XGGNet commited on
Commit
9c5f009
1 Parent(s): ec9a561

update Davis dataset files and structures

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. Davis_out/hike/cfg.yaml +68 -0
  2. Davis_out/hike/checkpoints/last.ckpt +3 -0
  3. Davis_out/hike/code/2024-10-27-121029/flow3d/__init__.py +0 -0
  4. Davis_out/hike/code/2024-10-27-121029/flow3d/__pycache__/__init__.cpython-310.pyc +0 -0
  5. Davis_out/hike/code/2024-10-27-121029/flow3d/__pycache__/configs.cpython-310.pyc +0 -0
  6. Davis_out/hike/code/2024-10-27-121029/flow3d/__pycache__/init_utils.cpython-310.pyc +0 -0
  7. Davis_out/hike/code/2024-10-27-121029/flow3d/__pycache__/loss_utils.cpython-310.pyc +0 -0
  8. Davis_out/hike/code/2024-10-27-121029/flow3d/__pycache__/metrics.cpython-310.pyc +0 -0
  9. Davis_out/hike/code/2024-10-27-121029/flow3d/__pycache__/params.cpython-310.pyc +0 -0
  10. Davis_out/hike/code/2024-10-27-121029/flow3d/__pycache__/scene_model.cpython-310.pyc +0 -0
  11. Davis_out/hike/code/2024-10-27-121029/flow3d/__pycache__/tensor_dataclass.cpython-310.pyc +0 -0
  12. Davis_out/hike/code/2024-10-27-121029/flow3d/__pycache__/trainer.cpython-310.pyc +0 -0
  13. Davis_out/hike/code/2024-10-27-121029/flow3d/__pycache__/transforms.cpython-310.pyc +0 -0
  14. Davis_out/hike/code/2024-10-27-121029/flow3d/