
31
- if port is not None:
32
- server = get_server(port=port)
33
- self.viewer = DynamicViewer(
34
- server, self.render_fn, model.num_frames, work_dir, mode="rendering"
35
- )
36
-
37
- self.tracks_3d = self.model.compute_poses_fg(
38
- # torch.arange(max(0, t - 20), max(1, t), device=self.device),
39
- torch.arange(self.num_frames, device=self.device),
40
- inds=torch.arange(10, device=self.device),
41
- )[0]
42
-
43
- @staticmethod
44
- def init_from_checkpoint(
45
- path: str, device: torch.device, *args, **kwargs
46
- ) -> "Renderer":
47
- guru.info(f"Loading checkpoint from {path}")
48
- ckpt = torch.load(path)
49
- state_dict = ckpt["model"]
50
- model = SceneModel.init_from_state_dict(state_dict)
51
- model = model.to(device)
52
- renderer = Renderer(model, device, *args, **kwargs)
53
- renderer.global_step = ckpt.get("global_step", 0)
54
- renderer.epoch = ckpt.get("epoch", 0)
55
- return renderer
56
-
57
- @torch.inference_mode()
58
- def render_fn(self, camera_state: CameraState, img_wh: tuple[int, int]):
59
- if self.viewer is None:
60
- return np.full((img_wh[1], img_wh[0], 3), 255, dtype=np.uint8)
61
-
62
- W, H = img_wh
63
-
64
- focal = 0.5 * H / np.tan(0.5 * camera_state.fov).item()
65
- K = torch.tensor(
66
- [[focal, 0.0, W / 2.0], [0.0, focal, H / 2.0], [0.0, 0.0, 1.0]],
67
- device=self.device,
68
- )
69
- w2c = torch.linalg.inv(
70
- torch.from_numpy(camera_state.c2w.astype(np.float32)).to(self.device)
71
- )
72
- t = (
73
- int(self.viewer._playback_guis[0].value)
74
- if not self.viewer._canonical_checkbox.value
75
- else None
76
- )
77
- self.model.training = False
78
- img = self.model.render(t, w2c[None], K[None], img_wh)["img"][0]
79
- if not self.viewer._render_track_checkbox.value:
80
- img = (img.cpu().numpy() * 255.0).astype(np.uint8)
81
- else:
82
- assert t is not None
83
- tracks_3d = self.tracks_3d[:, max(0, t - 20) : max(1, t)]
84
- tracks_2d = torch.einsum(
85
- "ij,jk,nbk->nbi", K, w2c[:3], F.pad(tracks_3d, (0, 1), value=1.0)
86
- )
87
- tracks_2d = tracks_2d[..., :2] / tracks_2d[..., 2:]
88
- img = draw_tracks_2d_th(img, tracks_2d)
89
- return img
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
som_out/bear/code/2024-10-25-234902/flow3d/scene_model.py DELETED
@@ -1,292 +0,0 @@
1
- import roma
2
- import torch
3
- import torch.nn as nn
4
- import torch.nn.functional as F
5
- from gsplat.rendering import rasterization
6
- from torch import Tensor
7
-
8
- from flow3d.params import GaussianParams, MotionBases
9
-
10
-
11
- class SceneModel(nn.Module):
12
- def __init__(
13
- self,
14
- Ks: Tensor,
15
- w2cs: Tensor,
16
- fg_params: GaussianParams,
17
- motion_bases: MotionBases,
18
- bg_params: GaussianParams | None = None,
19
- ):
20
- super().__init__()
21
- self.num_frames = motion_bases.num_frames
22
- self.fg = fg_params
23
- self.motion_bases = motion_bases
24
- self.bg = bg_params
25
- scene_scale = 1.0 if bg_params is None else bg_params.scene_scale
26
- self.register_buffer("bg_scene_scale", torch.as_tensor(scene_scale))
27
- self.register_buffer("Ks", Ks)
28
- self.register_buffer("w2cs", w2cs)
29
-
30
- self._current_xys = None
31
- self._current_radii = None
32
- self._current_img_wh = None
33
-
34
- @property
35
- def num_gaussians(self) -> int:
36
- return self.num_bg_gaussians + self.num_fg_gaussians
37
-
38
- @property
39
- def num_bg_gaussians(self) -> int:
40
- return self.bg.num_gaussians if self.bg is not None else 0
41
-
42
- @property
43
- def num_fg_gaussians(self) -> int:
44
- return self.fg.num_gaussians
45
-
46
- @property
47
- def num_motion_bases(self) -> int:
48
- return self.motion_bases.num_bases
49
-
50
- @property
51
- def has_bg(self) -> bool:
52
- return self.bg is not None
53
-
54
- def compute_poses_bg(self) -> tuple[torch.Tensor, torch.Tensor]:
55
- """
56
- Returns:
57
- means: (G, B, 3)
58
- quats: (G, B, 4)
59
- """
60
- assert self.bg is not None
61
- return self.bg.params["means"], self.bg.get_quats()
62
-
63
- def compute_transforms(
64
- self, ts: torch.Tensor, inds: torch.Tensor | None = None
65
- ) -> torch.Tensor:
66
- coefs = self.fg.get_coefs() # (G, K)
67
- if inds is not None:
68
- coefs = coefs[inds]
69
- transfms = self.motion_bases.compute_transforms(ts, coefs) # (G, B, 3, 4)
70
- return transfms
71
-
72
- def compute_poses_fg(
73
- self, ts: torch.Tensor | None, inds: torch.Tensor | None = None
74
- ) -> tuple[torch.Tensor, torch.Tensor]:
75
- """
76
- :returns means: (G, B, 3), quats: (G, B, 4)
77
- """
78
- means = self.fg.params["means"] # (G, 3)
79
- quats = self.fg.get_quats() # (G, 4)
80
- if inds is not None:
81
- means = means[inds]
82
- quats = quats[inds]
83
- if ts is not None:
84
- transfms = self.compute_transforms(ts, inds) # (G, B, 3, 4)
85
- means = torch.einsum(
86
- "pnij,pj->pni",
87
- transfms,
88
- F.pad(means, (0, 1), value=1.0),
89
- )
90
- quats = roma.quat_xyzw_to_wxyz(
91
- (
92
- roma.quat_product(
93
- roma.rotmat_to_unitquat(transfms[..., :3, :3]),
94
- roma.quat_wxyz_to_xyzw(quats[:, None]),
95
- )
96
- )
97
- )
98
- quats = F.normalize(quats, p=2, dim=-1)
99
- else:
100
- means = means[:, None]
101
- quats = quats[:, None]
102
- return means, quats
103
-
104
- def compute_poses_all(
105
- self, ts: torch.Tensor | None
106
- ) -> tuple[torch.Tensor, torch.Tensor]:
107
- means, quats = self.compute_poses_fg(ts)
108
- if self.has_bg:
109
- bg_means, bg_quats = self.compute_poses_bg()
110
- means = torch.cat(
111
- [means, bg_means[:, None].expand(-1, means.shape[1], -1)], dim=0
112
- ).contiguous()
113
- quats = torch.cat(
114
- [quats, bg_quats[:, None].expand(-1, means.shape[1], -1)], dim=0
115
- ).contiguous()
116
- return means, quats
117
-
118
- def get_colors_all(self) -> torch.Tensor:
119
- colors = self.fg.get_colors()
120
- if self.bg is not None:
121
- colors = torch.cat([colors, self.bg.get_colors()], dim=0).contiguous()
122
- return colors
123
-
124
- def get_scales_all(self) -> torch.Tensor:
125
- scales = self.fg.get_scales()
126
- if self.bg is not None:
127
- scales = torch.cat([scales, self.bg.get_scales()], dim=0).contiguous()
128
- return scales
129
-
130
- def get_opacities_all(self) -> torch.Tensor:
131
- """
132
- :returns colors: (G, 3), scales: (G, 3), opacities: (G, 1)
133
- """
134
- opacities = self.fg.get_opacities()
135
- if self.bg is not None:
136
- opacities = torch.cat(
137
- [opacities, self.bg.get_opacities()], dim=0
138
- ).contiguous()
139
- return opacities
140
-
141
- @staticmethod
142
- def init_from_state_dict(state_dict, prefix=""):
143
- fg = GaussianParams.init_from_state_dict(
144
- state_dict, prefix=f"{prefix}fg.params."
145
- )
146
- bg = None
147
- if any("bg." in k for k in state_dict):
148
- bg = GaussianParams.init_from_state_dict(
149
- state_dict, prefix=f"{prefix}bg.params."
150
- )
151
- motion_bases = MotionBases.init_from_state_dict(
152
- state_dict, prefix=f"{prefix}motion_bases.params."
153
- )
154
- Ks = state_dict[f"{prefix}Ks"]
155
- w2cs = state_dict[f"{prefix}w2cs"]
156
- return SceneModel(Ks, w2cs, fg, motion_bases, bg)
157
-
158
- def render(
159
- self,
160
- # A single time instance for view rendering.
161
- t: int | None,
162
- w2cs: torch.Tensor, # (C, 4, 4)
163
- Ks: torch.Tensor, # (C, 3, 3)
164
- img_wh: tuple[int, int],
165
- # Multiple time instances for track rendering: (B,).
166
- target_ts: torch.Tensor | None = None, # (B)
167
- target_w2cs: torch.Tensor | None = None, # (B, 4, 4)
168
- bg_color: torch.Tensor | float = 1.0,
169
- colors_override: torch.Tensor | None = None,
170
- means: torch.Tensor | None = None,
171
- quats: torch.Tensor | None = None,
172
- target_means: torch.Tensor | None = None,
173
- return_color: bool = True,
174
- return_depth: bool = False,
175
- return_mask: bool = False,
176
- fg_only: bool = False,
177
- filter_mask: torch.Tensor | None = None,
178
- ) -> dict:
179
- device = w2cs.device
180
- C = w2cs.shape[0]
181
-
182
- W, H = img_wh
183
- pose_fnc = self.compute_poses_fg if fg_only else self.compute_poses_all
184
- N = self.num_fg_gaussians if fg_only else self.num_gaussians
185
-
186
- if means is None or quats is None:
187
- means, quats = pose_fnc(
188
- torch.tensor([t], device=device) if t is not None else None
189
- )
190
- means = means[:, 0]
191
- quats = quats[:, 0]
192
-
193
- if colors_override is None:
194
- if return_color:
195
- colors_override = (
196
- self.fg.get_colors() if fg_only else self.get_colors_all()
197
- )
198
- else:
199
- colors_override = torch.zeros(N, 0, device=device)
200
-
201
- D = colors_override.shape[-1]
202
-
203
- scales = self.fg.get_scales() if fg_only else self.get_scales_all()
204
- opacities = self.fg.get_opacities() if fg_only else self.get_opacities_all()
205
-
206
- if isinstance(bg_color, float):
207
- bg_color = torch.full((C, D), bg_color, device=device)
208
- assert isinstance(bg_color, torch.Tensor)
209
-
210
- mode = "RGB"
211
- ds_expected = {"img": D}
212
-
213
- if return_mask:
214
- if self.has_bg and not fg_only:
215
- mask_values = torch.zeros((self.num_gaussians, 1), device=device)
216
- mask_values[: self.num_fg_gaussians] = 1.0
217
- else:
218
- mask_values = torch.ones((self.num_fg_gaussians, 1), device=device)
219
- colors_override = torch.cat([colors_override, mask_values], dim=-1)
220
- bg_color = torch.cat([bg_color, torch.zeros(C, 1, device=device)], dim=-1)
221
- ds_expected["mask"] = 1
222
-
223
- B = 0
224
- if target_ts is not None:
225
- B = target_ts.shape[0]
226
- if target_means is None:
227
- target_means, _ = pose_fnc(target_ts) # [G, B, 3]
228
- if target_w2cs is not None:
229
- target_means = torch.einsum(
230
- "bij,pbj->pbi",
231
- target_w2cs[:, :3],
232
- F.pad(target_means, (0, 1), value=1.0),
233
- )
234
- track_3d_vals = target_means.flatten(-2) # (G, B * 3)
235
- d_track = track_3d_vals.shape[-1]
236
- colors_override = torch.cat([colors_override, track_3d_vals], dim=-1)
237
- bg_color = torch.cat(
238
- [bg_color, torch.zeros(C, track_3d_vals.shape[-1], device=device)],
239
- dim=-1,
240
- )
241
- ds_expected["tracks_3d"] = d_track
242
-
243
- assert colors_override.shape[-1] == sum(ds_expected.values())
244
- assert bg_color.shape[-1] == sum(ds_expected.values())
245
-
246
- if return_depth:
247
- mode = "RGB+ED"
248
- ds_expected["depth"] = 1
249
-
250
- if filter_mask is not None:
251
- assert filter_mask.shape == (N,)
252
- means = means[filter_mask]
253
- quats = quats[filter_mask]
254
- scales = scales[filter_mask]
255
- opacities = opacities[filter_mask]
256
- colors_override = colors_override[filter_mask]
257
-
258
- render_colors, alphas, info = rasterization(
259
- means=means,
260
- quats=quats,
261
- scales=scales,
262
- opacities=opacities,
263
- colors=colors_override,
264
- backgrounds=bg_color,
265
- viewmats=w2cs, # [C, 4, 4]
266
- Ks=Ks, # [C, 3, 3]
267
- width=W,
268
- height=H,
269
- packed=False,
270
- render_mode=mode,
271
- )
272
-
273
- # Populate the current data for adaptive gaussian control.
274
- if self.training and info["means2d"].requires_grad:
275
- self._current_xys = info["means2d"]
276
- self._current_radii = info["radii"]
277
- self._current_img_wh = img_wh
278
- # We want to be able to access to xys' gradients later in a
279
- # torch.no_grad context.
280
- self._current_xys.retain_grad()
281
-
282
- assert render_colors.shape[-1] == sum(ds_expected.values())
283
- outputs = torch.split(render_colors, list(ds_expected.values()), dim=-1)
284
- out_dict = {}
285
- for i, (name, dim) in enumerate(ds_expected.items()):
286
- x = outputs[i]
287
- assert x.shape[-1] == dim, f"{x.shape[-1]=} != {dim=}"
288
- if name == "tracks_3d":
289
- x = x.reshape(C, H, W, B, 3)
290
- out_dict[name] = x
291
- out_dict["acc"] = alphas
292
- return out_dict
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
som_out/bear/code/2024-10-25-234902/flow3d/tensor_dataclass.py DELETED
@@ -1,96 +0,0 @@
1
- from dataclasses import dataclass
2
- from typing import Callable, TypeVar
3
-
4
- import torch
5
- from typing_extensions import Self
6
-
7
- TensorDataclassT = TypeVar("T", bound="TensorDataclass")
8
-
9
-
10
- class TensorDataclass:
11
- """A lighter version of nerfstudio's TensorDataclass:
12
- https://github.com/nerfstudio-project/nerfstudio/blob/main/nerfstudio/utils/tensor_dataclass.py
13
- """
14
-
15
- def __getitem__(self, key) -> Self:
16
- return self.map(lambda x: x[key])
17
-
18
- def to(self, device: torch.device | str) -> Self:
19
- """Move the tensors in the dataclass to the given device.
20
-
21
- Args:
22
- device: The device to move to.
23
-
24
- Returns:
25
- A new dataclass.
26
- """
27
- return self.map(lambda x: x.to(device))
28
-
29
- def map(self, fn: Callable[[torch.Tensor], torch.Tensor]) -> Self:
30
- """Apply a function to all tensors in the dataclass.
31
-
32
- Also recurses into lists, tuples, and dictionaries.
33
-
34
- Args:
35
- fn: The function to apply to each tensor.
36
-
37
- Returns:
38
- A new dataclass.
39
- """
40
-
41
- MapT = TypeVar("MapT")
42
-
43
- def _map_impl(
44
- fn: Callable[[torch.Tensor], torch.Tensor],
45
- val: MapT,
46
- ) -> MapT:
47
- if isinstance(val, torch.Tensor):
48
- return fn(val)
49
- elif isinstance(val, TensorDataclass):
50
- return type(val)(**_map_impl(fn, vars(val)))
51
- elif isinstance(val, (list, tuple)):
52
- return type(val)(_map_impl(fn, v) for v in val)
53
- elif isinstance(val, dict):
54
- assert type(val) is dict # No subclass support.
55
- return {k: _map_impl(fn, v) for k, v in val.items()} # type: ignore
56
- else:
57
- return val
58
-
59
- return _map_impl(fn, self)
60
-
61
-
62
- @dataclass
63
- class TrackObservations(TensorDataclass):
64
- xyz: torch.Tensor
65
- visibles: torch.Tensor
66
- invisibles: torch.Tensor
67
- confidences: torch.Tensor
68
- colors: torch.Tensor
69
-
70
- def check_sizes(self) -> bool:
71
- dims = self.xyz.shape[:-1]
72
- return (
73
- self.visibles.shape == dims
74
- and self.invisibles.shape == dims
75
- and self.confidences.shape == dims
76
- and self.colors.shape[:-1] == dims[:-1]
77
- and self.xyz.shape[-1] == 3
78
- and self.colors.shape[-1] == 3
79
- )
80
-
81
- def filter_valid(self, valid_mask: torch.Tensor) -> Self:
82
- return self.map(lambda x: x[valid_mask])
83
-
84
-
85
- @dataclass
86
- class StaticObservations(TensorDataclass):
87
- xyz: torch.Tensor
88
- normals: torch.Tensor
89
- colors: torch.Tensor
90
-
91
- def check_sizes(self) -> bool:
92
- dims = self.xyz.shape
93
- return self.normals.shape == dims and self.colors.shape == dims
94
-
95
- def filter_valid(self, valid_mask: torch.Tensor) -> Self:
96
- return self.map(lambda x: x[valid_mask])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
som_out/bear/code/2024-10-25-234902/flow3d/trainer.py DELETED
@@ -1,805 +0,0 @@
1
- import functools
2
- import time
3
- from dataclasses import asdict
4
- from typing import cast
5
-
6
- import numpy as np
7
- import torch
8
- import torch.nn.functional as F
9
- from loguru import logger as guru
10
- from nerfview import CameraState
11
- from pytorch_msssim import SSIM
12
- from torch.utils.tensorboard import SummaryWriter # type: ignore
13
-
14
- from flow3d.configs import LossesConfig, OptimizerConfig, SceneLRConfig
15
- from flow3d.loss_utils import (
16
- compute_gradient_loss,
17
- compute_se3_smoothness_loss,
18
- compute_z_acc_loss,
19
- masked_l1_loss,
20
- )
21
- from flow3d.metrics import PCK, mLPIPS, mPSNR, mSSIM
22
- from flow3d.scene_model import SceneModel
23
- from flow3d.vis.utils import get_server
24
- from flow3d.vis.viewer import DynamicViewer
25
-
26
-
27
- class Trainer:
28
- def __init__(
29
- self,
30
- model: SceneModel,
31
- device: torch.device,
32
- lr_cfg: SceneLRConfig,
33
- losses_cfg: LossesConfig,
34
- optim_cfg: OptimizerConfig,
35
- # Logging.
36
- work_dir: str,
37
- port: int | None = None,
38
- log_every: int = 10,
39
- checkpoint_every: int = 200,
40
- validate_every: int = 500,
41
- validate_video_every: int = 1000,
42
- validate_viewer_assets_every: int = 100,
43
- ):
44
-
45
- self.device = device
46
- self.log_every = log_every
47
- self.checkpoint_every = checkpoint_every
48
- self.validate_every = validate_every
49
- self.validate_video_every = validate_video_every
50
- self.validate_viewer_assets_every = validate_viewer_assets_every
51
-
52
- self.model = model
53
- self.num_frames = model.num_frames
54
-
55
- self.lr_cfg = lr_cfg
56
- self.losses_cfg = losses_cfg
57
- self.optim_cfg = optim_cfg
58
-
59
- self.reset_opacity_every = (
60
- self.optim_cfg.reset_opacity_every_n_controls * self.optim_cfg.control_every
61
- )
62
- self.optimizers, self.scheduler = self.configure_optimizers()
63
-
64
- # running stats for adaptive density control
65
- self.running_stats = {
66
- "xys_grad_norm_acc": torch.zeros(self.model.num_gaussians, device=device),
67
- "vis_count": torch.zeros(
68
- self.model.num_gaussians, device=device, dtype=torch.int64
69
- ),
70
- "max_radii": torch.zeros(self.model.num_gaussians, device=device),
71
- }
72
-
73
- self.work_dir = work_dir
74
- self.writer = SummaryWriter(log_dir=work_dir)
75
- self.global_step = 0
76
- self.epoch = 0
77
-
78
- self.viewer = None
79
- if port is not None:
80
- server = get_server(port=port)
81
- self.viewer = DynamicViewer(
82
- server, self.render_fn, model.num_frames, work_dir, mode="training"
83
- )
84
-
85
- # metrics
86
- self.ssim = SSIM(data_range=1.0, size_average=True, channel=3)
87
- self.psnr_metric = mPSNR()
88
- self.ssim_metric = mSSIM()
89
- self.lpips_metric = mLPIPS()
90
- self.pck_metric = PCK()
91
- self.bg_psnr_metric = mPSNR()
92
- self.fg_psnr_metric = mPSNR()
93
- self.bg_ssim_metric = mSSIM()
94
- self.fg_ssim_metric = mSSIM()
95
- self.bg_lpips_metric = mLPIPS()
96
- self.fg_lpips_metric = mLPIPS()
97
-
98
- def set_epoch(self, epoch: int):
99
- self.epoch = epoch
100
-
101
- def save_checkpoint(self, path: str):
102
- model_dict = self.model.state_dict()
103
- optimizer_dict = {k: v.state_dict() for k, v in self.optimizers.items()}
104
- scheduler_dict = {k: v.state_dict() for k, v in self.scheduler.items()}
105
- ckpt = {
106
- "model": model_dict,
107
- "optimizers": optimizer_dict,
108
- "schedulers": scheduler_dict,
109
- "global_step": self.global_step,
110
- "epoch": self.epoch,
111
- }
112
- torch.save(ckpt, path)
113
- guru.info(f"Saved checkpoint at {self.global_step=} to {path}")
114
-
115
- @staticmethod
116
- def init_from_checkpoint(
117
- path: str, device: torch.device, *args, **kwargs
118
- ) -> tuple["Trainer", int]:
119
- guru.info(f"Loading checkpoint from {path}")
120
- ckpt = torch.load(path)
121
- state_dict = ckpt["model"]
122
- model = SceneModel.init_from_state_dict(state_dict)
123
- model = model.to(device)
124
- trainer = Trainer(model, device, *args, **kwargs)
125
- if "optimizers" in ckpt:
126
- trainer.load_checkpoint_optimizers(ckpt["optimizers"])
127
- if "schedulers" in ckpt:
128
- trainer.load_checkpoint_schedulers(ckpt["schedulers"])
129
- trainer.global_step = ckpt.get("global_step", 0)
130
- start_epoch = ckpt.get("epoch", 0)
131
- trainer.set_epoch(start_epoch)
132
- return trainer, start_epoch
133
-
134
- def load_checkpoint_optimizers(self, opt_ckpt):
135
- for k, v in self.optimizers.items():
136
- v.load_state_dict(opt_ckpt[k])
137
-
138
- def load_checkpoint_schedulers(self, sched_ckpt):
139
- for k, v in self.scheduler.items():
140
- v.load_state_dict(sched_ckpt[k])
141
-
142
- @torch.inference_mode()
143
- def render_fn(self, camera_state: CameraState, img_wh: tuple[int, int]):
144
- W, H = img_wh
145
-
146
- focal = 0.5 * H / np.tan(0.5 * camera_state.fov).item()
147
- K = torch.tensor(
148
- [[focal, 0.0, W / 2.0], [0.0, focal, H / 2.0], [0.0, 0.0, 1.0]],
149
- device=self.device,
150
- )
151
- w2c = torch.linalg.inv(
152
- torch.from_numpy(camera_state.c2w.astype(np.float32)).to(self.device)
153
- )
154
- t = 0
155
- if self.viewer is not None:
156
- t = (
157
- int(self.viewer._playback_guis[0].value)
158
- if not self.viewer._canonical_checkbox.value
159
- else None
160
- )
161
- self.model.training = False
162
- img = self.model.render(t, w2c[None], K[None], img_wh)["img"][0]
163
- return (img.cpu().numpy() * 255.0).astype(np.uint8)
164
-
165
- def train_step(self, batch):
166
- if self.viewer is not None:
167
- while self.viewer.state.status == "paused":
168
- time.sleep(0.1)
169
- self.viewer.lock.acquire()
170
-
171
- loss, stats, num_rays_per_step, num_rays_per_sec = self.compute_losses(batch)
172
- if loss.isnan():
173
- guru.info(f"Loss is NaN at step {self.global_step}!!")
174
- import ipdb
175
-
176
- ipdb.set_trace()
177
- loss.backward()
178
-
179
- for opt in self.optimizers.values():
180
- opt.step()
181
- opt.zero_grad(set_to_none=True)
182
- for sched in self.scheduler.values():
183
- sched.step()
184
-
185
- self.log_dict(stats)
186
- self.global_step += 1
187
- self.run_control_steps()
188
-
189
- if self.viewer is not None:
190
- self.viewer.lock.release()
191
- self.viewer.state.num_train_rays_per_sec = num_rays_per_sec
192
- if self.viewer.mode == "training":
193
- self.viewer.update(self.global_step, num_rays_per_step)
194
-
195
- if self.global_step % self.checkpoint_every == 0:
196
- self.save_checkpoint(f"{self.work_dir}/checkpoints/last.ckpt")
197
-
198
- return loss.item()
199
-
200
- def compute_losses(self, batch):
201
- self.model.training = True
202
- B = batch["imgs"].shape[0]
203
- W, H = img_wh = batch["imgs"].shape[2:0:-1]
204
- N = batch["target_ts"][0].shape[0]
205
-
206
- # (B,).
207
- ts = batch["ts"]
208
- # (B, 4, 4).
209
- w2cs = batch["w2cs"]
210
- # (B, 3, 3).
211
- Ks = batch["Ks"]
212
- # (B, H, W, 3).
213
- imgs = batch["imgs"]
214
- # (B, H, W).
215
- valid_masks = batch.get("valid_masks", torch.ones_like(batch["imgs"][..., 0]))
216
- # (B, H, W).
217
- masks = batch["masks"]
218
- masks *= valid_masks
219
- # (B, H, W).
220
- depths = batch["depths"]
221
- # [(P, 2), ...].
222
- query_tracks_2d = batch["query_tracks_2d"]
223
- # [(N,), ...].
224
- target_ts = batch["target_ts"]
225
- # [(N, 4, 4), ...].
226
- target_w2cs = batch["target_w2cs"]
227
- # [(N, 3, 3), ...].
228
- target_Ks = batch["target_Ks"]
229
- # [(N, P, 2), ...].
230
- target_tracks_2d = batch["target_tracks_2d"]
231
- # [(N, P), ...].
232
- target_visibles = batch["target_visibles"]
233
- # [(N, P), ...].
234
- target_invisibles = batch["target_invisibles"]
235
- # [(N, P), ...].
236
- target_confidences = batch["target_confidences"]
237
- # [(N, P), ...].
238
- target_track_depths = batch["target_track_depths"]
239
-
240
- _tic = time.time()
241
- # (B, G, 3).
242
- means, quats = self.model.compute_poses_all(ts) # (G, B, 3), (G, B, 4)
243
- device = means.device
244
- means = means.transpose(0, 1)
245
- quats = quats.transpose(0, 1)
246
- # [(N, G, 3), ...].
247
- target_ts_vec = torch.cat(target_ts)
248
- # (B * N, G, 3).
249
- target_means, _ = self.model.compute_poses_all(target_ts_vec)
250
- target_means = target_means.transpose(0, 1)
251
- target_mean_list = target_means.split(N)
252
- num_frames = self.model.num_frames
253
-
254
- loss = 0.0
255
-
256
- bg_colors = []
257
- rendered_all = []
258
- self._batched_xys = []
259
- self._batched_radii = []
260
- self._batched_img_wh = []
261
- for i in range(B):
262
- bg_color = torch.ones(1, 3, device=device)
263
- rendered = self.model.render(
264
- ts[i].item(),
265
- w2cs[None, i],
266
- Ks[None, i],
267
- img_wh,
268
- target_ts=target_ts[i],
269
- target_w2cs=target_w2cs[i],
270
- bg_color=bg_color,
271
- means=means[i],
272
- quats=quats[i],
273
- target_means=target_mean_list[i].transpose(0, 1),
274
- return_depth=True,
275
- return_mask=self.model.has_bg,
276
- )
277
- rendered_all.append(rendered)
278
- bg_colors.append(bg_color)
279
- if (
280
- self.model._current_xys is not None
281
- and self.model._current_radii is not None
282
- and self.model._current_img_wh is not None
283
- ):
284
- self._batched_xys.append(self.model._current_xys)
285
- self._batched_radii.append(self.model._current_radii)
286
- self._batched_img_wh.append(self.model._current_img_wh)
287
-
288
- # Necessary to make viewer work.
289
- num_rays_per_step = H * W * B
290
- num_rays_per_sec = num_rays_per_step / (time.time() - _tic)
291
-
292
- # (B, H, W, N, *).
293
- rendered_all = {
294
- key: (
295
- torch.cat([out_dict[key] for out_dict in rendered_all], dim=0)
296
- if rendered_all[0][key] is not None
297
- else None
298
- )
299
- for key in rendered_all[0]
300
- }
301
- bg_colors = torch.cat(bg_colors, dim=0)
302
-
303
- # Compute losses.
304
- # (B * N).
305
- frame_intervals = (ts.repeat_interleave(N) - target_ts_vec).abs()
306
- if not self.model.has_bg:
307
- imgs = (
308
- imgs * masks[..., None]
309
- + (1.0 - masks[..., None]) * bg_colors[:, None, None]
310
- )
311
- else:
312
- imgs = (
313
- imgs * valid_masks[..., None]
314
- + (1.0 - valid_masks[..., None]) * bg_colors[:, None, None]
315
- )
316
- # (P_all, 2).
317
- tracks_2d = torch.cat([x.reshape(-1, 2) for x in target_tracks_2d], dim=0)
318
- # (P_all,)
319
- visibles = torch.cat([x.reshape(-1) for x in target_visibles], dim=0)
320
- # (P_all,)
321
- confidences = torch.cat([x.reshape(-1) for x in target_confidences], dim=0)
322
-
323
- # RGB loss.
324
- rendered_imgs = cast(torch.Tensor, rendered_all["img"])
325
- if self.model.has_bg:
326
- rendered_imgs = (
327
- rendered_imgs * valid_masks[..., None]
328
- + (1.0 - valid_masks[..., None]) * bg_colors[:, None, None]
329
- )
330
- rgb_loss = 0.8 * F.l1_loss(rendered_imgs, imgs) + 0.2 * (
331
- 1 - self.ssim(rendered_imgs.permute(0, 3, 1, 2), imgs.permute(0, 3, 1, 2))
332
- )
333
- loss += rgb_loss * self.losses_cfg.w_rgb
334
-
335
- # Mask loss.
336
- if not self.model.has_bg:
337
- mask_loss = F.mse_loss(rendered_all["acc"], masks[..., None]) # type: ignore
338
- else:
339
- mask_loss = F.mse_loss(
340
- rendered_all["acc"], torch.ones_like(rendered_all["acc"]) # type: ignore
341
- ) + masked_l1_loss(
342
- rendered_all["mask"],
343
- masks[..., None],
344
- quantile=0.98, # type: ignore
345
- )
346
- loss += mask_loss * self.losses_cfg.w_mask
347
-
348
- # (B * N, H * W, 3).
349
- pred_tracks_3d = (
350
- rendered_all["tracks_3d"].permute(0, 3, 1, 2, 4).reshape(-1, H * W, 3) # type: ignore
351
- )
352
- pred_tracks_2d = torch.einsum(
353
- "bij,bpj->bpi", torch.cat(target_Ks), pred_tracks_3d
354
- )
355
- # (B * N, H * W, 1).
356
- mapped_depth = torch.clamp(pred_tracks_2d[..., 2:], min=1e-6)
357
- # (B * N, H * W, 2).
358
- pred_tracks_2d = pred_tracks_2d[..., :2] / mapped_depth
359
-
360
- # (B * N).
361
- w_interval = torch.exp(-2 * frame_intervals / num_frames)
362
- # w_track_loss = min(1, (self.max_steps - self.global_step) / 6000)
363
- track_weights = confidences[..., None] * w_interval
364
-
365
- # (B, H, W).
366
- masks_flatten = torch.zeros_like(masks)
367
- for i in range(B):
368
- # This takes advantage of the fact that the query 2D tracks are
369
- # always on the grid.
370
- query_pixels = query_tracks_2d[i].to(torch.int64)
371
- masks_flatten[i, query_pixels[:, 1], query_pixels[:, 0]] = 1.0
372
- # (B * N, H * W).
373
- masks_flatten = (
374
- masks_flatten.reshape(-1, H * W).tile(1, N).reshape(-1, H * W) > 0.5
375
- )
376
-
377
- track_2d_loss = masked_l1_loss(
378
- pred_tracks_2d[masks_flatten][visibles],
379
- tracks_2d[visibles],
380
- mask=track_weights[visibles],
381
- quantile=0.98,
382
- ) / max(H, W)
383
- loss += track_2d_loss * self.losses_cfg.w_track
384
-
385
- depth_masks = (
386
- masks[..., None] if not self.model.has_bg else valid_masks[..., None]
387
- )
388
-
389
- pred_depth = cast(torch.Tensor, rendered_all["depth"])
390
- pred_disp = 1.0 / (pred_depth + 1e-5)
391
- tgt_disp = 1.0 / (depths[..., None] + 1e-5)
392
- depth_loss = masked_l1_loss(
393
- pred_disp,
394
- tgt_disp,
395
- mask=depth_masks,
396
- quantile=0.98,
397
- )
398
- # depth_loss = cauchy_loss_with_uncertainty(
399
- # pred_disp.squeeze(-1),
400
- # tgt_disp.squeeze(-1),
401
- # depth_masks.squeeze(-1),
402
- # self.depth_uncertainty_activation(self.depth_uncertainties)[ts],
403
- # bias=1e-3,
404
- # )
405
- loss += depth_loss * self.losses_cfg.w_depth_reg
406
-
407
- # mapped depth loss (using cached depth with EMA)
408
- # mapped_depth_loss = 0.0
409
- mapped_depth_gt = torch.cat([x.reshape(-1) for x in target_track_depths], dim=0)
410
- mapped_depth_loss = masked_l1_loss(
411
- 1 / (mapped_depth[masks_flatten][visibles] + 1e-5),
412
- 1 / (mapped_depth_gt[visibles, None] + 1e-5),
413
- track_weights[visibles],
414
- )
415
-
416
- loss += mapped_depth_loss * self.losses_cfg.w_depth_const
417
-
418
- # depth_gradient_loss = 0.0
419
- depth_gradient_loss = compute_gradient_loss(
420
- pred_disp,
421
- tgt_disp,
422
- mask=depth_masks > 0.5,
423
- quantile=0.95,
424
- )
425
- # depth_gradient_loss = compute_gradient_loss(
426
- # pred_disps,
427
- # ref_disps,
428
- # mask=depth_masks.squeeze(-1) > 0.5,
429
- # c=depth_uncertainty.detach(),
430
- # mode="l1",
431
- # bias=1e-3,
432
- # )
433
- loss += depth_gradient_loss * self.losses_cfg.w_depth_grad
434
-
435
- # bases should be smooth.
436
- small_accel_loss = compute_se3_smoothness_loss(
437
- self.model.motion_bases.params["rots"],
438
- self.model.motion_bases.params["transls"],
439
- )
440
- loss += small_accel_loss * self.losses_cfg.w_smooth_bases
441
-
442
- # tracks should be smooth
443
- ts = torch.clamp(ts, min=1, max=num_frames - 2)
444
- ts_neighbors = torch.cat((ts - 1, ts, ts + 1))
445
- transfms_nbs = self.model.compute_transforms(ts_neighbors) # (G, 3n, 3, 4)
446
- means_fg_nbs = torch.einsum(
447
- "pnij,pj->pni",
448
- transfms_nbs,
449
- F.pad(self.model.fg.params["means"], (0, 1), value=1.0),
450
- )
451
- means_fg_nbs = means_fg_nbs.reshape(
452
- means_fg_nbs.shape[0], 3, -1, 3
453
- ) # [G, 3, n, 3]
454
- if self.losses_cfg.w_smooth_tracks > 0:
455
- small_accel_loss_tracks = 0.5 * (
456
- (2 * means_fg_nbs[:, 1:-1] - means_fg_nbs[:, :-2] - means_fg_nbs[:, 2:])
457
- .norm(dim=-1)
458
- .mean()
459
- )
460
- loss += small_accel_loss_tracks * self.losses_cfg.w_smooth_tracks
461
-
462
- # Constrain the std of scales.
463
- # TODO: do we want to penalize before or after exp?
464
- loss += (
465
- self.losses_cfg.w_scale_var
466
- * torch.var(self.model.fg.params["scales"], dim=-1).mean()
467
- )
468
- if self.model.bg is not None:
469
- loss += (
470
- self.losses_cfg.w_scale_var
471
- * torch.var(self.model.bg.params["scales"], dim=-1).mean()
472
- )
473
-
474
- # # sparsity loss
475
- # loss += 0.01 * self.opacity_activation(self.opacities).abs().mean()
476
-
477
- # Acceleration along ray direction should be small.
478
- z_accel_loss = compute_z_acc_loss(means_fg_nbs, w2cs)
479
- loss += self.losses_cfg.w_z_accel * z_accel_loss
480
-
481
- # Prepare stats for logging.
482
- stats = {
483
- "train/loss": loss.item(),
484
- "train/rgb_loss": rgb_loss.item(),
485
- "train/mask_loss": mask_loss.item(),
486
- "train/depth_loss": depth_loss.item(),
487
- "train/depth_gradient_loss": depth_gradient_loss.item(),
488
- "train/mapped_depth_loss": mapped_depth_loss.item(),
489
- "train/track_2d_loss": track_2d_loss.item(),
490
- "train/small_accel_loss": small_accel_loss.item(),
491
- "train/z_acc_loss": z_accel_loss.item(),
492
- "train/num_gaussians": self.model.num_gaussians,
493
- "train/num_fg_gaussians": self.model.num_fg_gaussians,
494
- "train/num_bg_gaussians": self.model.num_bg_gaussians,
495
- }
496
-
497
- # Compute metrics.
498
- with torch.no_grad():
499
- psnr = self.psnr_metric(
500
- rendered_imgs, imgs, masks if not self.model.has_bg else valid_masks
501
- )
502
- self.psnr_metric.reset()
503
- stats["train/psnr"] = psnr
504
- if self.model.has_bg:
505
- bg_psnr = self.bg_psnr_metric(rendered_imgs, imgs, 1.0 - masks)
506
- fg_psnr = self.fg_psnr_metric(rendered_imgs, imgs, masks)
507
- self.bg_psnr_metric.reset()
508
- self.fg_psnr_metric.reset()
509
- stats["train/bg_psnr"] = bg_psnr
510
- stats["train/fg_psnr"] = fg_psnr
511
-
512
- stats.update(
513
- **{
514
- "train/num_rays_per_sec": num_rays_per_sec,
515
- "train/num_rays_per_step": float(num_rays_per_step),
516
- }
517
- )
518
-
519
- return loss, stats, num_rays_per_step, num_rays_per_sec
520
-
521
- def log_dict(self, stats: dict):
522
- for k, v in stats.items():
523
- self.writer.add_scalar(k, v, self.global_step)
524
-
525
- def run_control_steps(self):
526
- global_step = self.global_step
527
- # Adaptive gaussian control.
528
- cfg = self.optim_cfg
529
- num_frames = self.model.num_frames
530
- ready = self._prepare_control_step()
531
- if (
532
- ready
533
- and global_step > cfg.warmup_steps
534
- and global_step % cfg.control_every == 0
535
- and global_step < cfg.stop_control_steps
536
- ):
537
- if (
538
- global_step < cfg.stop_densify_steps
539
- and global_step % self.reset_opacity_every > num_frames
540
- ):
541
- self._densify_control_step(global_step)
542
- if global_step % self.reset_opacity_every > min(3 * num_frames, 1000):
543
- self._cull_control_step(global_step)
544
- if global_step % self.reset_opacity_every == 0:
545
- self._reset_opacity_control_step()
546
-
547
- # Reset stats after every control.
548
- for k in self.running_stats:
549
- self.running_stats[k].zero_()
550
-
551
- @torch.no_grad()
552
- def _prepare_control_step(self) -> bool:
553
- # Prepare for adaptive gaussian control based on the current stats.
554
- if not (
555
- self.model._current_radii is not None
556
- and self.model._current_xys is not None
557
- ):
558
- guru.warning("Model not training, skipping control step preparation")
559
- return False
560
-
561
- batch_size = len(self._batched_xys)
562
- # these quantities are for each rendered view and have shapes (C, G, *)
563
- # must be aggregated over all views
564
- for _current_xys, _current_radii, _current_img_wh in zip(
565
- self._batched_xys, self._batched_radii, self._batched_img_wh
566
- ):
567
- sel = _current_radii > 0
568
- gidcs = torch.where(sel)[1]
569
- # normalize grads to [-1, 1] screen space
570
- xys_grad = _current_xys.grad.clone()
571
- xys_grad[..., 0] *= _current_img_wh[0] / 2.0 * batch_size
572
- xys_grad[..., 1] *= _current_img_wh[1] / 2.0 * batch_size
573
- self.running_stats["xys_grad_norm_acc"].index_add_(
574
- 0, gidcs, xys_grad[sel].norm(dim=-1)
575
- )
576
- self.running_stats["vis_count"].index_add_(
577
- 0, gidcs, torch.ones_like(gidcs, dtype=torch.int64)
578
- )
579
- max_radii = torch.maximum(
580
- self.running_stats["max_radii"].index_select(0, gidcs),
581
- _current_radii[sel] / max(_current_img_wh),
582
- )
583
- self.running_stats["max_radii"].index_put((gidcs,), max_radii)
584
- return True
585
-
586
- @torch.no_grad()
587
- def _densify_control_step(self, global_step):
588
- assert (self.running_stats["vis_count"] > 0).any()
589
-
590
- cfg = self.optim_cfg
591
- xys_grad_avg = self.running_stats["xys_grad_norm_acc"] / self.running_stats[
592
- "vis_count"
593
- ].clamp_min(1)
594
- is_grad_too_high = xys_grad_avg > cfg.densify_xys_grad_threshold
595
- # Split gaussians.
596
- scales = self.model.get_scales_all()
597
- is_scale_too_big = scales.amax(dim=-1) > cfg.densify_scale_threshold
598
- if global_step < cfg.stop_control_by_screen_steps:
599
- is_radius_too_big = (
600
- self.running_stats["max_radii"] > cfg.densify_screen_threshold
601
- )
602
- else:
603
- is_radius_too_big = torch.zeros_like(is_grad_too_high, dtype=torch.bool)
604
-
605
- should_split = is_grad_too_high & (is_scale_too_big | is_radius_too_big)
606
- should_dup = is_grad_too_high & ~is_scale_too_big
607
-
608
- num_fg = self.model.num_fg_gaussians
609
- should_fg_split = should_split[:num_fg]
610
- num_fg_splits = int(should_fg_split.sum().item())
611
- should_fg_dup = should_dup[:num_fg]
612
- num_fg_dups = int(should_fg_dup.sum().item())
613
-
614
- should_bg_split = should_split[num_fg:]
615
- num_bg_splits = int(should_bg_split.sum().item())
616
- should_bg_dup = should_dup[num_fg:]
617
- num_bg_dups = int(should_bg_dup.sum().item())
618
-
619
- fg_param_map = self.model.fg.densify_params(should_fg_split, should_fg_dup)
620
- for param_name, new_params in fg_param_map.items():
621
- full_param_name = f"fg.params.{param_name}"
622
- optimizer = self.optimizers[full_param_name]
623
- dup_in_optim(
624
- optimizer,
625
- [new_params],
626
- should_fg_split,
627
- num_fg_splits * 2 + num_fg_dups,
628
- )
629
-
630
- if self.model.bg is not None:
631
- bg_param_map = self.model.bg.densify_params(should_bg_split, should_bg_dup)
632
- for param_name, new_params in bg_param_map.items():
633
- full_param_name = f"bg.params.{param_name}"
634
- optimizer = self.optimizers[full_param_name]
635
- dup_in_optim(
636
- optimizer,
637
- [new_params],
638
- should_bg_split,
639
- num_bg_splits * 2 + num_bg_dups,
640
- )
641
-
642
- # update running stats
643
- for k, v in self.running_stats.items():
644
- v_fg, v_bg = v[:num_fg], v[num_fg:]
645
- new_v = torch.cat(
646
- [
647
- v_fg[~should_fg_split],
648
- v_fg[should_fg_dup],
649
- v_fg[should_fg_split].repeat(2),
650
- v_bg[~should_bg_split],
651
- v_bg[should_bg_dup],
652
- v_bg[should_bg_split].repeat(2),
653
- ],
654
- dim=0,
655
- )
656
- self.running_stats[k] = new_v
657
- guru.info(
658
- f"Split {should_split.sum().item()} gaussians, "
659
- f"Duplicated {should_dup.sum().item()} gaussians, "
660
- f"{self.model.num_gaussians} gaussians left"
661
- )
662
-
663
- @torch.no_grad()
664
- def _cull_control_step(self, global_step):
665
- # Cull gaussians.
666
- cfg = self.optim_cfg
667
- opacities = self.model.get_opacities_all()
668
- device = opacities.device
669
- is_opacity_too_small = opacities < cfg.cull_opacity_threshold
670
- is_radius_too_big = torch.zeros_like(is_opacity_too_small, dtype=torch.bool)
671
- is_scale_too_big = torch.zeros_like(is_opacity_too_small, dtype=torch.bool)
672
- cull_scale_threshold = (
673
- torch.ones(len(is_scale_too_big), device=device) * cfg.cull_scale_threshold
674
- )
675
- num_fg = self.model.num_fg_gaussians
676
- cull_scale_threshold[num_fg:] *= self.model.bg_scene_scale
677
- if global_step > self.reset_opacity_every:
678
- scales = self.model.get_scales_all()
679
- is_scale_too_big = scales.amax(dim=-1) > cull_scale_threshold
680
- if global_step < cfg.stop_control_by_screen_steps:
681
- is_radius_too_big = (
682
- self.running_stats["max_radii"] > cfg.cull_screen_threshold
683
- )
684
- should_cull = is_opacity_too_small | is_radius_too_big | is_scale_too_big
685
- should_fg_cull = should_cull[:num_fg]
686
- should_bg_cull = should_cull[num_fg:]
687
-
688
- fg_param_map = self.model.fg.cull_params(should_fg_cull)
689
- for param_name, new_params in fg_param_map.items():
690
- full_param_name = f"fg.params.{param_name}"
691
- optimizer = self.optimizers[full_param_name]
692
- remove_from_optim(optimizer, [new_params], should_fg_cull)
693
-
694
- if self.model.bg is not None:
695
- bg_param_map = self.model.bg.cull_params(should_bg_cull)
696
- for param_name, new_params in bg_param_map.items():
697
- full_param_name = f"bg.params.{param_name}"
698
- optimizer = self.optimizers[full_param_name]
699
- remove_from_optim(optimizer, [new_params], should_bg_cull)
700
-
701
- # update running stats
702
- for k, v in self.running_stats.items():
703
- self.running_stats[k] = v[~should_cull]
704
-
705
- guru.info(
706
- f"Culled {should_cull.sum().item()} gaussians, "
707
- f"{self.model.num_gaussians} gaussians left"
708
- )
709
-
710
- @torch.no_grad()
711
- def _reset_opacity_control_step(self):
712
- # Reset gaussian opacities.
713
- new_val = torch.logit(torch.tensor(0.8 * self.optim_cfg.cull_opacity_threshold))
714
- for part in ["fg", "bg"]:
715
- part_params = getattr(self.model, part).reset_opacities(new_val)
716
- # Modify optimizer states by new assignment.
717
- for param_name, new_params in part_params.items():
718
- full_param_name = f"{part}.params.{param_name}"
719
- optimizer = self.optimizers[full_param_name]
720
- reset_in_optim(optimizer, [new_params])
721
- guru.info("Reset opacities")
722
-
723
- def configure_optimizers(self):
724
- def _exponential_decay(step, *, lr_init, lr_final):
725
- t = np.clip(step / self.optim_cfg.max_steps, 0.0, 1.0)
726
- lr = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t)
727
- return lr / lr_init
728
-
729
- lr_dict = asdict(self.lr_cfg)
730
- optimizers = {}
731
- schedulers = {}
732
- # named parameters will be [part].params.[field]
733
- # e.g. fg.params.means
734
- # lr config is a nested dict for each fg/bg part
735
- for name, params in self.model.named_parameters():
736
- part, _, field = name.split(".")
737
- lr = lr_dict[part][field]
738
- optim = torch.optim.Adam([{"params": params, "lr": lr, "name": name}])
739
-
740
- if "scales" in name:
741
- fnc = functools.partial(_exponential_decay, lr_final=0.1 * lr)
742
- else:
743
- fnc = lambda _, **__: 1.0
744
-
745
- optimizers[name] = optim
746
- schedulers[name] = torch.optim.lr_scheduler.LambdaLR(
747
- optim, functools.partial(fnc, lr_init=lr)
748
- )
749
- return optimizers, schedulers
750
-
751
-
752
- def dup_in_optim(optimizer, new_params: list, should_dup: torch.Tensor, num_dups: int):
753
- assert len(optimizer.param_groups) == len(new_params)
754
- for i, p_new in enumerate(new_params):
755
- old_params = optimizer.param_groups[i]["params"][0]
756
- param_state = optimizer.state[old_params]
757
- if len(param_state) == 0:
758
- return
759
- for key in param_state:
760
- if key == "step":
761
- continue
762
- p = param_state[key]
763
- param_state[key] = torch.cat(
764
- [p[~should_dup], p.new_zeros(num_dups, *p.shape[1:])],
765
- dim=0,
766
- )
767
- del optimizer.state[old_params]
768
- optimizer.state[p_new] = param_state
769
- optimizer.param_groups[i]["params"] = [p_new]
770
- del old_params
771
- torch.cuda.empty_cache()
772
-
773
-
774
- def remove_from_optim(optimizer, new_params: list, _should_cull: torch.Tensor):
775
- assert len(optimizer.param_groups) == len(new_params)
776
- for i, p_new in enumerate(new_params):
777
- old_params = optimizer.param_groups[i]["params"][0]
778
- param_state = optimizer.state[old_params]
779
- if len(param_state) == 0:
780
- return
781
- for key in param_state:
782
- if key == "step":
783
- continue
784
- param_state[key] = param_state[key][~_should_cull]
785
- del optimizer.state[old_params]
786
- optimizer.state[p_new] = param_state
787
- optimizer.param_groups[i]["params"] = [p_new]
788
- del old_params
789
- torch.cuda.empty_cache()
790
-
791
-
792
- def reset_in_optim(optimizer, new_params: list):
793
- assert len(optimizer.param_groups) == len(new_params)
794
- for i, p_new in enumerate(new_params):
795
- old_params = optimizer.param_groups[i]["params"][0]
796
- param_state = optimizer.state[old_params]
797
- if len(param_state) == 0:
798
- return
799
- for key in param_state:
800
- param_state[key] = torch.zeros_like(param_state[key])
801
- del optimizer.state[old_params]
802
- optimizer.state[p_new] = param_state
803
- optimizer.param_groups[i]["params"] = [p_new]
804
- del old_params
805
- torch.cuda.empty_cache()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
som_out/bear/code/2024-10-25-234902/flow3d/trajectories.py DELETED
@@ -1,200 +0,0 @@
1
- import numpy as np
2
- import roma
3
- import torch
4
- import torch.nn.functional as F
5
-
6
- from .transforms import rt_to_mat4
7
-
8
-
9
- def get_avg_w2c(w2cs: torch.Tensor):
10
- c2ws = torch.linalg.inv(w2cs)
11
- # 1. Compute the center
12
- center = c2ws[:, :3, -1].mean(0)
13
- # 2. Compute the z axis
14
- z = F.normalize(c2ws[:, :3, 2].mean(0), dim=-1)
15
- # 3. Compute axis y' (no need to normalize as it's not the final output)
16
- y_ = c2ws[:, :3, 1].mean(0) # (3)
17
- # 4. Compute the x axis
18
- x = F.normalize(torch.cross(y_, z, dim=-1), dim=-1) # (3)
19
- # 5. Compute the y axis (as z and x are normalized, y is already of norm 1)
20
- y = torch.cross(z, x, dim=-1) # (3)
21
- avg_c2w = rt_to_mat4(torch.stack([x, y, z], 1), center)
22
- avg_w2c = torch.linalg.inv(avg_c2w)
23
- return avg_w2c
24
-
25
-
26
- def get_lookat(origins: torch.Tensor, viewdirs: torch.Tensor) -> torch.Tensor:
27
- """Triangulate a set of rays to find a single lookat point.
28
-
29
- Args:
30
- origins (torch.Tensor): A (N, 3) array of ray origins.
31
- viewdirs (torch.Tensor): A (N, 3) array of ray view directions.
32
-
33
- Returns:
34
- torch.Tensor: A (3,) lookat point.
35
- """
36
-
37
- viewdirs = torch.nn.functional.normalize(viewdirs, dim=-1)
38
- eye = torch.eye(3, device=origins.device, dtype=origins.dtype)[None]
39
- # Calculate projection matrix I - rr^T
40
- I_min_cov = eye - (viewdirs[..., None] * viewdirs[..., None, :])
41
- # Compute sum of projections
42
- sum_proj = I_min_cov.matmul(origins[..., None]).sum(dim=-3)
43
- # Solve for the intersection point using least squares
44
- lookat = torch.linalg.lstsq(I_min_cov.sum(dim=-3), sum_proj).solution[..., 0]
45
- # Check NaNs.
46
- assert not torch.any(torch.isnan(lookat))
47
- return lookat
48
-
49
-
50
- def get_lookat_w2cs(positions: torch.Tensor, lookat: torch.Tensor, up: torch.Tensor):
51
- """
52
- Args:
53
- positions: (N, 3) tensor of camera positions
54
- lookat: (3,) tensor of lookat point
55
- up: (3,) tensor of up vector
56
-
57
- Returns:
58
- w2cs: (N, 3, 3) tensor of world to camera rotation matrices
59
- """
60
- forward_vectors = F.normalize(lookat - positions, dim=-1)
61
- right_vectors = F.normalize(torch.cross(forward_vectors, up[None], dim=-1), dim=-1)
62
- down_vectors = F.normalize(
63
- torch.cross(forward_vectors, right_vectors, dim=-1), dim=-1
64
- )
65
- Rs = torch.stack([right_vectors, down_vectors, forward_vectors], dim=-1)
66
- w2cs = torch.linalg.inv(rt_to_mat4(Rs, positions))
67
- return w2cs
68
-
69
-
70
- def get_arc_w2cs(
71
- ref_w2c: torch.Tensor,
72
- lookat: torch.Tensor,
73
- up: torch.Tensor,
74
- num_frames: int,
75
- degree: float,
76
- **_,
77
- ) -> torch.Tensor:
78
- ref_position = torch.linalg.inv(ref_w2c)[:3, 3]
79
- thetas = (
80
- torch.sin(
81
- torch.linspace(0.0, torch.pi * 2.0, num_frames + 1, device=ref_w2c.device)[
82
- :-1
83
- ]
84
- )
85
- * (degree / 2.0)
86
- / 180.0
87
- * torch.pi
88
- )
89
- positions = torch.einsum(
90
- "nij,j->ni",
91
- roma.rotvec_to_rotmat(thetas[:, None] * up[None]),
92
- ref_position - lookat,
93
- )
94
- return get_lookat_w2cs(positions, lookat, up)
95
-
96
-
97
- def get_lemniscate_w2cs(
98
- ref_w2c: torch.Tensor,
99
- lookat: torch.Tensor,
100
- up: torch.Tensor,
101
- num_frames: int,
102
- degree: float,
103
- **_,
104
- ) -> torch.Tensor:
105
- ref_c2w = torch.linalg.inv(ref_w2c)
106
- a = torch.linalg.norm(ref_c2w[:3, 3] - lookat) * np.tan(degree / 360 * np.pi)
107
- # Lemniscate curve in camera space. Starting at the origin.
108
- thetas = (
109
- torch.linspace(0, 2 * torch.pi, num_frames + 1, device=ref_w2c.device)[:-1]
110
- + torch.pi / 2
111
- )
112
- positions = torch.stack(
113
- [
114
- a * torch.cos(thetas) / (1 + torch.sin(thetas) ** 2),
115
- a * torch.cos(thetas) * torch.sin(thetas) / (1 + torch.sin(thetas) ** 2),
116
- torch.zeros(num_frames, device=ref_w2c.device),
117
- ],
118
- dim=-1,
119
- )
120
- # Transform to world space.
121
- positions = torch.einsum(
122
- "ij,nj->ni", ref_c2w[:3], F.pad(positions, (0, 1), value=1.0)
123
- )
124
- return get_lookat_w2cs(positions, lookat, up)
125
-
126
-
127
- def get_spiral_w2cs(
128
- ref_w2c: torch.Tensor,
129
- lookat: torch.Tensor,
130
- up: torch.Tensor,
131
- num_frames: int,
132
- rads: float | torch.Tensor,
133
- zrate: float,
134
- rots: int,
135
- **_,
136
- ) -> torch.Tensor:
137
- ref_c2w = torch.linalg.inv(ref_w2c)
138
- thetas = torch.linspace(
139
- 0, 2 * torch.pi * rots, num_frames + 1, device=ref_w2c.device
140
- )[:-1]
141
- # Spiral curve in camera space. Starting at the origin.
142
- if isinstance(rads, torch.Tensor):
143
- rads = rads.reshape(-1, 3).to(ref_w2c.device)
144
- positions = (
145
- torch.stack(
146
- [
147
- torch.cos(thetas),
148
- -torch.sin(thetas),
149
- -torch.sin(thetas * zrate),
150
- ],
151
- dim=-1,
152
- )
153
- * rads
154
- )
155
- # Transform to world space.
156
- positions = torch.einsum(
157
- "ij,nj->ni", ref_c2w[:3], F.pad(positions, (0, 1), value=1.0)
158
- )
159
- return get_lookat_w2cs(positions, lookat, up)
160
-
161
-
162
- def get_wander_w2cs(ref_w2c, focal_length, num_frames, **_):
163
- device = ref_w2c.device
164
- c2w = np.linalg.inv(ref_w2c.detach().cpu().numpy())
165
- max_disp = 48.0
166
-
167
- max_trans = max_disp / focal_length
168
- output_poses = []
169
-
170
- for i in range(num_frames):
171
- x_trans = max_trans * np.sin(2.0 * np.pi * float(i) / float(num_frames))
172
- y_trans = 0.0
173
- z_trans = max_trans * np.cos(2.0 * np.pi * float(i) / float(num_frames)) / 2.0
174
-
175
- i_pose = np.concatenate(
176
- [
177
- np.concatenate(
178
- [
179
- np.eye(3),
180
- np.array([x_trans, y_trans, z_trans])[:, np.newaxis],
181
- ],
182
- axis=1,
183
- ),
184
- np.array([0.0, 0.0, 0.0, 1.0])[np.newaxis, :],
185
- ],
186
- axis=0,
187
- )
188
-
189
- i_pose = np.linalg.inv(i_pose)
190
-
191
- ref_pose = np.concatenate(
192
- [c2w[:3, :4], np.array([0.0, 0.0, 0.0, 1.0])[np.newaxis, :]], axis=0
193
- )
194
-
195
- render_pose = np.dot(ref_pose, i_pose)
196
- output_poses.append(render_pose)
197
- output_poses = torch.from_numpy(np.array(output_poses, dtype=np.float32)).to(device)
198
- w2cs = torch.linalg.inv(output_poses)
199
-
200
- return w2cs
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
som_out/bear/code/2024-10-25-234902/flow3d/transforms.py DELETED
@@ -1,129 +0,0 @@
1
- from typing import Literal
2
-
3
- import roma
4
- import torch
5
- import torch.nn.functional as F
6
-
7
-
8
- def rt_to_mat4(
9
- R: torch.Tensor, t: torch.Tensor, s: torch.Tensor | None = None
10
- ) -> torch.Tensor:
11
- """
12
- Args:
13
- R (torch.Tensor): (..., 3, 3).
14
- t (torch.Tensor): (..., 3).
15
- s (torch.Tensor): (...,).
16
-
17
- Returns:
18
- torch.Tensor: (..., 4, 4)
19
- """
20
- mat34 = torch.cat([R, t[..., None]], dim=-1)
21
- if s is None:
22
- bottom = (
23
- mat34.new_tensor([[0.0, 0.0, 0.0, 1.0]])
24
- .reshape((1,) * (mat34.dim() - 2) + (1, 4))
25
- .expand(mat34.shape[:-2] + (1, 4))
26
- )
27
- else:
28
- bottom = F.pad(1.0 / s[..., None, None], (3, 0), value=0.0)
29
- mat4 = torch.cat([mat34, bottom], dim=-2)
30
- return mat4
31
-
32
-
33
- def rmat_to_cont_6d(matrix):
34
- """
35
- :param matrix (*, 3, 3)
36
- :returns 6d vector (*, 6)
37
- """
38
- return torch.cat([matrix[..., 0], matrix[..., 1]], dim=-1)
39
-
40
-
41
- def cont_6d_to_rmat(cont_6d):
42
- """
43
- :param 6d vector (*, 6)
44
- :returns matrix (*, 3, 3)
45
- """
46
- x1 = cont_6d[..., 0:3]
47
- y1 = cont_6d[..., 3:6]
48
-
49
- x = F.normalize(x1, dim=-1)
50
- y = F.normalize(y1 - (y1 * x).sum(dim=-1, keepdim=True) * x, dim=-1)
51
- z = torch.linalg.cross(x, y, dim=-1)
52
-
53
- return torch.stack([x, y, z], dim=-1)
54
-
55
-
56
- def solve_procrustes(
57
- src: torch.Tensor,
58
- dst: torch.Tensor,
59
- weights: torch.Tensor | None = None,
60
- enforce_se3: bool = False,
61
- rot_type: Literal["quat", "mat", "6d"] = "quat",
62
- ):
63
- """
64
- Solve the Procrustes problem to align two point clouds, by solving the
65
- following problem:
66
-
67
- min_{s, R, t} || s * (src @ R.T + t) - dst ||_2, s.t. R.T @ R = I and det(R) = 1.
68
-
69
- Args:
70
- src (torch.Tensor): (N, 3).
71
- dst (torch.Tensor): (N, 3).
72
- weights (torch.Tensor | None): (N,), optional weights for alignment.
73
- enforce_se3 (bool): Whether to enforce the transfm to be SE3.
74
-
75
- Returns:
76
- sim3 (tuple[torch.Tensor, torch.Tensor, torch.Tensor]):
77
- q (torch.Tensor): (4,), rotation component in quaternion of WXYZ
78
- format.
79
- t (torch.Tensor): (3,), translation component.
80
- s (torch.Tensor): (), scale component.
81
- error (torch.Tensor): (), average L2 distance after alignment.
82
- """
83
- # Compute weights.
84
- if weights is None:
85
- weights = src.new_ones(src.shape[0])
86
- weights = weights[:, None] / weights.sum()
87
- # Normalize point positions.
88
- src_mean = (src * weights).sum(dim=0)
89
- dst_mean = (dst * weights).sum(dim=0)
90
- src_cent = src - src_mean
91
- dst_cent = dst - dst_mean
92
- # Normalize point scales.
93
- if not enforce_se3:
94
- src_scale = (src_cent**2 * weights).sum(dim=-1).mean().sqrt()
95
- dst_scale = (dst_cent**2 * weights).sum(dim=-1).mean().sqrt()
96
- else:
97
- src_scale = dst_scale = src.new_tensor(1.0)
98
- src_scaled = src_cent / src_scale
99
- dst_scaled = dst_cent / dst_scale
100
- # Compute the matrix for the singular value decomposition (SVD).
101
- matrix = (weights * dst_scaled).T @ src_scaled
102
- U, _, Vh = torch.linalg.svd(matrix)
103
- # Special reflection case.
104
- S = torch.eye(3, device=src.device)
105
- if torch.det(U) * torch.det(Vh) < 0:
106
- S[2, 2] = -1
107
- R = U @ S @ Vh
108
- # Compute the transformation.
109
- if rot_type == "quat":
110
- rot = roma.rotmat_to_unitquat(R).roll(1, dims=-1)
111
- elif rot_type == "6d":
112
- rot = rmat_to_cont_6d(R)
113
- else:
114
- rot = R
115
- s = dst_scale / src_scale
116
- t = dst_mean / s - src_mean @ R.T
117
- sim3 = rot, t, s
118
- # Debug: error.
119
- procrustes_dst = torch.einsum(
120
- "ij,nj->ni", rt_to_mat4(R, t, s), F.pad(src, (0, 1), value=1.0)
121
- )
122
- procrustes_dst = procrustes_dst[:, :3] / procrustes_dst[:, 3:]
123
- error_before = (torch.linalg.norm(dst - src, dim=-1) * weights[:, 0]).sum()
124
- error = (torch.linalg.norm(dst - procrustes_dst, dim=-1) * weights[:, 0]).sum()
125
- # print(f"Procrustes error: {error_before} -> {error}")
126
- # if error_before < error:
127
- # print("Something is wrong.")
128
- # __import__("ipdb").set_trace()
129
- return sim3, (error.item(), error_before.item())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
som_out/bear/code/2024-10-25-234902/flow3d/validator.py DELETED
@@ -1,421 +0,0 @@
1
- import functools
2
- import os
3
- import os.path as osp
4
- import time
5
- from dataclasses import asdict
6
- from typing import cast
7
-
8
- import imageio as iio
9
- import numpy as np
10
- import torch
11
- import torch.nn.functional as F
12
- from loguru import logger as guru
13
- from nerfview import CameraState, Viewer
14
- from pytorch_msssim import SSIM
15
- from torch.utils.data import DataLoader, Dataset
16
- from torch.utils.tensorboard import SummaryWriter
17
- from tqdm import tqdm
18
-
19
- from flow3d.configs import LossesConfig, OptimizerConfig, SceneLRConfig
20
- from flow3d.data.utils import normalize_coords, to_device
21
- from flow3d.metrics import PCK, mLPIPS, mPSNR, mSSIM
22
- from flow3d.scene_model import SceneModel
23
- from flow3d.vis.utils import (
24
- apply_depth_colormap,
25
- make_video_divisble,
26
- plot_correspondences,
27
- )
28
-
29
-
30
- class Validator:
31
- def __init__(
32
- self,
33
- model: SceneModel,
34
- device: torch.device,
35
- train_loader: DataLoader | None,
36
- val_img_loader: DataLoader | None,
37
- val_kpt_loader: DataLoader | None,
38
- save_dir: str,
39
- ):
40
- self.model = model
41
- self.device = device
42
- self.train_loader = train_loader
43
- self.val_img_loader = val_img_loader
44
- self.val_kpt_loader = val_kpt_loader
45
- self.save_dir = save_dir
46
- self.has_bg = self.model.has_bg
47
-
48
- # metrics
49
- self.ssim = SSIM(data_range=1.0, size_average=True, channel=3)
50
- self.psnr_metric = mPSNR()
51
- self.ssim_metric = mSSIM()
52
- self.lpips_metric = mLPIPS().to(device)
53
- self.fg_psnr_metric = mPSNR()
54
- self.fg_ssim_metric = mSSIM()
55
- self.fg_lpips_metric = mLPIPS().to(device)
56
- self.bg_psnr_metric = mPSNR()
57
- self.bg_ssim_metric = mSSIM()
58
- self.bg_lpips_metric = mLPIPS().to(device)
59
- self.pck_metric = PCK()
60
-
61
- def reset_metrics(self):
62
- self.psnr_metric.reset()
63
- self.ssim_metric.reset()
64
- self.lpips_metric.reset()
65
- self.fg_psnr_metric.reset()
66
- self.fg_ssim_metric.reset()
67
- self.fg_lpips_metric.reset()
68
- self.bg_psnr_metric.reset()
69
- self.bg_ssim_metric.reset()
70
- self.bg_lpips_metric.reset()
71
- self.pck_metric.reset()
72
-
73
- @torch.no_grad()
74
- def validate(self):
75
- self.reset_metrics()
76
- metric_imgs = self.validate_imgs() or {}
77
- metric_kpts = self.validate_keypoints() or {}
78
- return {**metric_imgs, **metric_kpts}
79
-
80
- @torch.no_grad()
81
- def validate_imgs(self):
82
- guru.info("rendering validation images...")
83
- if self.val_img_loader is None:
84
- return
85
-
86
- for batch in tqdm(self.val_img_loader, desc="render val images"):
87
- batch = to_device(batch, self.device)
88
- frame_name = batch["frame_names"][0]
89
- t = batch["ts"][0]
90
- # (1, 4, 4).
91
- w2c = batch["w2cs"]
92
- # (1, 3, 3).
93
- K = batch["Ks"]
94
- # (1, H, W, 3).
95
- img = batch["imgs"]
96
- # (1, H, W).
97
- valid_mask = batch.get(
98
- "valid_masks", torch.ones_like(batch["imgs"][..., 0])
99
- )
100
- # (1, H, W).
101
- fg_mask = batch["masks"]
102
-
103
- # (H, W).
104
- covisible_mask = batch.get(
105
- "covisible_masks",
106
- torch.ones_like(fg_mask)[None],
107
- )
108
- W, H = img_wh = img[0].shape[-2::-1]
109
- rendered = self.model.render(t, w2c, K, img_wh, return_depth=True)
110
-
111
- # Compute metrics.
112
- valid_mask *= covisible_mask
113
- fg_valid_mask = fg_mask * valid_mask
114
- bg_valid_mask = (1 - fg_mask) * valid_mask
115
- main_valid_mask = valid_mask if self.has_bg else fg_valid_mask
116
-
117
- self.psnr_metric.update(rendered["img"], img, main_valid_mask)
118
- self.ssim_metric.update(rendered["img"], img, main_valid_mask)
119
- self.lpips_metric.update(rendered["img"], img, main_valid_mask)
120
-
121
- if self.has_bg:
122
- self.fg_psnr_metric.update(rendered["img"], img, fg_valid_mask)
123
- self.fg_ssim_metric.update(rendered["img"], img, fg_valid_mask)
124
- self.fg_lpips_metric.update(rendered["img"], img, fg_valid_mask)
125
-
126
- self.bg_psnr_metric.update(rendered["img"], img, bg_valid_mask)
127
- self.bg_ssim_metric.update(rendered["img"], img, bg_valid_mask)
128
- self.bg_lpips_metric.update(rendered["img"], img, bg_valid_mask)
129
-
130
- # Dump results.
131
- results_dir = osp.join(self.save_dir, "results", "rgb")
132
- os.makedirs(results_dir, exist_ok=True)
133
- iio.imwrite(
134
- osp.join(results_dir, f"{frame_name}.png"),
135
- (rendered["img"][0].cpu().numpy() * 255).astype(np.uint8),
136
- )
137
-
138
- return {
139
- "val/psnr": self.psnr_metric.compute(),
140
- "val/ssim": self.ssim_metric.compute(),
141
- "val/lpips": self.lpips_metric.compute(),
142
- "val/fg_psnr": self.fg_psnr_metric.compute(),
143
- "val/fg_ssim": self.fg_ssim_metric.compute(),
144
- "val/fg_lpips": self.fg_lpips_metric.compute(),
145
- "val/bg_psnr": self.bg_psnr_metric.compute(),
146
- "val/bg_ssim": self.bg_ssim_metric.compute(),
147
- "val/bg_lpips": self.bg_lpips_metric.compute(),
148
- }
149
-
150
- @torch.no_grad()
151
- def validate_keypoints(self):
152
- if self.val_kpt_loader is None:
153
- return
154
- pred_keypoints_3d_all = []
155
- time_ids = self.val_kpt_loader.dataset.time_ids.tolist()
156
- h, w = self.val_kpt_loader.dataset.dataset.imgs.shape[1:3]
157
- pred_train_depths = np.zeros((len(time_ids), h, w))
158
-
159
- for batch in tqdm(self.val_kpt_loader, desc="render val keypoints"):
160
- batch = to_device(batch, self.device)
161
- # (2,).
162
- ts = batch["ts"][0]
163
- # (2, 4, 4).
164
- w2cs = batch["w2cs"][0]
165
- # (2, 3, 3).
166
- Ks = batch["Ks"][0]
167
- # (2, H, W, 3).
168
- imgs = batch["imgs"][0]
169
- # (2, P, 3).
170
- keypoints = batch["keypoints"][0]
171
- # (P,)
172
- keypoint_masks = (keypoints[..., -1] > 0.5).all(dim=0)
173
- src_keypoints, target_keypoints = keypoints[:, keypoint_masks, :2]
174
- W, H = img_wh = imgs.shape[-2:0:-1]
175
- rendered = self.model.render(
176
- ts[0].item(),
177
- w2cs[:1],
178
- Ks[:1],
179
- img_wh,
180
- target_ts=ts[1:],
181
- target_w2cs=w2cs[1:],
182
- return_depth=True,
183
- )
184
- pred_tracks_3d = rendered["tracks_3d"][0, ..., 0, :]
185
- pred_tracks_2d = torch.einsum("ij,hwj->hwi", Ks[1], pred_tracks_3d)
186
- pred_tracks_2d = pred_tracks_2d[..., :2] / torch.clamp(
187
- pred_tracks_2d[..., -1:], min=1e-6
188
- )
189
- pred_keypoints = F.grid_sample(
190
- pred_tracks_2d[None].permute(0, 3, 1, 2),
191
- normalize_coords(src_keypoints, H, W)[None, None],
192
- align_corners=True,
193
- ).permute(0, 2, 3, 1)[0, 0]
194
-
195
- # Compute metrics.
196
- self.pck_metric.update(pred_keypoints, target_keypoints, max(img_wh) * 0.05)
197
-
198
- padded_keypoints_3d = torch.zeros_like(keypoints[0])
199
- pred_keypoints_3d = F.grid_sample(
200
- pred_tracks_3d[None].permute(0, 3, 1, 2),
201
- normalize_coords(src_keypoints, H, W)[None, None],
202
- align_corners=True,
203
- ).permute(0, 2, 3, 1)[0, 0]
204
- # Transform 3D keypoints back to world space.
205
- pred_keypoints_3d = torch.einsum(
206
- "ij,pj->pi",
207
- torch.linalg.inv(w2cs[1])[:3],
208
- F.pad(pred_keypoints_3d, (0, 1), value=1.0),
209
- )
210
- padded_keypoints_3d[keypoint_masks] = pred_keypoints_3d
211
- # Cache predicted keypoints.
212
- pred_keypoints_3d_all.append(padded_keypoints_3d.cpu().numpy())
213
- pred_train_depths[time_ids.index(ts[0].item())] = (
214
- rendered["depth"][0, ..., 0].cpu().numpy()
215
- )
216
-
217
- # Dump unified results.
218
- all_Ks = self.val_kpt_loader.dataset.dataset.Ks
219
- all_w2cs = self.val_kpt_loader.dataset.dataset.w2cs
220
-
221
- keypoint_result_dict = {
222
- "Ks": all_Ks[time_ids].cpu().numpy(),
223
- "w2cs": all_w2cs[time_ids].cpu().numpy(),
224
- "pred_keypoints_3d": np.stack(pred_keypoints_3d_all, 0),
225
- "pred_train_depths": pred_train_depths,
226
- }
227
-
228
- results_dir = osp.join(self.save_dir, "results")
229
- os.makedirs(results_dir, exist_ok=True)
230
- np.savez(
231
- osp.join(results_dir, "keypoints.npz"),
232
- **keypoint_result_dict,
233
- )
234
- guru.info(
235
- f"Dumped keypoint results to {results_dir=} {keypoint_result_dict['pred_keypoints_3d'].shape=}"
236
- )
237
-
238
- return {"val/pck": self.pck_metric.compute()}
239
-
240
- @torch.no_grad()
241
- def save_train_videos(self, epoch: int):
242
- if self.train_loader is None:
243
- return
244
- video_dir = osp.join(self.save_dir, "videos", f"epoch_{epoch:04d}")
245
- os.makedirs(video_dir, exist_ok=True)
246
- fps = getattr(self.train_loader.dataset.dataset, "fps", 15.0)
247
- # Render video.
248
- video = []
249
- ref_pred_depths = []
250
- masks = []
251
- depth_min, depth_max = 1e6, 0
252
- for batch_idx, batch in enumerate(
253
- tqdm(self.train_loader, desc="Rendering video", leave=False)
254
- ):
255
- batch = {
256
- k: v.to(self.device) if isinstance(v, torch.Tensor) else v
257
- for k, v in batch.items()
258
- }
259
- # ().
260
- t = batch["ts"][0]
261
- # (4, 4).
262
- w2c = batch["w2cs"][0]
263
- # (3, 3).
264
- K = batch["Ks"][0]
265
- # (H, W, 3).
266
- img = batch["imgs"][0]
267
- # (H, W).
268
- depth = batch["depths"][0]
269
-
270
- img_wh = img.shape[-2::-1]
271
- rendered = self.model.render(
272
- t, w2c[None], K[None], img_wh, return_depth=True, return_mask=True
273
- )
274
- # Putting results onto CPU since it will consume unnecessarily
275
- # large GPU memory for long sequence OW.
276
- video.append(torch.cat([img, rendered["img"][0]], dim=1).cpu())
277
- ref_pred_depth = torch.cat(
278
- (depth[..., None], rendered["depth"][0]), dim=1
279
- ).cpu()
280
- ref_pred_depths.append(ref_pred_depth)
281
- depth_min = min(depth_min, ref_pred_depth.min().item())
282
- depth_max = max(depth_max, ref_pred_depth.quantile(0.99).item())
283
- if rendered["mask"] is not None:
284
- masks.append(rendered["mask"][0].cpu().squeeze(-1))
285
-
286
- # rgb video
287
- video = torch.stack(video, dim=0)
288
- iio.mimwrite(
289
- osp.join(video_dir, "rgbs.mp4"),
290
- make_video_divisble((video.numpy() * 255).astype(np.uint8)),
291
- fps=fps,
292
- )
293
- # depth video
294
- depth_video = torch.stack(
295
- [
296
- apply_depth_colormap(
297
- ref_pred_depth, near_plane=depth_min, far_plane=depth_max
298
- )
299
- for ref_pred_depth in ref_pred_depths
300
- ],
301
- dim=0,
302
- )
303
- iio.mimwrite(
304
- osp.join(video_dir, "depths.mp4"),
305
- make_video_divisble((depth_video.numpy() * 255).astype(np.uint8)),
306
- fps=fps,
307
- )
308
- if len(masks) > 0:
309
- # mask video
310
- mask_video = torch.stack(masks, dim=0)
311
- iio.mimwrite(
312
- osp.join(video_dir, "masks.mp4"),
313
- make_video_divisble((mask_video.numpy() * 255).astype(np.uint8)),
314
- fps=fps,
315
- )
316
-
317
- # Render 2D track video.
318
- tracks_2d, target_imgs = [], []
319
- sample_interval = 10
320
- batch0 = {
321
- k: v.to(self.device) if isinstance(v, torch.Tensor) else v
322
- for k, v in self.train_loader.dataset[0].items()
323
- }
324
- # ().
325
- t = batch0["ts"]
326
- # (4, 4).
327
- w2c = batch0["w2cs"]
328
- # (3, 3).
329
- K = batch0["Ks"]
330
- # (H, W, 3).
331
- img = batch0["imgs"]
332
- # (H, W).
333
- bool_mask = batch0["masks"] > 0.5
334
- img_wh = img.shape[-2::-1]
335
- for batch in tqdm(
336
- self.train_loader, desc="Rendering 2D track video", leave=False
337
- ):
338
- batch = {
339
- k: v.to(self.device) if isinstance(v, torch.Tensor) else v
340
- for k, v in batch.items()
341
- }
342
- # Putting results onto CPU since it will consume unnecessarily
343
- # large GPU memory for long sequence OW.
344
- # (1, H, W, 3).
345
- target_imgs.append(batch["imgs"].cpu())
346
- # (1,).
347
- target_ts = batch["ts"]
348
- # (1, 4, 4).
349
- target_w2cs = batch["w2cs"]
350
- # (1, 3, 3).
351
- target_Ks = batch["Ks"]
352
- rendered = self.model.render(
353
- t,
354
- w2c[None],
355
- K[None],
356
- img_wh,
357
- target_ts=target_ts,
358
- target_w2cs=target_w2cs,
359
- )
360
- pred_tracks_3d = rendered["tracks_3d"][0][
361
- ::sample_interval, ::sample_interval
362
- ][bool_mask[::sample_interval, ::sample_interval]].swapaxes(0, 1)
363
- pred_tracks_2d = torch.einsum("bij,bpj->bpi", target_Ks, pred_tracks_3d)
364
- pred_tracks_2d = pred_tracks_2d[..., :2] / torch.clamp(
365
- pred_tracks_2d[..., 2:], min=1e-6
366
- )
367
- tracks_2d.append(pred_tracks_2d.cpu())
368
- tracks_2d = torch.cat(tracks_2d, dim=0)
369
- target_imgs = torch.cat(target_imgs, dim=0)
370
- track_2d_video = plot_correspondences(
371
- target_imgs.numpy(),
372
- tracks_2d.numpy(),
373
- query_id=cast(int, t),
374
- )
375
- iio.mimwrite(
376
- osp.join(video_dir, "tracks_2d.mp4"),
377
- make_video_divisble(np.stack(track_2d_video, 0)),
378
- fps=fps,
379
- )
380
- # Render motion coefficient video.
381
- with torch.random.fork_rng():
382
- torch.random.manual_seed(0)
383
- motion_coef_colors = torch.pca_lowrank(
384
- self.model.fg.get_coefs()[None],
385
- q=3,
386
- )[0][0]
387
- motion_coef_colors = (motion_coef_colors - motion_coef_colors.min(0)[0]) / (
388
- motion_coef_colors.max(0)[0] - motion_coef_colors.min(0)[0]
389
- )
390
- motion_coef_colors = F.pad(
391
- motion_coef_colors, (0, 0, 0, self.model.bg.num_gaussians), value=0.5
392
- )
393
- video = []
394
- for batch in tqdm(
395
- self.train_loader, desc="Rendering motion coefficient video", leave=False
396
- ):
397
- batch = {
398
- k: v.to(self.device) if isinstance(v, torch.Tensor) else v
399
- for k, v in batch.items()
400
- }
401
- # ().
402
- t = batch["ts"][0]
403
- # (4, 4).
404
- w2c = batch["w2cs"][0]
405
- # (3, 3).
406
- K = batch["Ks"][0]
407
- # (3, 3).
408
- img = batch["imgs"][0]
409
- img_wh = img.shape[-2::-1]
410
- rendered = self.model.render(
411
- t, w2c[None], K[None], img_wh, colors_override=motion_coef_colors
412
- )
413
- # Putting results onto CPU since it will consume unnecessarily
414
- # large GPU memory for long sequence OW.
415
- video.append(torch.cat([img, rendered["img"][0]], dim=1).cpu())
416
- video = torch.stack(video, dim=0)
417
- iio.mimwrite(
418
- osp.join(video_dir, "motion_coefs.mp4"),
419
- make_video_divisble((video.numpy() * 255).astype(np.uint8)),
420
- fps=fps,
421
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
som_out/bear/code/2024-10-25-234902/flow3d/vis/__init__.py DELETED
File without changes
som_out/bear/code/2024-10-25-234902/flow3d/vis/__pycache__/__init__.cpython-310.pyc DELETED
Binary file (156 Bytes)
 
som_out/bear/code/2024-10-25-234902/flow3d/vis/__pycache__/playback_panel.cpython-310.pyc DELETED
Binary file (1.92 kB)
 
som_out/bear/code/2024-10-25-234902/flow3d/vis/__pycache__/render_panel.cpython-310.pyc DELETED
Binary file (28.9 kB)
 
som_out/bear/code/2024-10-25-234902/flow3d/vis/__pycache__/utils.cpython-310.pyc DELETED
Binary file (13.4 kB)
 
som_out/bear/code/2024-10-25-234902/flow3d/vis/__pycache__/viewer.cpython-310.pyc DELETED
Binary file (2.65 kB)
 
som_out/bear/code/2024-10-25-234902/flow3d/vis/playback_panel.py DELETED
@@ -1,68 +0,0 @@
1
- import threading
2
- import time
3
-
4
- import viser
5
-
6
-
7
- def add_gui_playback_group(
8
- server: viser.ViserServer,
9
- num_frames: int,
10
- min_fps: float = 1.0,
11
- max_fps: float = 60.0,
12
- fps_step: float = 0.1,
13
- initial_fps: float = 10.0,
14
- ):
15
- gui_timestep = server.gui.add_slider(
16
- "Timestep",
17
- min=0,
18
- max=num_frames - 1,
19
- step=1,
20
- initial_value=0,
21
- disabled=True,
22
- )
23
- gui_next_frame = server.gui.add_button("Next Frame")
24
- gui_prev_frame = server.gui.add_button("Prev Frame")
25
- gui_playing_pause = server.gui.add_button("Pause")
26
- gui_playing_pause.visible = False
27
- gui_playing_resume = server.gui.add_button("Resume")
28
- gui_framerate = server.gui.add_slider(
29
- "FPS", min=min_fps, max=max_fps, step=fps_step, initial_value=initial_fps
30
- )
31
-
32
- # Frame step buttons.
33
- @gui_next_frame.on_click
34
- def _(_) -> None:
35
- gui_timestep.value = (gui_timestep.value + 1) % num_frames
36
-
37
- @gui_prev_frame.on_click
38
- def _(_) -> None:
39
- gui_timestep.value = (gui_timestep.value - 1) % num_frames
40
-
41
- # Disable frame controls when we're playing.
42
- def _toggle_gui_playing(_):
43
- gui_playing_pause.visible = not gui_playing_pause.visible
44
- gui_playing_resume.visible = not gui_playing_resume.visible
45
- gui_timestep.disabled = gui_playing_pause.visible
46
- gui_next_frame.disabled = gui_playing_pause.visible
47
- gui_prev_frame.disabled = gui_playing_pause.visible
48
-
49
- gui_playing_pause.on_click(_toggle_gui_playing)
50
- gui_playing_resume.on_click(_toggle_gui_playing)
51
-
52
- # Create a thread to update the timestep indefinitely.
53
- def _update_timestep():
54
- while True:
55
- if gui_playing_pause.visible:
56
- gui_timestep.value = (gui_timestep.value + 1) % num_frames
57
- time.sleep(1 / gui_framerate.value)
58
-
59
- threading.Thread(target=_update_timestep, daemon=True).start()
60
-
61
- return (
62
- gui_timestep,
63
- gui_next_frame,
64
- gui_prev_frame,
65
- gui_playing_pause,
66
- gui_playing_resume,
67
- gui_framerate,
68
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
som_out/bear/code/2024-10-25-234902/flow3d/vis/render_panel.py DELETED
@@ -1,1165 +0,0 @@
1
- # Copyright 2022 the Regents of the University of California, Nerfstudio Team and contributors. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import annotations
16
-
17
- import colorsys
18
- import dataclasses
19
- import datetime
20
- import json
21
- import threading
22
- import time
23
- from pathlib import Path
24
- from typing import Dict, List, Literal, Optional, Tuple
25
-
26
- import numpy as np
27
- import scipy
28
- import splines
29
- import splines.quaternion
30
- import viser
31
- import viser.transforms as tf
32
-
33
- VISER_SCALE_RATIO = 10.0
34
-
35
-
36
- @dataclasses.dataclass
37
- class Keyframe:
38
- time: float
39
- position: np.ndarray
40
- wxyz: np.ndarray
41
- override_fov_enabled: bool
42
- override_fov_rad: float
43
- aspect: float
44
- override_transition_enabled: bool
45
- override_transition_sec: Optional[float]
46
-
47
- @staticmethod
48
- def from_camera(time: float, camera: viser.CameraHandle, aspect: float) -> Keyframe:
49
- return Keyframe(
50
- time,
51
- camera.position,
52
- camera.wxyz,
53
- override_fov_enabled=False,
54
- override_fov_rad=camera.fov,
55
- aspect=aspect,
56
- override_transition_enabled=False,
57
- override_transition_sec=None,
58
- )
59
-
60
-
61
- class CameraPath:
62
- def __init__(
63
- self, server: viser.ViserServer, duration_element: viser.GuiInputHandle[float]
64
- ):
65
- self._server = server
66
- self._keyframes: Dict[int, Tuple[Keyframe, viser.CameraFrustumHandle]] = {}
67
- self._keyframe_counter: int = 0
68
- self._spline_nodes: List[viser.SceneNodeHandle] = []
69
- self._camera_edit_panel: Optional[viser.Gui3dContainerHandle] = None
70
-
71
- self._orientation_spline: Optional[splines.quaternion.KochanekBartels] = None
72
- self._position_spline: Optional[splines.KochanekBartels] = None
73
- self._fov_spline: Optional[splines.KochanekBartels] = None
74
- self._time_spline: Optional[splines.KochanekBartels] = None
75
-
76
- self._keyframes_visible: bool = True
77
-
78
- self._duration_element = duration_element
79
-
80
- # These parameters should be overridden externally.
81
- self.loop: bool = False
82
- self.framerate: float = 30.0
83
- self.tension: float = 0.5 # Tension / alpha term.
84
- self.default_fov: float = 0.0
85
- self.default_transition_sec: float = 0.0
86
- self.show_spline: bool = True
87
-
88
- def set_keyframes_visible(self, visible: bool) -> None:
89
- self._keyframes_visible = visible
90
- for keyframe in self._keyframes.values():
91
- keyframe[1].visible = visible
92
-
93
- def add_camera(
94
- self, keyframe: Keyframe, keyframe_index: Optional[int] = None
95
- ) -> None:
96
- """Add a new camera, or replace an old one if `keyframe_index` is passed in."""
97
- server = self._server
98
-
99
- # Add a keyframe if we aren't replacing an existing one.
100
- if keyframe_index is None:
101
- keyframe_index = self._keyframe_counter
102
- self._keyframe_counter += 1
103
-
104
- print(
105
- f"{keyframe.wxyz=} {keyframe.position=} {keyframe_index=} {keyframe.aspect=}"
106
- )
107
- frustum_handle = server.scene.add_camera_frustum(
108
- f"/render_cameras/{keyframe_index}",
109
- fov=(
110
- keyframe.override_fov_rad
111
- if keyframe.override_fov_enabled
112
- else self.default_fov
113
- ),
114
- aspect=keyframe.aspect,
115
- scale=0.1,
116
- color=(200, 10, 30),
117
- wxyz=keyframe.wxyz,
118
- position=keyframe.position,
119
- visible=self._keyframes_visible,
120
- )
121
- self._server.scene.add_icosphere(
122
- f"/render_cameras/{keyframe_index}/sphere",
123
- radius=0.03,
124
- color=(200, 10, 30),
125
- )
126
-
127
- @frustum_handle.on_click
128
- def _(_) -> None:
129
- if self._camera_edit_panel is not None:
130
- self._camera_edit_panel.remove()
131
- self._camera_edit_panel = None
132
-
133
- with server.scene.add_3d_gui_container(
134
- "/camera_edit_panel",
135
- position=keyframe.position,
136
- ) as camera_edit_panel:
137
- self._camera_edit_panel = camera_edit_panel
138
- override_fov = server.gui.add_checkbox(
139
- "Override FOV", initial_value=keyframe.override_fov_enabled
140
- )
141
- override_fov_degrees = server.gui.add_slider(
142
- "Override FOV (degrees)",
143
- 5.0,
144
- 175.0,
145
- step=0.1,
146
- initial_value=keyframe.override_fov_rad * 180.0 / np.pi,
147
- disabled=not keyframe.override_fov_enabled,
148
- )
149
- delete_button = server.gui.add_button(
150
- "Delete", color="red", icon=viser.Icon.TRASH
151
- )
152
- go_to_button = server.gui.add_button("Go to")
153
- close_button = server.gui.add_button("Close")
154
-
155
- @override_fov.on_update
156
- def _(_) -> None:
157
- keyframe.override_fov_enabled = override_fov.value
158
- override_fov_degrees.disabled = not override_fov.value
159
- self.add_camera(keyframe, keyframe_index)
160
-
161
- @override_fov_degrees.on_update
162
- def _(_) -> None:
163
- keyframe.override_fov_rad = override_fov_degrees.value / 180.0 * np.pi
164
- self.add_camera(keyframe, keyframe_index)
165
-
166
- @delete_button.on_click
167
- def _(event: viser.GuiEvent) -> None:
168
- assert event.client is not None
169
- with event.client.gui.add_modal("Confirm") as modal:
170
- event.client.gui.add_markdown("Delete keyframe?")
171
- confirm_button = event.client.gui.add_button(
172
- "Yes", color="red", icon=viser.Icon.TRASH
173
- )
174
- exit_button = event.client.gui.add_button("Cancel")
175
-
176
- @confirm_button.on_click
177
- def _(_) -> None:
178
- assert camera_edit_panel is not None
179
-
180
- keyframe_id = None
181
- for i, keyframe_tuple in self._keyframes.items():
182
- if keyframe_tuple[1] is frustum_handle:
183
- keyframe_id = i
184
- break
185
- assert keyframe_id is not None
186
-
187
- self._keyframes.pop(keyframe_id)
188
- frustum_handle.remove()
189
- camera_edit_panel.remove()
190
- self._camera_edit_panel = None
191
- modal.close()
192
- self.update_spline()
193
-
194
- @exit_button.on_click
195
- def _(_) -> None:
196
- modal.close()
197
-
198
- @go_to_button.on_click
199
- def _(event: viser.GuiEvent) -> None:
200
- assert event.client is not None
201
- client = event.client
202
- T_world_current = tf.SE3.from_rotation_and_translation(
203
- tf.SO3(client.camera.wxyz), client.camera.position
204
- )
205
- T_world_target = tf.SE3.from_rotation_and_translation(
206
- tf.SO3(keyframe.wxyz), keyframe.position
207
- ) @ tf.SE3.from_translation(np.array([0.0, 0.0, -0.5]))
208
-
209
- T_current_target = T_world_current.inverse() @ T_world_target
210
-
211
- for j in range(10):
212
- T_world_set = T_world_current @ tf.SE3.exp(
213
- T_current_target.log() * j / 9.0
214
- )
215
-
216
- # Important bit: we atomically set both the orientation and the position
217
- # of the camera.
218
- with client.atomic():
219
- client.camera.wxyz = T_world_set.rotation().wxyz
220
- client.camera.position = T_world_set.translation()
221
- time.sleep(1.0 / 30.0)
222
-
223
- @close_button.on_click
224
- def _(_) -> None:
225
- assert camera_edit_panel is not None
226
- camera_edit_panel.remove()
227
- self._camera_edit_panel = None
228
-
229
- self._keyframes[keyframe_index] = (keyframe, frustum_handle)
230
-
231
- def update_aspect(self, aspect: float) -> None:
232
- for keyframe_index, frame in self._keyframes.items():
233
- frame = dataclasses.replace(frame[0], aspect=aspect)
234
- self.add_camera(frame, keyframe_index=keyframe_index)
235
-
236
- def get_aspect(self) -> float:
237
- """Get W/H aspect ratio, which is shared across all keyframes."""
238
- assert len(self._keyframes) > 0
239
- return next(iter(self._keyframes.values()))[0].aspect
240
-
241
- def reset(self) -> None:
242
- for frame in self._keyframes.values():
243
- print(f"removing {frame[1]}")
244
- frame[1].remove()
245
- self._keyframes.clear()
246
- self.update_spline()
247
- print("camera path reset")
248
-
249
- def spline_t_from_t_sec(self, time: np.ndarray) -> np.ndarray:
250
- """From a time value in seconds, compute a t value for our geometric
251
- spline interpolation. An increment of 1 for the latter will move the
252
- camera forward by one keyframe.
253
-
254
- We use a PCHIP spline here to guarantee monotonicity.
255
- """
256
- transition_times_cumsum = self.compute_transition_times_cumsum()
257
- spline_indices = np.arange(transition_times_cumsum.shape[0])
258
-
259
- if self.loop:
260
- # In the case of a loop, we pad the spline to match the start/end
261
- # slopes.
262
- interpolator = scipy.interpolate.PchipInterpolator(
263
- x=np.concatenate(
264
- [
265
- [-(transition_times_cumsum[-1] - transition_times_cumsum[-2])],
266
- transition_times_cumsum,
267
- transition_times_cumsum[-1:] + transition_times_cumsum[1:2],
268
- ],
269
- axis=0,
270
- ),
271
- y=np.concatenate(
272
- [[-1], spline_indices, [spline_indices[-1] + 1]], axis=0
273
- ),
274
- )
275
- else:
276
- interpolator = scipy.interpolate.PchipInterpolator(
277
- x=transition_times_cumsum, y=spline_indices
278
- )
279
-
280
- # Clip to account for floating point error.
281
- return np.clip(interpolator(time), 0, spline_indices[-1])
282
-
283
- def interpolate_pose_and_fov_rad(
284
- self, normalized_t: float
285
- ) -> Optional[Tuple[tf.SE3, float, float]]:
286
- if len(self._keyframes) < 2:
287
- return None
288
-
289
- self._time_spline = splines.KochanekBartels(
290
- [keyframe[0].time for keyframe in self._keyframes.values()],
291
- tcb=(self.tension, 0.0, 0.0),
292
- endconditions="closed" if self.loop else "natural",
293
- )
294
-
295
- self._fov_spline = splines.KochanekBartels(
296
- [
297
- (
298
- keyframe[0].override_fov_rad
299
- if keyframe[0].override_fov_enabled
300
- else self.default_fov
301
- )
302
- for keyframe in self._keyframes.values()
303
- ],
304
- tcb=(self.tension, 0.0, 0.0),
305
- endconditions="closed" if self.loop else "natural",
306
- )
307
-
308
- assert self._orientation_spline is not None
309
- assert self._position_spline is not None
310
- assert self._fov_spline is not None
311
- assert self._time_spline is not None
312
-
313
- max_t = self.compute_duration()
314
- t = max_t * normalized_t
315
- spline_t = float(self.spline_t_from_t_sec(np.array(t)))
316
-
317
- quat = self._orientation_spline.evaluate(spline_t)
318
- assert isinstance(quat, splines.quaternion.UnitQuaternion)
319
- return (
320
- tf.SE3.from_rotation_and_translation(
321
- tf.SO3(np.array([quat.scalar, *quat.vector])),
322
- self._position_spline.evaluate(spline_t),
323
- ),
324
- float(self._fov_spline.evaluate(spline_t)),
325
- float(self._time_spline.evaluate(spline_t)),
326
- )
327
-
328
- def update_spline(self) -> None:
329
- num_frames = int(self.compute_duration() * self.framerate)
330
- keyframes = list(self._keyframes.values())
331
-
332
- if num_frames <= 0 or not self.show_spline or len(keyframes) < 2:
333
- for node in self._spline_nodes:
334
- node.remove()
335
- self._spline_nodes.clear()
336
- return
337
-
338
- transition_times_cumsum = self.compute_transition_times_cumsum()
339
-
340
- self._orientation_spline = splines.quaternion.KochanekBartels(
341
- [
342
- splines.quaternion.UnitQuaternion.from_unit_xyzw(
343
- np.roll(keyframe[0].wxyz, shift=-1)
344
- )
345
- for keyframe in keyframes
346
- ],
347
- tcb=(self.tension, 0.0, 0.0),
348
- endconditions="closed" if self.loop else "natural",
349
- )
350
- self._position_spline = splines.KochanekBartels(
351
- [keyframe[0].position for keyframe in keyframes],
352
- tcb=(self.tension, 0.0, 0.0),
353
- endconditions="closed" if self.loop else "natural",
354
- )
355
-
356
- # Update visualized spline.
357
- points_array = self._position_spline.evaluate(
358
- self.spline_t_from_t_sec(
359
- np.linspace(0, transition_times_cumsum[-1], num_frames)
360
- )
361
- )
362
- colors_array = np.array(
363
- [
364
- colorsys.hls_to_rgb(h, 0.5, 1.0)
365
- for h in np.linspace(0.0, 1.0, len(points_array))
366
- ]
367
- )
368
-
369
- # Clear prior spline nodes.
370
- for node in self._spline_nodes:
371
- node.remove()
372
- self._spline_nodes.clear()
373
-
374
- self._spline_nodes.append(
375
- self._server.scene.add_spline_catmull_rom(
376
- "/render_camera_spline",
377
- positions=points_array,
378
- color=(220, 220, 220),
379
- closed=self.loop,
380
- line_width=1.0,
381
- segments=points_array.shape[0] + 1,
382
- )
383
- )
384
- self._spline_nodes.append(
385
- self._server.scene.add_point_cloud(
386
- "/render_camera_spline/points",
387
- points=points_array,
388
- colors=colors_array,
389
- point_size=0.04,
390
- )
391
- )
392
-
393
- def make_transition_handle(i: int) -> None:
394
- assert self._position_spline is not None
395
- transition_pos = self._position_spline.evaluate(
396
- float(
397
- self.spline_t_from_t_sec(
398
- (transition_times_cumsum[i] + transition_times_cumsum[i + 1])
399
- / 2.0,
400
- )
401
- )
402
- )
403
- transition_sphere = self._server.scene.add_icosphere(
404
- f"/render_camera_spline/transition_{i}",
405
- radius=0.04,
406
- color=(255, 0, 0),
407
- position=transition_pos,
408
- )
409
- self._spline_nodes.append(transition_sphere)
410
-
411
- @transition_sphere.on_click
412
- def _(_) -> None:
413
- server = self._server
414
-
415
- if self._camera_edit_panel is not None:
416
- self._camera_edit_panel.remove()
417
- self._camera_edit_panel = None
418
-
419
- keyframe_index = (i + 1) % len(self._keyframes)
420
- keyframe = keyframes[keyframe_index][0]
421
-
422
- with server.scene.add_3d_gui_container(
423
- "/camera_edit_panel",
424
- position=transition_pos,
425
- ) as camera_edit_panel:
426
- self._camera_edit_panel = camera_edit_panel
427
- override_transition_enabled = server.gui.add_checkbox(
428
- "Override transition",
429
- initial_value=keyframe.override_transition_enabled,
430
- )
431
- override_transition_sec = server.gui.add_number(
432
- "Override transition (sec)",
433
- initial_value=(
434
- keyframe.override_transition_sec
435
- if keyframe.override_transition_sec is not None
436
- else self.default_transition_sec
437
- ),
438
- min=0.001,
439
- max=30.0,
440
- step=0.001,
441
- disabled=not override_transition_enabled.value,
442
- )
443
- close_button = server.gui.add_button("Close")
444
-
445
- @override_transition_enabled.on_update
446
- def _(_) -> None:
447
- keyframe.override_transition_enabled = (
448
- override_transition_enabled.value
449
- )
450
- override_transition_sec.disabled = (
451
- not override_transition_enabled.value
452
- )
453
- self._duration_element.value = self.compute_duration()
454
-
455
- @override_transition_sec.on_update
456
- def _(_) -> None:
457
- keyframe.override_transition_sec = override_transition_sec.value
458
- self._duration_element.value = self.compute_duration()
459
-
460
- @close_button.on_click
461
- def _(_) -> None:
462
- assert camera_edit_panel is not None
463
- camera_edit_panel.remove()
464
- self._camera_edit_panel = None
465
-
466
- (num_transitions_plus_1,) = transition_times_cumsum.shape
467
- for i in range(num_transitions_plus_1 - 1):
468
- make_transition_handle(i)
469
-
470
- # for i in range(transition_times.shape[0])
471
-
472
- def compute_duration(self) -> float:
473
- """Compute the total duration of the trajectory."""
474
- total = 0.0
475
- for i, (keyframe, frustum) in enumerate(self._keyframes.values()):
476
- if i == 0 and not self.loop:
477
- continue
478
- del frustum
479
- total += (
480
- keyframe.override_transition_sec
481
- if keyframe.override_transition_enabled
482
- and keyframe.override_transition_sec is not None
483
- else self.default_transition_sec
484
- )
485
- return total
486
-
487
- def compute_transition_times_cumsum(self) -> np.ndarray:
488
- """Compute the total duration of the trajectory."""
489
- total = 0.0
490
- out = [0.0]
491
- for i, (keyframe, frustum) in enumerate(self._keyframes.values()):
492
- if i == 0:
493
- continue
494
- del frustum
495
- total += (
496
- keyframe.override_transition_sec
497
- if keyframe.override_transition_enabled
498
- and keyframe.override_transition_sec is not None
499
- else self.default_transition_sec
500
- )
501
- out.append(total)
502
-
503
- if self.loop:
504
- keyframe = next(iter(self._keyframes.values()))[0]
505
- total += (
506
- keyframe.override_transition_sec
507
- if keyframe.override_transition_enabled
508
- and keyframe.override_transition_sec is not None
509
- else self.default_transition_sec
510
- )
511
- out.append(total)
512
-
513
- return np.array(out)
514
-
515
-
516
- @dataclasses.dataclass
517
- class RenderTabState:
518
- """Useful GUI handles exposed by the render tab."""
519
-
520
- preview_render: bool
521
- preview_fov: float
522
- preview_aspect: float
523
- preview_camera_type: Literal["Perspective", "Fisheye", "Equirectangular"]
524
-
525
-
526
- def populate_render_tab(
527
- server: viser.ViserServer,
528
- datapath: Path,
529
- gui_timestep_handle: viser.GuiInputHandle[int] | None,
530
- ) -> RenderTabState:
531
-
532
- render_tab_state = RenderTabState(
533
- preview_render=False,
534
- preview_fov=0.0,
535
- preview_aspect=1.0,
536
- preview_camera_type="Perspective",
537
- )
538
-
539
- fov_degrees = server.gui.add_slider(
540
- "Default FOV",
541
- initial_value=75.0,
542
- min=0.1,
543
- max=175.0,
544
- step=0.01,
545
- hint="Field-of-view for rendering, which can also be overridden on a per-keyframe basis.",
546
- )
547
-
548
- @fov_degrees.on_update
549
- def _(_) -> None:
550
- fov_radians = fov_degrees.value / 180.0 * np.pi
551
- for client in server.get_clients().values():
552
- client.camera.fov = fov_radians
553
- camera_path.default_fov = fov_radians
554
-
555
- # Updating the aspect ratio will also re-render the camera frustums.
556
- # Could rethink this.
557
- camera_path.update_aspect(resolution.value[0] / resolution.value[1])
558
- compute_and_update_preview_camera_state()
559
-
560
- resolution = server.gui.add_vector2(
561
- "Resolution",
562
- initial_value=(1920, 1080),
563
- min=(50, 50),
564
- max=(10_000, 10_000),
565
- step=1,
566
- hint="Render output resolution in pixels.",
567
- )
568
-
569
- @resolution.on_update
570
- def _(_) -> None:
571
- camera_path.update_aspect(resolution.value[0] / resolution.value[1])
572
- compute_and_update_preview_camera_state()
573
-
574
- camera_type = server.gui.add_dropdown(
575
- "Camera type",
576
- ("Perspective", "Fisheye", "Equirectangular"),
577
- initial_value="Perspective",
578
- hint="Camera model to render with. This is applied to all keyframes.",
579
- )
580
- add_button = server.gui.add_button(
581
- "Add Keyframe",
582
- icon=viser.Icon.PLUS,
583
- hint="Add a new keyframe at the current pose.",
584
- )
585
-
586
- @add_button.on_click
587
- def _(event: viser.GuiEvent) -> None:
588
- assert event.client_id is not None
589
- camera = server.get_clients()[event.client_id].camera
590
- pose = tf.SE3.from_rotation_and_translation(
591
- tf.SO3(camera.wxyz), camera.position
592
- )
593
- print(f"client {event.client_id} at {camera.position} {camera.wxyz}")
594
- print(f"camera pose {pose.as_matrix()}")
595
- if gui_timestep_handle is not None:
596
- print(f"timestep {gui_timestep_handle.value}")
597
-
598
- # Add this camera to the path.
599
- time = 0
600
- if gui_timestep_handle is not None:
601
- time = gui_timestep_handle.value
602
- camera_path.add_camera(
603
- Keyframe.from_camera(
604
- time,
605
- camera,
606
- aspect=resolution.value[0] / resolution.value[1],
607
- ),
608
- )
609
- duration_number.value = camera_path.compute_duration()
610
- camera_path.update_spline()
611
-
612
- clear_keyframes_button = server.gui.add_button(
613
- "Clear Keyframes",
614
- icon=viser.Icon.TRASH,
615
- hint="Remove all keyframes from the render path.",
616
- )
617
-
618
- @clear_keyframes_button.on_click
619
- def _(event: viser.GuiEvent) -> None:
620
- assert event.client_id is not None
621
- client = server.get_clients()[event.client_id]
622
- with client.atomic(), client.gui.add_modal("Confirm") as modal:
623
- client.gui.add_markdown("Clear all keyframes?")
624
- confirm_button = client.gui.add_button(
625
- "Yes", color="red", icon=viser.Icon.TRASH
626
- )
627
- exit_button = client.gui.add_button("Cancel")
628
-
629
- @confirm_button.on_click
630
- def _(_) -> None:
631
- camera_path.reset()
632
- modal.close()
633
-
634
- duration_number.value = camera_path.compute_duration()
635
-
636
- # Clear move handles.
637
- if len(transform_controls) > 0:
638
- for t in transform_controls:
639
- t.remove()
640
- transform_controls.clear()
641
- return
642
-
643
- @exit_button.on_click
644
- def _(_) -> None:
645
- modal.close()
646
-
647
- loop = server.gui.add_checkbox(
648
- "Loop", False, hint="Add a segment between the first and last keyframes."
649
- )
650
-
651
- @loop.on_update
652
- def _(_) -> None:
653
- camera_path.loop = loop.value
654
- duration_number.value = camera_path.compute_duration()
655
-
656
- tension_slider = server.gui.add_slider(
657
- "Spline tension",
658
- min=0.0,
659
- max=1.0,
660
- initial_value=0.0,
661
- step=0.01,
662
- hint="Tension parameter for adjusting smoothness of spline interpolation.",
663
- )
664
-
665
- @tension_slider.on_update
666
- def _(_) -> None:
667
- camera_path.tension = tension_slider.value
668
- camera_path.update_spline()
669
-
670
- move_checkbox = server.gui.add_checkbox(
671
- "Move keyframes",
672
- initial_value=False,
673
- hint="Toggle move handles for keyframes in the scene.",
674
- )
675
-
676
- transform_controls: List[viser.SceneNodeHandle] = []
677
-
678
- @move_checkbox.on_update
679
- def _(event: viser.GuiEvent) -> None:
680
- # Clear move handles when toggled off.
681
- if move_checkbox.value is False:
682
- for t in transform_controls:
683
- t.remove()
684
- transform_controls.clear()
685
- return
686
-
687
- def _make_transform_controls_callback(
688
- keyframe: Tuple[Keyframe, viser.SceneNodeHandle],
689
- controls: viser.TransformControlsHandle,
690
- ) -> None:
691
- @controls.on_update
692
- def _(_) -> None:
693
- keyframe[0].wxyz = controls.wxyz
694
- keyframe[0].position = controls.position
695
-
696
- keyframe[1].wxyz = controls.wxyz
697
- keyframe[1].position = controls.position
698
-
699
- camera_path.update_spline()
700
-
701
- # Show move handles.
702
- assert event.client is not None
703
- for keyframe_index, keyframe in camera_path._keyframes.items():
704
- controls = event.client.scene.add_transform_controls(
705
- f"/keyframe_move/{keyframe_index}",
706
- scale=0.4,
707
- wxyz=keyframe[0].wxyz,
708
- position=keyframe[0].position,
709
- )
710
- transform_controls.append(controls)
711
- _make_transform_controls_callback(keyframe, controls)
712
-
713
- show_keyframe_checkbox = server.gui.add_checkbox(
714
- "Show keyframes",
715
- initial_value=True,
716
- hint="Show keyframes in the scene.",
717
- )
718
-
719
- @show_keyframe_checkbox.on_update
720
- def _(_: viser.GuiEvent) -> None:
721
- camera_path.set_keyframes_visible(show_keyframe_checkbox.value)
722
-
723
- show_spline_checkbox = server.gui.add_checkbox(
724
- "Show spline",
725
- initial_value=True,
726
- hint="Show camera path spline in the scene.",
727
- )
728
-
729
- @show_spline_checkbox.on_update
730
- def _(_) -> None:
731
- camera_path.show_spline = show_spline_checkbox.value
732
- camera_path.update_spline()
733
-
734
- playback_folder = server.gui.add_folder("Playback")
735
- with playback_folder:
736
- play_button = server.gui.add_button("Play", icon=viser.Icon.PLAYER_PLAY)
737
- pause_button = server.gui.add_button(
738
- "Pause", icon=viser.Icon.PLAYER_PAUSE, visible=False
739
- )
740
- preview_render_button = server.gui.add_button(
741
- "Preview Render", hint="Show a preview of the render in the viewport."
742
- )
743
- preview_render_stop_button = server.gui.add_button(
744
- "Exit Render Preview", color="red", visible=False
745
- )
746
-
747
- transition_sec_number = server.gui.add_number(
748
- "Transition (sec)",
749
- min=0.001,
750
- max=30.0,
751
- step=0.001,
752
- initial_value=2.0,
753
- hint="Time in seconds between each keyframe, which can also be overridden on a per-transition basis.",
754
- )
755
- framerate_number = server.gui.add_number(
756
- "FPS", min=0.1, max=240.0, step=1e-2, initial_value=30.0
757
- )
758
- framerate_buttons = server.gui.add_button_group("", ("24", "30", "60"))
759
- duration_number = server.gui.add_number(
760
- "Duration (sec)",
761
- min=0.0,
762
- max=1e8,
763
- step=0.001,
764
- initial_value=0.0,
765
- disabled=True,
766
- )
767
-
768
- @framerate_buttons.on_click
769
- def _(_) -> None:
770
- framerate_number.value = float(framerate_buttons.value)
771
-
772
- @transition_sec_number.on_update
773
- def _(_) -> None:
774
- camera_path.default_transition_sec = transition_sec_number.value
775
- duration_number.value = camera_path.compute_duration()
776
-
777
- def get_max_frame_index() -> int:
778
- return max(1, int(framerate_number.value * duration_number.value) - 1)
779
-
780
- preview_camera_handle: Optional[viser.SceneNodeHandle] = None
781
-
782
- def remove_preview_camera() -> None:
783
- nonlocal preview_camera_handle
784
- if preview_camera_handle is not None:
785
- preview_camera_handle.remove()
786
- preview_camera_handle = None
787
-
788
- def compute_and_update_preview_camera_state() -> (
789
- Optional[Tuple[tf.SE3, float, float]]
790
- ):
791
- """Update the render tab state with the current preview camera pose.
792
- Returns current camera pose + FOV if available."""
793
-
794
- if preview_frame_slider is None:
795
- return
796
- maybe_pose_and_fov_rad_and_time = camera_path.interpolate_pose_and_fov_rad(
797
- preview_frame_slider.value / get_max_frame_index()
798
- )
799
- if maybe_pose_and_fov_rad_and_time is None:
800
- remove_preview_camera()
801
- return
802
- pose, fov_rad, time = maybe_pose_and_fov_rad_and_time
803
- render_tab_state.preview_fov = fov_rad
804
- render_tab_state.preview_aspect = camera_path.get_aspect()
805
- render_tab_state.preview_camera_type = camera_type.value
806
- if gui_timestep_handle is not None:
807
- gui_timestep_handle.value = int(time)
808
- return pose, fov_rad, time
809
-
810
- def add_preview_frame_slider() -> Optional[viser.GuiInputHandle[int]]:
811
- """Helper for creating the current frame # slider. This is removed and
812
- re-added anytime the `max` value changes."""
813
-
814
- with playback_folder:
815
- preview_frame_slider = server.gui.add_slider(
816
- "Preview frame",
817
- min=0,
818
- max=get_max_frame_index(),
819
- step=1,
820
- initial_value=0,
821
- # Place right after the pause button.
822
- order=preview_render_stop_button.order + 0.01,
823
- disabled=get_max_frame_index() == 1,
824
- )
825
- play_button.disabled = preview_frame_slider.disabled
826
- preview_render_button.disabled = preview_frame_slider.disabled
827
-
828
- @preview_frame_slider.on_update
829
- def _(_) -> None:
830
- nonlocal preview_camera_handle
831
- maybe_pose_and_fov_rad_and_time = compute_and_update_preview_camera_state()
832
- if maybe_pose_and_fov_rad_and_time is None:
833
- return
834
- pose, fov_rad, time = maybe_pose_and_fov_rad_and_time
835
-
836
- preview_camera_handle = server.scene.add_camera_frustum(
837
- "/preview_camera",
838
- fov=fov_rad,
839
- aspect=resolution.value[0] / resolution.value[1],
840
- scale=0.35,
841
- wxyz=pose.rotation().wxyz,
842
- position=pose.translation(),
843
- color=(10, 200, 30),
844
- )
845
- if render_tab_state.preview_render:
846
- for client in server.get_clients().values():
847
- client.camera.wxyz = pose.rotation().wxyz
848
- client.camera.position = pose.translation()
849
- if gui_timestep_handle is not None:
850
- gui_timestep_handle.value = int(time)
851
-
852
- return preview_frame_slider
853
-
854
- # We back up the camera poses before and after we start previewing renders.
855
- camera_pose_backup_from_id: Dict[int, tuple] = {}
856
-
857
- @preview_render_button.on_click
858
- def _(_) -> None:
859
- render_tab_state.preview_render = True
860
- preview_render_button.visible = False
861
- preview_render_stop_button.visible = True
862
-
863
- maybe_pose_and_fov_rad_and_time = compute_and_update_preview_camera_state()
864
- if maybe_pose_and_fov_rad_and_time is None:
865
- remove_preview_camera()
866
- return
867
- pose, fov, time = maybe_pose_and_fov_rad_and_time
868
- del fov
869
-
870
- # Hide all scene nodes when we're previewing the render.
871
- server.scene.set_global_visibility(True)
872
-
873
- # Back up and then set camera poses.
874
- for client in server.get_clients().values():
875
- camera_pose_backup_from_id[client.client_id] = (
876
- client.camera.position,
877
- client.camera.look_at,
878
- client.camera.up_direction,
879
- )
880
- client.camera.wxyz = pose.rotation().wxyz
881
- client.camera.position = pose.translation()
882
- if gui_timestep_handle is not None:
883
- gui_timestep_handle.value = int(time)
884
-
885
- @preview_render_stop_button.on_click
886
- def _(_) -> None:
887
- render_tab_state.preview_render = False
888
- preview_render_button.visible = True
889
- preview_render_stop_button.visible = False
890
-
891
- # Revert camera poses.
892
- for client in server.get_clients().values():
893
- if client.client_id not in camera_pose_backup_from_id:
894
- continue
895
- cam_position, cam_look_at, cam_up = camera_pose_backup_from_id.pop(
896
- client.client_id
897
- )
898
- client.camera.position = cam_position
899
- client.camera.look_at = cam_look_at
900
- client.camera.up_direction = cam_up
901
- client.flush()
902
-
903
- # Un-hide scene nodes.
904
- server.scene.set_global_visibility(True)
905
-
906
- preview_frame_slider = add_preview_frame_slider()
907
-
908
- # Update the # of frames.
909
- @duration_number.on_update
910
- @framerate_number.on_update
911
- def _(_) -> None:
912
- remove_preview_camera() # Will be re-added when slider is updated.
913
-
914
- nonlocal preview_frame_slider
915
- old = preview_frame_slider
916
- assert old is not None
917
-
918
- preview_frame_slider = add_preview_frame_slider()
919
- if preview_frame_slider is not None:
920
- old.remove()
921
- else:
922
- preview_frame_slider = old
923
-
924
- camera_path.framerate = framerate_number.value
925
- camera_path.update_spline()
926
-
927
- # Play the camera trajectory when the play button is pressed.
928
- @play_button.on_click
929
- def _(_) -> None:
930
- play_button.visible = False
931
- pause_button.visible = True
932
-
933
- def play() -> None:
934
- while not play_button.visible:
935
- max_frame = int(framerate_number.value * duration_number.value)
936
- if max_frame > 0:
937
- assert preview_frame_slider is not None
938
- preview_frame_slider.value = (
939
- preview_frame_slider.value + 1
940
- ) % max_frame
941
- time.sleep(1.0 / framerate_number.value)
942
-
943
- threading.Thread(target=play).start()
944
-
945
- # Play the camera trajectory when the play button is pressed.
946
- @pause_button.on_click
947
- def _(_) -> None:
948
- play_button.visible = True
949
- pause_button.visible = False
950
-
951
- # add button for loading existing path
952
- load_camera_path_button = server.gui.add_button(
953
- "Load Path", icon=viser.Icon.FOLDER_OPEN, hint="Load an existing camera path."
954
- )
955
-
956
- @load_camera_path_button.on_click
957
- def _(event: viser.GuiEvent) -> None:
958
- assert event.client is not None
959
- camera_path_dir = datapath.parent
960
- camera_path_dir.mkdir(parents=True, exist_ok=True)
961
- preexisting_camera_paths = list(camera_path_dir.glob("*.json"))
962
- preexisting_camera_filenames = [p.name for p in preexisting_camera_paths]
963
-
964
- with event.client.gui.add_modal("Load Path") as modal:
965
- if len(preexisting_camera_filenames) == 0:
966
- event.client.gui.add_markdown("No existing paths found")
967
- else:
968
- event.client.gui.add_markdown("Select existing camera path:")
969
- camera_path_dropdown = event.client.gui.add_dropdown(
970
- label="Camera Path",
971
- options=[str(p) for p in preexisting_camera_filenames],
972
- initial_value=str(preexisting_camera_filenames[0]),
973
- )
974
- load_button = event.client.gui.add_button("Load")
975
-
976
- @load_button.on_click
977
- def _(_) -> None:
978
- # load the json file
979
- json_path = datapath / camera_path_dropdown.value
980
- with open(json_path, "r") as f:
981
- json_data = json.load(f)
982
-
983
- keyframes = json_data["keyframes"]
984
- camera_path.reset()
985
- for i in range(len(keyframes)):
986
- frame = keyframes[i]
987
- pose = tf.SE3.from_matrix(
988
- np.array(frame["matrix"]).reshape(4, 4)
989
- )
990
- # apply the x rotation by 180 deg
991
- pose = tf.SE3.from_rotation_and_translation(
992
- pose.rotation() @ tf.SO3.from_x_radians(np.pi),
993
- pose.translation(),
994
- )
995
-
996
- camera_path.add_camera(
997
- Keyframe(
998
- frame["time"],
999
- position=pose.translation(),
1000
- wxyz=pose.rotation().wxyz,
1001
- # There are some floating point conversions between degrees and radians, so the fov and
1002
- # default_Fov values will not be exactly matched.
1003
- override_fov_enabled=abs(
1004
- frame["fov"] - json_data.get("default_fov", 0.0)
1005
- )
1006
- > 1e-3,
1007
- override_fov_rad=frame["fov"] / 180.0 * np.pi,
1008
- aspect=frame["aspect"],
1009
- override_transition_enabled=frame.get(
1010
- "override_transition_enabled", None
1011
- ),
1012
- override_transition_sec=frame.get(
1013
- "override_transition_sec", None
1014
- ),
1015
- )
1016
- )
1017
-
1018
- transition_sec_number.value = json_data.get(
1019
- "default_transition_sec", 0.5
1020
- )
1021
-
1022
- # update the render name
1023
- camera_path_name.value = json_path.stem
1024
- camera_path.update_spline()
1025
- modal.close()
1026
-
1027
- cancel_button = event.client.gui.add_button("Cancel")
1028
-
1029
- @cancel_button.on_click
1030
- def _(_) -> None:
1031
- modal.close()
1032
-
1033
- # set the initial value to the current date-time string
1034
- now = datetime.datetime.now()
1035
- camera_path_name = server.gui.add_text(
1036
- "Camera path name",
1037
- initial_value=now.strftime("%Y-%m-%d %H:%M:%S"),
1038
- hint="Name of the render",
1039
- )
1040
-
1041
- save_path_button = server.gui.add_button(
1042
- "Save Camera Path",
1043
- color="green",
1044
- icon=viser.Icon.FILE_EXPORT,
1045
- hint="Save the camera path to json.",
1046
- )
1047
-
1048
- reset_up_button = server.gui.add_button(
1049
- "Reset Up Direction",
1050
- icon=viser.Icon.ARROW_BIG_UP_LINES,
1051
- color="gray",
1052
- hint="Set the up direction of the camera orbit controls to the camera's current up direction.",
1053
- )
1054
-
1055
- @reset_up_button.on_click
1056
- def _(event: viser.GuiEvent) -> None:
1057
- assert event.client is not None
1058
- event.client.camera.up_direction = tf.SO3(event.client.camera.wxyz) @ np.array(
1059
- [0.0, -1.0, 0.0]
1060
- )
1061
-
1062
- @save_path_button.on_click
1063
- def _(event: viser.GuiEvent) -> None:
1064
- assert event.client is not None
1065
- num_frames = int(framerate_number.value * duration_number.value)
1066
- json_data = {}
1067
- # json data has the properties:
1068
- # keyframes: list of keyframes with
1069
- # matrix : flattened 4x4 matrix
1070
- # fov: float in degrees
1071
- # aspect: float
1072
- # camera_type: string of camera type
1073
- # render_height: int
1074
- # render_width: int
1075
- # fps: int
1076
- # seconds: float
1077
- # is_cycle: bool
1078
- # smoothness_value: float
1079
- # camera_path: list of frames with properties
1080
- # camera_to_world: flattened 4x4 matrix
1081
- # fov: float in degrees
1082
- # aspect: float
1083
- # first populate the keyframes:
1084
- keyframes = []
1085
- for keyframe, dummy in camera_path._keyframes.values():
1086
- pose = tf.SE3.from_rotation_and_translation(
1087
- tf.SO3(keyframe.wxyz), keyframe.position
1088
- )
1089
- keyframes.append(
1090
- {
1091
- "matrix": pose.as_matrix().flatten().tolist(),
1092
- "fov": (
1093
- np.rad2deg(keyframe.override_fov_rad)
1094
- if keyframe.override_fov_enabled
1095
- else fov_degrees.value
1096
- ),
1097
- "aspect": keyframe.aspect,
1098
- "override_transition_enabled": keyframe.override_transition_enabled,
1099
- "override_transition_sec": keyframe.override_transition_sec,
1100
- }
1101
- )
1102
- json_data["default_fov"] = fov_degrees.value
1103
- json_data["default_transition_sec"] = transition_sec_number.value
1104
- json_data["keyframes"] = keyframes
1105
- json_data["camera_type"] = camera_type.value.lower()
1106
- json_data["render_height"] = resolution.value[1]
1107
- json_data["render_width"] = resolution.value[0]
1108
- json_data["fps"] = framerate_number.value
1109
- json_data["seconds"] = duration_number.value
1110
- json_data["is_cycle"] = loop.value
1111
- json_data["smoothness_value"] = tension_slider.value
1112
-
1113
- def get_intrinsics(W, H, fov):
1114
- focal = 0.5 * H / np.tan(0.5 * fov)
1115
- return np.array(
1116
- [[focal, 0.0, 0.5 * W], [0.0, focal, 0.5 * H], [0.0, 0.0, 1.0]]
1117
- )
1118
-
1119
- # now populate the camera path:
1120
- camera_path_list = []
1121
- for i in range(num_frames):
1122
- maybe_pose_and_fov_and_time = camera_path.interpolate_pose_and_fov_rad(
1123
- i / num_frames
1124
- )
1125
- if maybe_pose_and_fov_and_time is None:
1126
- return
1127
- pose, fov, time = maybe_pose_and_fov_and_time
1128
- H = resolution.value[1]
1129
- W = resolution.value[0]
1130
- K = get_intrinsics(W, H, fov)
1131
- # rotate the axis of the camera 180 about x axis
1132
- w2c = pose.inverse().as_matrix()
1133
- camera_path_list.append(
1134
- {
1135
- "time": time,
1136
- "w2c": w2c.flatten().tolist(),
1137
- "K": K.flatten().tolist(),
1138
- "img_wh": (W, H),
1139
- }
1140
- )
1141
- json_data["camera_path"] = camera_path_list
1142
-
1143
- # now write the json file
1144
- out_name = camera_path_name.value
1145
- json_outfile = datapath / f"{out_name}.json"
1146
- datapath.mkdir(parents=True, exist_ok=True)
1147
- print(f"writing to {json_outfile}")
1148
- with open(json_outfile.absolute(), "w") as outfile:
1149
- json.dump(json_data, outfile)
1150
-
1151
- camera_path = CameraPath(server, duration_number)
1152
- camera_path.default_fov = fov_degrees.value / 180.0 * np.pi
1153
- camera_path.default_transition_sec = transition_sec_number.value
1154
-
1155
- return render_tab_state
1156
-
1157
-
1158
- if __name__ == "__main__":
1159
- populate_render_tab(
1160
- server=viser.ViserServer(),
1161
- datapath=Path("."),
1162
- gui_timestep_handle=None,
1163
- )
1164
- while True:
1165
- time.sleep(10.0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
som_out/bear/code/2024-10-25-234902/flow3d/vis/utils.py DELETED
@@ -1,544 +0,0 @@
1
- import colorsys
2
- from typing import cast
3
-
4
- import cv2
5
- import numpy as np
6
-
7
- # import nvdiffrast.torch as dr
8
- import torch
9
- import torch.nn.functional as F
10
- from matplotlib import colormaps
11
- from viser import ViserServer
12
-
13
-
14
- class Singleton(type):
15
- _instances = {}
16
-
17
- def __call__(cls, *args, **kwargs):
18
- if cls not in cls._instances:
19
- cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs)
20
- return cls._instances[cls]
21
-
22
-
23
- class VisManager(metaclass=Singleton):
24
- _servers = {}
25
-
26
-
27
- def get_server(port: int | None = None) -> ViserServer:
28
- manager = VisManager()
29
- if port is None:
30
- avail_ports = list(manager._servers.keys())
31
- port = avail_ports[0] if len(avail_ports) > 0 else 8890
32
- if port not in manager._servers:
33
- manager._servers[port] = ViserServer(port=port, verbose=False)
34
- return manager._servers[port]
35
-
36
-
37
- def project_2d_tracks(tracks_3d_w, Ks, T_cw, return_depth=False):
38
- """
39
- :param tracks_3d_w (torch.Tensor): (T, N, 3)
40
- :param Ks (torch.Tensor): (T, 3, 3)
41
- :param T_cw (torch.Tensor): (T, 4, 4)
42
- :returns tracks_2d (torch.Tensor): (T, N, 2)
43
- """
44
- tracks_3d_c = torch.einsum(
45
- "tij,tnj->tni", T_cw, F.pad(tracks_3d_w, (0, 1), value=1)
46
- )[..., :3]
47
- tracks_3d_v = torch.einsum("tij,tnj->tni", Ks, tracks_3d_c)
48
- if return_depth:
49
- return (
50
- tracks_3d_v[..., :2] / torch.clamp(tracks_3d_v[..., 2:], min=1e-5),
51
- tracks_3d_v[..., 2],
52
- )
53
- return tracks_3d_v[..., :2] / torch.clamp(tracks_3d_v[..., 2:], min=1e-5)
54
-
55
-
56
- def draw_keypoints_video(
57
- imgs, kps, colors=None, occs=None, cmap: str = "gist_rainbow", radius: int = 3
58
- ):
59
- """
60
- :param imgs (np.ndarray): (T, H, W, 3) uint8 [0, 255]
61
- :param kps (np.ndarray): (N, T, 2)
62
- :param colors (np.ndarray): (N, 3) float [0, 1]
63
- :param occ (np.ndarray): (N, T) bool
64
- return out_frames (T, H, W, 3)
65
- """
66
- if colors is None:
67
- label = np.linspace(0, 1, kps.shape[0])
68
- colors = np.asarray(colormaps.get_cmap(cmap)(label))[..., :3]
69
- out_frames = []
70
- for t in range(len(imgs)):
71
- occ = occs[:, t] if occs is not None else None
72
- vis = draw_keypoints_cv2(imgs[t], kps[:, t], colors, occ, radius=radius)
73
- out_frames.append(vis)
74
- return out_frames
75
-
76
-
77
- def draw_keypoints_cv2(img, kps, colors=None, occs=None, radius=3):
78
- """
79
- :param img (H, W, 3)
80
- :param kps (N, 2)
81
- :param occs (N)
82
- :param colors (N, 3) from 0 to 1
83
- """
84
- out_img = img.copy()
85
- kps = kps.round().astype("int").tolist()
86
- if colors is not None:
87
- colors = (255 * colors).astype("int").tolist()
88
- for n in range(len(kps)):
89
- kp = kps[n]
90
- color = colors[n] if colors is not None else (255, 0, 0)
91
- thickness = -1 if occs is None or occs[n] == 0 else 1
92
- out_img = cv2.circle(out_img, kp, radius, color, thickness, cv2.LINE_AA)
93
- return out_img
94
-
95
-
96
- def draw_tracks_2d(
97
- img: torch.Tensor,
98
- tracks_2d: torch.Tensor,
99
- track_point_size: int = 2,
100
- track_line_width: int = 1,
101
- cmap_name: str = "gist_rainbow",
102
- ):
103
- cmap = colormaps.get_cmap(cmap_name)
104
- # (H, W, 3).
105
- img_np = (img.cpu().numpy() * 255.0).astype(np.uint8)
106
- # (P, N, 2).
107
- tracks_2d_np = tracks_2d.cpu().numpy()
108
-
109
- num_tracks, num_frames = tracks_2d_np.shape[:2]
110
-
111
- canvas = img_np.copy()
112
- for i in range(num_frames - 1):
113
- alpha = max(1 - 0.9 * ((num_frames - 1 - i) / (num_frames * 0.99)), 0.1)
114
- img_curr = canvas.copy()
115
- for j in range(num_tracks):
116
- color = tuple(np.array(cmap(j / max(1, float(num_tracks - 1)))[:3]) * 255)
117
- color_alpha = 1
118
- hsv = colorsys.rgb_to_hsv(color[0], color[1], color[2])
119
- color = colorsys.hsv_to_rgb(hsv[0], hsv[1] * color_alpha, hsv[2])
120
- pt1 = tracks_2d_np[j, i]
121
- pt2 = tracks_2d_np[j, i + 1]
122
- p1 = (int(round(pt1[0])), int(round(pt1[1])))
123
- p2 = (int(round(pt2[0])), int(round(pt2[1])))
124
- img_curr = cv2.line(
125
- img_curr,
126
- p1,
127
- p2,
128
- color,
129
- thickness=track_line_width,
130
- lineType=cv2.LINE_AA,
131
- )
132
- canvas = cv2.addWeighted(img_curr, alpha, canvas, 1 - alpha, 0)
133
-
134
- for j in range(num_tracks):
135
- color = tuple(np.array(cmap(j / max(1, float(num_tracks - 1)))[:3]) * 255)
136
- pt = tracks_2d_np[j, -1]
137
- pt = (int(round(pt[0])), int(round(pt[1])))
138
- canvas = cv2.circle(
139
- canvas,
140
- pt,
141
- track_point_size,
142
- color,
143
- thickness=-1,
144
- lineType=cv2.LINE_AA,
145
- )
146
-
147
- return canvas
148
-
149
-
150
- def generate_line_verts_faces(starts, ends, line_width):
151
- """
152
- Args:
153
- starts: (P, N, 2).
154
- ends: (P, N, 2).
155
- line_width: int.
156
-
157
- Returns:
158
- verts: (P * N * 4, 2).
159
- faces: (P * N * 2, 3).
160
- """
161
- P, N, _ = starts.shape
162
-
163
- directions = F.normalize(ends - starts, dim=-1)
164
- deltas = (
165
- torch.cat([-directions[..., 1:], directions[..., :1]], dim=-1)
166
- * line_width
167
- / 2.0
168
- )
169
- v0 = starts + deltas
170
- v1 = starts - deltas
171
- v2 = ends + deltas
172
- v3 = ends - deltas
173
- verts = torch.stack([v0, v1, v2, v3], dim=-2)
174
- verts = verts.reshape(-1, 2)
175
-
176
- faces = []
177
- for p in range(P):
178
- for n in range(N):
179
- base_index = p * N * 4 + n * 4
180
- # Two triangles per rectangle: (0, 1, 2) and (2, 1, 3)
181
- faces.append([base_index, base_index + 1, base_index + 2])
182
- faces.append([base_index + 2, base_index + 1, base_index + 3])
183
- faces = torch.as_tensor(faces, device=starts.device)
184
-
185
- return verts, faces
186
-
187
-
188
- def generate_point_verts_faces(points, point_size, num_segments=10):
189
- """
190
- Args:
191
- points: (P, 2).
192
- point_size: int.
193
- num_segments: int.
194
-
195
- Returns:
196
- verts: (P * (num_segments + 1), 2).
197
- faces: (P * num_segments, 3).
198
- """
199
- P, _ = points.shape
200
-
201
- angles = torch.linspace(0, 2 * torch.pi, num_segments + 1, device=points.device)[
202
- ..., :-1
203
- ]
204
- unit_circle = torch.stack([torch.cos(angles), torch.sin(angles)], dim=1)
205
- scaled_circles = (point_size / 2.0) * unit_circle
206
- scaled_circles = scaled_circles[None].repeat(P, 1, 1)
207
- verts = points[:, None] + scaled_circles
208
- verts = torch.cat([verts, points[:, None]], dim=1)
209
- verts = verts.reshape(-1, 2)
210
-
211
- faces = F.pad(
212
- torch.as_tensor(
213
- [[i, (i + 1) % num_segments] for i in range(num_segments)],
214
- device=points.device,
215
- ),
216
- (0, 1),
217
- value=num_segments,
218
- )
219
- faces = faces[None, :] + torch.arange(P, device=points.device)[:, None, None] * (
220
- num_segments + 1
221
- )
222
- faces = faces.reshape(-1, 3)
223
-
224
- return verts, faces
225
-
226
-
227
- def pixel_to_verts_clip(pixels, img_wh, z: float | torch.Tensor = 0.0, w=1.0):
228
- verts_clip = pixels / pixels.new_tensor(img_wh) * 2.0 - 1.0
229
- w = torch.full_like(verts_clip[..., :1], w)
230
- verts_clip = torch.cat([verts_clip, z * w, w], dim=-1)
231
- return verts_clip
232
-
233
-
234
- def draw_tracks_2d_th(
235
- img: torch.Tensor,
236
- tracks_2d: torch.Tensor,
237
- track_point_size: int = 5,
238
- track_point_segments: int = 16,
239
- track_line_width: int = 2,
240
- cmap_name: str = "gist_rainbow",
241
- ):
242
- cmap = colormaps.get_cmap(cmap_name)
243
- CTX = dr.RasterizeCudaContext()
244
-
245
- W, H = img.shape[1], img.shape[0]
246
- if W % 8 != 0 or H % 8 != 0:
247
- # Make sure img is divisible by 8.
248
- img = F.pad(
249
- img,
250
- (
251
- 0,
252
- 0,
253
- 0,
254
- 8 - W % 8 if W % 8 != 0 else 0,
255
- 0,
256
- 8 - H % 8 if H % 8 != 0 else 0,
257
- ),
258
- value=0.0,
259
- )
260
- num_tracks, num_frames = tracks_2d.shape[:2]
261
-
262
- track_colors = torch.tensor(
263
- [cmap(j / max(1, float(num_tracks - 1)))[:3] for j in range(num_tracks)],
264
- device=img.device,
265
- ).float()
266
-
267
- # Generate line verts.
268
- verts_l, faces_l = generate_line_verts_faces(
269
- tracks_2d[:, :-1], tracks_2d[:, 1:], track_line_width
270
- )
271
- # Generate point verts.
272
- verts_p, faces_p = generate_point_verts_faces(
273
- tracks_2d[:, -1], track_point_size, track_point_segments
274
- )
275
-
276
- verts = torch.cat([verts_l, verts_p], dim=0)
277
- faces = torch.cat([faces_l, faces_p + len(verts_l)], dim=0)
278
- vert_colors = torch.cat(
279
- [
280
- (
281
- track_colors[:, None]
282
- .repeat_interleave(4 * (num_frames - 1), dim=1)
283
- .reshape(-1, 3)
284
- ),
285
- (
286
- track_colors[:, None]
287
- .repeat_interleave(track_point_segments + 1, dim=1)
288
- .reshape(-1, 3)
289
- ),
290
- ],
291
- dim=0,
292
- )
293
- track_zs = torch.linspace(0.0, 1.0, num_tracks, device=img.device)[:, None]
294
- vert_zs = torch.cat(
295
- [
296
- (
297
- track_zs[:, None]
298
- .repeat_interleave(4 * (num_frames - 1), dim=1)
299
- .reshape(-1, 1)
300
- ),
301
- (
302
- track_zs[:, None]
303
- .repeat_interleave(track_point_segments + 1, dim=1)
304
- .reshape(-1, 1)
305
- ),
306
- ],
307
- dim=0,
308
- )
309
- track_alphas = torch.linspace(
310
- max(0.1, 1.0 - (num_frames - 1) * 0.1), 1.0, num_frames, device=img.device
311
- )
312
- vert_alphas = torch.cat(
313
- [
314
- (
315
- track_alphas[None, :-1, None]
316
- .repeat_interleave(num_tracks, dim=0)
317
- .repeat_interleave(4, dim=-2)
318
- .reshape(-1, 1)
319
- ),
320
- (
321
- track_alphas[None, -1:, None]
322
- .repeat_interleave(num_tracks, dim=0)
323
- .repeat_interleave(track_point_segments + 1, dim=-2)
324
- .reshape(-1, 1)
325
- ),
326
- ],
327
- dim=0,
328
- )
329
-
330
- # Small trick to always render one track in front of the other.
331
- verts_clip = pixel_to_verts_clip(verts, (img.shape[1], img.shape[0]), vert_zs)
332
- faces_int32 = faces.to(torch.int32)
333
-
334
- rast, _ = cast(
335
- tuple,
336
- dr.rasterize(CTX, verts_clip[None], faces_int32, (img.shape[0], img.shape[1])),
337
- )
338
- rgba = cast(
339
- torch.Tensor,
340
- dr.interpolate(
341
- torch.cat([vert_colors, vert_alphas], dim=-1).contiguous(),
342
- rast,
343
- faces_int32,
344
- ),
345
- )[0]
346
- rgba = cast(torch.Tensor, dr.antialias(rgba, rast, verts_clip, faces_int32))[
347
- 0
348
- ].clamp(0, 1)
349
- # Compose.
350
- color = rgba[..., :-1] * rgba[..., -1:] + (1.0 - rgba[..., -1:]) * img
351
-
352
- # Unpad.
353
- color = color[:H, :W]
354
-
355
- return (color.cpu().numpy() * 255.0).astype(np.uint8)
356
-
357
-
358
- def make_video_divisble(
359
- video: torch.Tensor | np.ndarray, block_size=16
360
- ) -> torch.Tensor | np.ndarray:
361
- H, W = video.shape[1:3]
362
- H_new = H - H % block_size
363
- W_new = W - W % block_size
364
- return video[:, :H_new, :W_new]
365
-
366
-
367
- def apply_float_colormap(img: torch.Tensor, colormap: str = "turbo") -> torch.Tensor:
368
- """Convert single channel to a color img.
369
-
370
- Args:
371
- img (torch.Tensor): (..., 1) float32 single channel image.
372
- colormap (str): Colormap for img.
373
-
374
- Returns:
375
- (..., 3) colored img with colors in [0, 1].
376
- """
377
- img = torch.nan_to_num(img, 0)
378
- if colormap == "gray":
379
- return img.repeat(1, 1, 3)
380
- img_long = (img * 255).long()
381
- img_long_min = torch.min(img_long)
382
- img_long_max = torch.max(img_long)
383
- assert img_long_min >= 0, f"the min value is {img_long_min}"
384
- assert img_long_max <= 255, f"the max value is {img_long_max}"
385
- return torch.tensor(
386
- colormaps[colormap].colors, # type: ignore
387
- device=img.device,
388
- )[img_long[..., 0]]
389
-
390
-
391
- def apply_depth_colormap(
392
- depth: torch.Tensor,
393
- acc: torch.Tensor | None = None,
394
- near_plane: float | None = None,
395
- far_plane: float | None = None,
396
- ) -> torch.Tensor:
397
- """Converts a depth image to color for easier analysis.
398
-
399
- Args:
400
- depth (torch.Tensor): (..., 1) float32 depth.
401
- acc (torch.Tensor | None): (..., 1) optional accumulation mask.
402
- near_plane: Closest depth to consider. If None, use min image value.
403
- far_plane: Furthest depth to consider. If None, use max image value.
404
-
405
- Returns:
406
- (..., 3) colored depth image with colors in [0, 1].
407
- """
408
- near_plane = near_plane or float(torch.min(depth))
409
- far_plane = far_plane or float(torch.max(depth))
410
- depth = (depth - near_plane) / (far_plane - near_plane + 1e-10)
411
- depth = torch.clip(depth, 0.0, 1.0)
412
- img = apply_float_colormap(depth, colormap="turbo")
413
- if acc is not None:
414
- img = img * acc + (1.0 - acc)
415
- return img
416
-
417
-
418
- def float2uint8(x):
419
- return (255.0 * x).astype(np.uint8)
420
-
421
-
422
- def uint82float(img):
423
- return np.ascontiguousarray(img) / 255.0
424
-
425
-
426
- def drawMatches(
427
- img1,
428
- img2,
429
- kp1,
430
- kp2,
431
- num_vis=200,
432
- center=None,
433
- idx_vis=None,
434
- radius=2,
435
- seed=1234,
436
- mask=None,
437
- ):
438
- num_pts = len(kp1)
439
- if idx_vis is None:
440
- if num_vis < num_pts:
441
- rng = np.random.RandomState(seed)
442
- idx_vis = rng.choice(num_pts, num_vis, replace=False)
443
- else:
444
- idx_vis = np.arange(num_pts)
445
-
446
- kp1_vis = kp1[idx_vis]
447
- kp2_vis = kp2[idx_vis]
448
-
449
- h1, w1 = img1.shape[:2]
450
- h2, w2 = img2.shape[:2]
451
-
452
- kp1_vis[:, 0] = np.clip(kp1_vis[:, 0], a_min=0, a_max=w1 - 1)
453
- kp1_vis[:, 1] = np.clip(kp1_vis[:, 1], a_min=0, a_max=h1 - 1)
454
-
455
- kp2_vis[:, 0] = np.clip(kp2_vis[:, 0], a_min=0, a_max=w2 - 1)
456
- kp2_vis[:, 1] = np.clip(kp2_vis[:, 1], a_min=0, a_max=h2 - 1)
457
-
458
- img1 = float2uint8(img1)
459
- img2 = float2uint8(img2)
460
-
461
- if center is None:
462
- center = np.median(kp1, axis=0)
463
-
464
- set_max = range(128)
465
- colors = {m: i for i, m in enumerate(set_max)}
466
- hsv = colormaps.get_cmap("hsv")
467
- colors = {
468
- m: (255 * np.array(hsv(i / float(len(colors))))[:3][::-1]).astype(np.int32)
469
- for m, i in colors.items()
470
- }
471
-
472
- if mask is not None:
473
- ind = np.argsort(mask)[::-1]
474
- kp1_vis = kp1_vis[ind]
475
- kp2_vis = kp2_vis[ind]
476
- mask = mask[ind]
477
-
478
- for i, (pt1, pt2) in enumerate(zip(kp1_vis, kp2_vis)):
479
- # random_color = tuple(np.random.randint(low=0, high=255, size=(3,)).tolist())
480
- coord_angle = np.arctan2(pt1[1] - center[1], pt1[0] - center[0])
481
- corr_color = np.int32(64 * coord_angle / np.pi) % 128
482
- color = tuple(colors[corr_color].tolist())
483
-
484
- if (
485
- (pt1[0] <= w1 - 1)
486
- and (pt1[0] >= 0)
487
- and (pt1[1] <= h1 - 1)
488
- and (pt1[1] >= 0)
489
- ):
490
- img1 = cv2.circle(
491
- img1, (int(pt1[0]), int(pt1[1])), radius, color, -1, cv2.LINE_AA
492
- )
493
- if (
494
- (pt2[0] <= w2 - 1)
495
- and (pt2[0] >= 0)
496
- and (pt2[1] <= h2 - 1)
497
- and (pt2[1] >= 0)
498
- ):
499
- if mask is not None and mask[i]:
500
- continue
501
- # img2 = cv2.drawMarker(img2, (int(pt2[0]), int(pt2[1])), color, markerType=cv2.MARKER_CROSS,
502
- # markerSize=int(5*radius), thickness=int(radius/2), line_type=cv2.LINE_AA)
503
- else:
504
- img2 = cv2.circle(
505
- img2, (int(pt2[0]), int(pt2[1])), radius, color, -1, cv2.LINE_AA
506
- )
507
-
508
- out = np.concatenate([img1, img2], axis=1)
509
- return out
510
-
511
-
512
- def plot_correspondences(
513
- rgbs, kpts, query_id=0, masks=None, num_vis=1000000, radius=3, seed=1234
514
- ):
515
- num_rgbs = len(rgbs)
516
- rng = np.random.RandomState(seed)
517
- permutation = rng.permutation(kpts.shape[1])
518
- kpts = kpts[:, permutation, :][:, :num_vis]
519
- if masks is not None:
520
- masks = masks[:, permutation][:, :num_vis]
521
-
522
- rgbq = rgbs[query_id] # [h, w, 3]
523
- kptsq = kpts[query_id] # [n, 2]
524
-
525
- frames = []
526
- for i in range(num_rgbs):
527
- rgbi = rgbs[i]
528
- kptsi = kpts[i]
529
- if masks is not None:
530
- maski = masks[i]
531
- else:
532
- maski = None
533
- frame = drawMatches(
534
- rgbq,
535
- rgbi,
536
- kptsq,
537
- kptsi,
538
- mask=maski,
539
- num_vis=num_vis,
540
- radius=radius,
541
- seed=seed,
542
- )
543
- frames.append(frame)
544
- return frames
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
som_out/bear/code/2024-10-25-234902/flow3d/vis/viewer.py DELETED
@@ -1,69 +0,0 @@
1
- from pathlib import Path
2
- from typing import Callable, Literal, Optional, Tuple, Union
3
-
4
- import numpy as np
5
- from jaxtyping import Float32, UInt8
6
- from nerfview import CameraState, Viewer
7
- from viser import Icon, ViserServer
8
-
9
- from flow3d.vis.playback_panel import add_gui_playback_group
10
- from flow3d.vis.render_panel import populate_render_tab
11
-
12
-
13
- class DynamicViewer(Viewer):
14
- def __init__(
15
- self,
16
- server: ViserServer,
17
- render_fn: Callable[
18
- [CameraState, Tuple[int, int]],
19
- Union[
20
- UInt8[np.ndarray, "H W 3"],
21
- Tuple[UInt8[np.ndarray, "H W 3"], Optional[Float32[np.ndarray, "H W"]]],
22
- ],
23
- ],
24
- num_frames: int,
25
- work_dir: str,
26
- mode: Literal["rendering", "training"] = "rendering",
27
- ):
28
- self.num_frames = num_frames
29
- self.work_dir = Path(work_dir)
30
- super().__init__(server, render_fn, mode)
31
-
32
- def _define_guis(self):
33
- super()._define_guis()
34
- server = self.server
35
- self._time_folder = server.gui.add_folder("Time")
36
- with self._time_folder:
37
- self._playback_guis = add_gui_playback_group(
38
- server,
39
- num_frames=self.num_frames,
40
- initial_fps=15.0,
41
- )
42
- self._playback_guis[0].on_update(self.rerender)
43
- self._canonical_checkbox = server.gui.add_checkbox("Canonical", False)
44
- self._canonical_checkbox.on_update(self.rerender)
45
-
46
- _cached_playback_disabled = []
47
-
48
- def _toggle_gui_playing(event):
49
- if event.target.value:
50
- nonlocal _cached_playback_disabled
51
- _cached_playback_disabled = [
52
- gui.disabled for gui in self._playback_guis
53
- ]
54
- target_disabled = [True] * len(self._playback_guis)
55
- else:
56
- target_disabled = _cached_playback_disabled
57
- for gui, disabled in zip(self._playback_guis, target_disabled):
58
- gui.disabled = disabled
59
-
60
- self._canonical_checkbox.on_update(_toggle_gui_playing)
61
-
62
- self._render_track_checkbox = server.gui.add_checkbox("Render tracks", False)
63
- self._render_track_checkbox.on_update(self.rerender)
64
-
65
- tabs = server.gui.add_tab_group()
66
- with tabs.add_tab("Render", Icon.CAMERA):
67
- self.render_tab_state = populate_render_tab(
68
- server, Path(self.work_dir) / "camera_paths", self._playback_guis[0]
69
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
som_out/bear/code/2024-10-25-234902/scripts/batch_eval_ours_iphone_gcp.sh DELETED
@@ -1,13 +0,0 @@
1
- #!/bin/bash
2
-
3
- EXPNAME=$1
4
-
5
- seq_names=("apple" "backpack" "block" "creeper" "handwavy" "haru-sit" "mochi-high-five" "paper-windmill" "pillow" "spin" "sriracha-tree" "teddy")
6
- out_dir="/mnt/out/$EXPNAME"
7
- for seq_name in "${seq_names[@]}"; do
8
- seq_dir="$out_dir/$seq_name"
9
- mkdir -p $seq_dir
10
- gsutil -mq cp -r "gs://xcloud-shared/qianqianwang/flow3d/ours/iphone/$EXPNAME/${seq_name}/results" $seq_dir
11
- done
12
-
13
- python scripts/evaluate_iphone.py --data_dir /home/qianqianwang_google_com/datasets/iphone/dycheck --result_dir /mnt/out/$EXPNAME
 
 
 
 
 
 
 
 
 
 
 
 
 
 
som_out/bear/code/2024-10-25-234902/scripts/evaluate_iphone.py DELETED
@@ -1,447 +0,0 @@
1
- import argparse
2
- import json
3
- import os.path as osp
4
- from glob import glob
5
- from itertools import product
6
-
7
- import cv2
8
- import imageio.v3 as iio
9
- import numpy as np
10
- import roma
11
- import torch
12
- from tqdm import tqdm
13
-
14
- from flow3d.data.colmap import get_colmap_camera_params
15
- from flow3d.metrics import mLPIPS, mPSNR, mSSIM
16
- from flow3d.transforms import rt_to_mat4, solve_procrustes
17
-
18
- parser = argparse.ArgumentParser()
19
- parser.add_argument(
20
- "--data_dir",
21
- type=str,
22
- help="Path to the data directory that contains all the sequences.",
23
- )
24
- parser.add_argument(
25
- "--result_dir",
26
- type=str,
27
- help="Path to the result directory that contains the results."
28
- "for batch evaluation, result_dir should contain subdirectories for each sequence. (result_dir/seq_name/results)"
29
- "for single sequence evaluation, result_dir should contain results directly (result_dir/results)",
30
- )
31
- parser.add_argument(
32
- "--seq_names",
33
- type=str,
34
- nargs="+",
35
- default=[
36
- "apple",
37
- "backpack",
38
- "block",
39
- "creeper",
40
- "handwavy",
41
- "haru-sit",
42
- "mochi-high-five",
43
- "paper-windmill",
44
- "pillow",
45
- "spin",
46
- "sriracha-tree",
47
- "teddy",
48
- ],
49
- help="Sequence names to evaluate.",
50
- )
51
- args = parser.parse_args()
52
-
53
-
54
- def load_data_dict(data_dir, train_names, val_names):
55
- val_imgs = np.array(
56
- [iio.imread(osp.join(data_dir, "rgb/1x", f"{name}.png")) for name in val_names]
57
- )
58
- val_covisibles = np.array(
59
- [
60
- iio.imread(
61
- osp.join(
62
- data_dir, "flow3d_preprocessed/covisible/1x/val/", f"{name}.png"
63
- )
64
- )
65
- for name in tqdm(val_names, desc="Loading val covisibles")
66
- ]
67
- )
68
- train_depths = np.array(
69
- [
70
- np.load(osp.join(data_dir, "depth/1x", f"{name}.npy"))[..., 0]
71
- for name in train_names
72
- ]
73
- )
74
- train_Ks, train_w2cs = get_colmap_camera_params(
75
- osp.join(data_dir, "flow3d_preprocessed/colmap/sparse/"),
76
- [name + ".png" for name in train_names],
77
- )
78
- train_Ks = train_Ks[:, :3, :3]
79
- scale = np.load(osp.join(data_dir, "flow3d_preprocessed/colmap/scale.npy")).item()
80
- train_c2ws = np.linalg.inv(train_w2cs)
81
- train_c2ws[:, :3, -1] *= scale
82
- train_w2cs = np.linalg.inv(train_c2ws)
83
- keypoint_paths = sorted(glob(osp.join(data_dir, "keypoint/2x/train/0_*.json")))
84
- keypoints_2d = []
85
- for keypoint_path in keypoint_paths:
86
- with open(keypoint_path) as f:
87
- keypoints_2d.append(json.load(f))
88
- keypoints_2d = np.array(keypoints_2d)
89
- keypoints_2d[..., :2] *= 2.0
90
- time_ids = np.array(
91
- [int(osp.basename(p).split("_")[1].split(".")[0]) for p in keypoint_paths]
92
- )
93
- time_pairs = np.array(list(product(time_ids, repeat=2)))
94
- index_pairs = np.array(list(product(range(len(time_ids)), repeat=2)))
95
- keypoints_3d = []
96
- for i, kps_2d in zip(time_ids, keypoints_2d):
97
- K = train_Ks[i]
98
- w2c = train_w2cs[i]
99
- depth = train_depths[i]
100
- is_kp_visible = kps_2d[:, 2] == 1
101
- is_depth_valid = (
102
- cv2.remap(
103
- (depth != 0).astype(np.float32),
104
- kps_2d[None, :, :2].astype(np.float32),
105
- None, # type: ignore
106
- cv2.INTER_LINEAR,
107
- borderMode=cv2.BORDER_CONSTANT,
108
- )[0]
109
- == 1
110
- )
111
- kp_depths = cv2.remap(
112
- depth, # type: ignore
113
- kps_2d[None, :, :2].astype(np.float32),
114
- None, # type: ignore
115
- cv2.INTER_LINEAR,
116
- borderMode=cv2.BORDER_CONSTANT,
117
- )[0]
118
- kps_3d = (
119
- np.einsum(
120
- "ij,pj->pi",
121
- np.linalg.inv(K),
122
- np.pad(kps_2d[:, :2], ((0, 0), (0, 1)), constant_values=1),
123
- )
124
- * kp_depths[:, None]
125
- )
126
- kps_3d = np.einsum(
127
- "ij,pj->pi",
128
- np.linalg.inv(w2c)[:3],
129
- np.pad(kps_3d, ((0, 0), (0, 1)), constant_values=1),
130
- )
131
- kps_3d = np.concatenate(
132
- [kps_3d, (is_kp_visible & is_depth_valid)[:, None]], axis=1
133
- )
134
- kps_3d[kps_3d[:, -1] != 1] = 0.0
135
- keypoints_3d.append(kps_3d)
136
- keypoints_3d = np.array(keypoints_3d)
137
- return {
138
- "val_imgs": val_imgs,
139
- "val_covisibles": val_covisibles,
140
- "train_depths": train_depths,
141
- "train_Ks": train_Ks,
142
- "train_w2cs": train_w2cs,
143
- "keypoints_2d": keypoints_2d,
144
- "keypoints_3d": keypoints_3d,
145
- "time_ids": time_ids,
146
- "time_pairs": time_pairs,
147
- "index_pairs": index_pairs,
148
- }
149
-
150
-
151
- def load_result_dict(result_dir, val_names):
152
- try:
153
- pred_val_imgs = np.array(
154
- [
155
- iio.imread(osp.join(result_dir, "rgb", f"{name}.png"))
156
- for name in val_names
157
- ]
158
- )
159
- except:
160
- pred_val_imgs = None
161
- try:
162
- keypoints_dict = np.load(
163
- osp.join(result_dir, "keypoints.npz"), allow_pickle=True
164
- )
165
- if len(keypoints_dict) == 1 and "arr_0" in keypoints_dict:
166
- keypoints_dict = keypoints_dict["arr_0"].item()
167
- pred_keypoint_Ks = keypoints_dict["Ks"]
168
- pred_keypoint_w2cs = keypoints_dict["w2cs"]
169
- pred_keypoints_3d = keypoints_dict["pred_keypoints_3d"]
170
- pred_train_depths = keypoints_dict["pred_train_depths"]
171
- except:
172
- print(
173
- "No keypoints.npz found, make sure that it's the method itself cannot produce keypoints."
174
- )
175
- keypoints_dict = {}
176
- pred_keypoint_Ks = None
177
- pred_keypoint_w2cs = None
178
- pred_keypoints_3d = None
179
- pred_train_depths = None
180
-
181
- if "visibilities" in list(keypoints_dict.keys()):
182
- pred_visibilities = keypoints_dict["visibilities"]
183
- else:
184
- pred_visibilities = None
185
-
186
- return {
187
- "pred_val_imgs": pred_val_imgs,
188
- "pred_train_depths": pred_train_depths,
189
- "pred_keypoint_Ks": pred_keypoint_Ks,
190
- "pred_keypoint_w2cs": pred_keypoint_w2cs,
191
- "pred_keypoints_3d": pred_keypoints_3d,
192
- "pred_visibilities": pred_visibilities,
193
- }
194
-
195
-
196
- def evaluate_3d_tracking(data_dict, result_dict):
197
- train_Ks = data_dict["train_Ks"]
198
- train_w2cs = data_dict["train_w2cs"]
199
- keypoints_3d = data_dict["keypoints_3d"]
200
- time_ids = data_dict["time_ids"]
201
- time_pairs = data_dict["time_pairs"]
202
- index_pairs = data_dict["index_pairs"]
203
- pred_keypoint_Ks = result_dict["pred_keypoint_Ks"]
204
- pred_keypoint_w2cs = result_dict["pred_keypoint_w2cs"]
205
- pred_keypoints_3d = result_dict["pred_keypoints_3d"]
206
- if not np.allclose(train_Ks[time_ids], pred_keypoint_Ks):
207
- print("Inconsistent camera intrinsics.")
208
- print(train_Ks[time_ids][0], pred_keypoint_Ks[0])
209
- keypoint_w2cs = train_w2cs[time_ids]
210
- q, t, s = solve_procrustes(
211
- torch.from_numpy(np.linalg.inv(pred_keypoint_w2cs)[:, :3, -1]).to(
212
- torch.float32
213
- ),
214
- torch.from_numpy(np.linalg.inv(keypoint_w2cs)[:, :3, -1]).to(torch.float32),
215
- )[0]
216
- R = roma.unitquat_to_rotmat(q.roll(-1, dims=-1))
217
- pred_keypoints_3d = np.einsum(
218
- "ij,...j->...i",
219
- rt_to_mat4(R, t, s).numpy().astype(np.float64),
220
- np.pad(pred_keypoints_3d, ((0, 0), (0, 0), (0, 1)), constant_values=1),
221
- )
222
- pred_keypoints_3d = pred_keypoints_3d[..., :3] / pred_keypoints_3d[..., 3:]
223
- # Compute 3D tracking metrics.
224
- pair_keypoints_3d = keypoints_3d[index_pairs]
225
- is_covisible = (pair_keypoints_3d[:, :, :, -1] == 1).all(axis=1)
226
- target_keypoints_3d = pair_keypoints_3d[:, 1, :, :3]
227
- epes = []
228
- for i in range(len(time_pairs)):
229
- epes.append(
230
- np.linalg.norm(
231
- target_keypoints_3d[i][is_covisible[i]]
232
- - pred_keypoints_3d[i][is_covisible[i]],
233
- axis=-1,
234
- )
235
- )
236
- epe = np.mean(
237
- [frame_epes.mean() for frame_epes in epes if len(frame_epes) > 0]
238
- ).item()
239
- pck_3d_10cm = np.mean(
240
- [(frame_epes < 0.1).mean() for frame_epes in epes if len(frame_epes) > 0]
241
- ).item()
242
- pck_3d_5cm = np.mean(
243
- [(frame_epes < 0.05).mean() for frame_epes in epes if len(frame_epes) > 0]
244
- ).item()
245
- print(f"3D tracking EPE: {epe:.4f}")
246
- print(f"3D tracking PCK (10cm): {pck_3d_10cm:.4f}")
247
- print(f"3D tracking PCK (5cm): {pck_3d_5cm:.4f}")
248
- print("-----------------------------")
249
- return epe, pck_3d_10cm, pck_3d_5cm
250
-
251
-
252
- def project(Ks, w2cs, pts):
253
- """
254
- Args:
255
- Ks: (N, 3, 3) camera intrinsics.
256
- w2cs: (N, 4, 4) camera extrinsics.
257
- pts: (N, N, M, 3) 3D points.
258
- """
259
- N = Ks.shape[0]
260
- pts = pts.swapaxes(0, 1).reshape(N, -1, 3)
261
-
262
- pts_homogeneous = np.concatenate([pts, np.ones_like(pts[..., -1:])], axis=-1)
263
-
264
- # Apply world-to-camera transformation
265
- pts_homogeneous = np.matmul(w2cs[:, :3], pts_homogeneous.swapaxes(1, 2)).swapaxes(
266
- 1, 2
267
- )
268
- # Project to image plane using intrinsic parameters
269
- projected_pts = np.matmul(Ks, pts_homogeneous.swapaxes(1, 2)).swapaxes(1, 2)
270
-
271
- depths = projected_pts[..., 2:3]
272
- # Normalize homogeneous coordinates
273
- projected_pts = projected_pts[..., :2] / np.clip(depths, a_min=1e-6, a_max=None)
274
- projected_pts = projected_pts.reshape(N, N, -1, 2).swapaxes(0, 1)
275
- depths = depths.reshape(N, N, -1).swapaxes(0, 1)
276
- return projected_pts, depths
277
-
278
-
279
- def evaluate_2d_tracking(data_dict, result_dict):
280
- train_w2cs = data_dict["train_w2cs"]
281
- keypoints_2d = data_dict["keypoints_2d"]
282
- visibilities = keypoints_2d[..., -1].astype(np.bool_)
283
- time_ids = data_dict["time_ids"]
284
- num_frames = len(time_ids)
285
- num_pts = keypoints_2d.shape[1]
286
- pred_train_depths = result_dict["pred_train_depths"]
287
- pred_keypoint_Ks = result_dict["pred_keypoint_Ks"]
288
- pred_keypoint_w2cs = result_dict["pred_keypoint_w2cs"]
289
- pred_keypoints_3d = result_dict["pred_keypoints_3d"].reshape(
290
- num_frames, -1, num_pts, 3
291
- )
292
- keypoint_w2cs = train_w2cs[time_ids]
293
- s = solve_procrustes(
294
- torch.from_numpy(np.linalg.inv(pred_keypoint_w2cs)[:, :3, -1]).to(
295
- torch.float32
296
- ),
297
- torch.from_numpy(np.linalg.inv(keypoint_w2cs)[:, :3, -1]).to(torch.float32),
298
- )[0][-1].item()
299
-
300
- target_points = keypoints_2d[None].repeat(num_frames, axis=0)[..., :2]
301
- target_visibilities = visibilities[None].repeat(num_frames, axis=0)
302
-
303
- pred_points, pred_depths = project(
304
- pred_keypoint_Ks, pred_keypoint_w2cs, pred_keypoints_3d
305
- )
306
- if result_dict["pred_visibilities"] is not None:
307
- pred_visibilities = result_dict["pred_visibilities"].reshape(
308
- num_frames, -1, num_pts
309
- )
310
- else:
311
- rendered_depths = []
312
- for i, points in zip(
313
- data_dict["index_pairs"][:, -1],
314
- pred_points.reshape(-1, pred_points.shape[2], 2),
315
- ):
316
- rendered_depths.append(
317
- cv2.remap(
318
- pred_train_depths[i].astype(np.float32),
319
- points[None].astype(np.float32), # type: ignore
320
- None, # type: ignore
321
- cv2.INTER_LINEAR,
322
- borderMode=cv2.BORDER_CONSTANT,
323
- )[0]
324
- )
325
- rendered_depths = np.array(rendered_depths).reshape(num_frames, -1, num_pts)
326
- pred_visibilities = (np.abs(rendered_depths - pred_depths) * s) < 0.05
327
-
328
- one_hot_eye = np.eye(target_points.shape[0])[..., None].repeat(num_pts, axis=-1)
329
- evaluation_points = one_hot_eye == 0
330
- for i in range(num_frames):
331
- evaluation_points[i, :, ~visibilities[i]] = False
332
- occ_acc = np.sum(
333
- np.equal(pred_visibilities, target_visibilities) & evaluation_points
334
- ) / np.sum(evaluation_points)
335
- all_frac_within = []
336
- all_jaccard = []
337
-
338
- for thresh in [4, 8, 16, 32, 64]:
339
- within_dist = np.sum(
340
- np.square(pred_points - target_points),
341
- axis=-1,
342
- ) < np.square(thresh)
343
- is_correct = np.logical_and(within_dist, target_visibilities)
344
- count_correct = np.sum(is_correct & evaluation_points)
345
- count_visible_points = np.sum(target_visibilities & evaluation_points)
346
- frac_correct = count_correct / count_visible_points
347
- all_frac_within.append(frac_correct)
348
-
349
- true_positives = np.sum(is_correct & pred_visibilities & evaluation_points)
350
- gt_positives = np.sum(target_visibilities & evaluation_points)
351
- false_positives = (~target_visibilities) & pred_visibilities
352
- false_positives = false_positives | ((~within_dist) & pred_visibilities)
353
- false_positives = np.sum(false_positives & evaluation_points)
354
- jaccard = true_positives / (gt_positives + false_positives)
355
- all_jaccard.append(jaccard)
356
- AJ = np.mean(all_jaccard)
357
- APCK = np.mean(all_frac_within)
358
-
359
- print(f"2D tracking AJ: {AJ:.4f}")
360
- print(f"2D tracking avg PCK: {APCK:.4f}")
361
- print(f"2D tracking occlusion accuracy: {occ_acc:.4f}")
362
- print("-----------------------------")
363
- return AJ, APCK, occ_acc
364
-
365
-
366
- def evaluate_nv(data_dict, result_dict):
367
- device = "cuda"
368
- psnr_metric = mPSNR().to(device)
369
- ssim_metric = mSSIM().to(device)
370
- lpips_metric = mLPIPS().to(device)
371
-
372
- val_imgs = torch.from_numpy(data_dict["val_imgs"])[..., :3].to(device)
373
- val_covisibles = torch.from_numpy(data_dict["val_covisibles"]).to(device)
374
- pred_val_imgs = torch.from_numpy(result_dict["pred_val_imgs"]).to(device)
375
-
376
- for i in range(len(val_imgs)):
377
- val_img = val_imgs[i] / 255.0
378
- pred_val_img = pred_val_imgs[i] / 255.0
379
- val_covisible = val_covisibles[i] / 255.0
380
- psnr_metric.update(val_img, pred_val_img, val_covisible)
381
- ssim_metric.update(val_img[None], pred_val_img[None], val_covisible[None])
382
- lpips_metric.update(val_img[None], pred_val_img[None], val_covisible[None])
383
- mpsnr = psnr_metric.compute().item()
384
- mssim = ssim_metric.compute().item()
385
- mlpips = lpips_metric.compute().item()
386
- print(f"NV mPSNR: {mpsnr:.4f}")
387
- print(f"NV mSSIM: {mssim:.4f}")
388
- print(f"NV mLPIPS: {mlpips:.4f}")
389
- return mpsnr, mssim, mlpips
390
-
391
-
392
- if __name__ == "__main__":
393
- seq_names = args.seq_names
394
-
395
- epe_all, pck_3d_10cm_all, pck_3d_5cm_all = [], [], []
396
- AJ_all, APCK_all, occ_acc_all = [], [], []
397
- mpsnr_all, mssim_all, mlpips_all = [], [], []
398
-
399
- for seq_name in seq_names:
400
- print("=========================================")
401
- print(f"Evaluating {seq_name}")
402
- print("=========================================")
403
- data_dir = osp.join(args.data_dir, seq_name)
404
- if not osp.exists(data_dir):
405
- data_dir = args.data_dir
406
- if not osp.exists(data_dir):
407
- raise ValueError(f"Data directory {data_dir} not found.")
408
- result_dir = osp.join(args.result_dir, seq_name, "results/")
409
- if not osp.exists(result_dir):
410
- result_dir = osp.join(args.result_dir, "results/")
411
- if not osp.exists(result_dir):
412
- raise ValueError(f"Result directory {result_dir} not found.")
413
-
414
- with open(osp.join(data_dir, "splits/train.json")) as f:
415
- train_names = json.load(f)["frame_names"]
416
- with open(osp.join(data_dir, "splits/val.json")) as f:
417
- val_names = json.load(f)["frame_names"]
418
-
419
- data_dict = load_data_dict(data_dir, train_names, val_names)
420
- result_dict = load_result_dict(result_dir, val_names)
421
- if result_dict["pred_keypoints_3d"] is not None:
422
- epe, pck_3d_10cm, pck_3d_5cm = evaluate_3d_tracking(data_dict, result_dict)
423
- AJ, APCK, occ_acc = evaluate_2d_tracking(data_dict, result_dict)
424
- epe_all.append(epe)
425
- pck_3d_10cm_all.append(pck_3d_10cm)
426
- pck_3d_5cm_all.append(pck_3d_5cm)
427
- AJ_all.append(AJ)
428
- APCK_all.append(APCK)
429
- occ_acc_all.append(occ_acc)
430
- if len(data_dict["val_imgs"]) > 0:
431
- if result_dict["pred_val_imgs"] is None:
432
- print("No NV results found.")
433
- continue
434
- mpsnr, mssim, mlpips = evaluate_nv(data_dict, result_dict)
435
- mpsnr_all.append(mpsnr)
436
- mssim_all.append(mssim)
437
- mlpips_all.append(mlpips)
438
-
439
- print(f"mean 3D tracking EPE: {np.mean(epe_all):.4f}")
440
- print(f"mean 3D tracking PCK (10cm): {np.mean(pck_3d_10cm_all):.4f}")
441
- print(f"mean 3D tracking PCK (5cm): {np.mean(pck_3d_5cm_all):.4f}")
442
- print(f"mean 2D tracking AJ: {np.mean(AJ_all):.4f}")
443
- print(f"mean 2D tracking avg PCK: {np.mean(APCK_all):.4f}")
444
- print(f"mean 2D tracking occlusion accuracy: {np.mean(occ_acc_all):.4f}")
445
- print(f"mean NV mPSNR: {np.mean(mpsnr_all):.4f}")
446
- print(f"mean NV mSSIM: {np.mean(mssim_all):.4f}")
447
- print(f"mean NV mLPIPS: {np.mean(mlpips_all):.4f}")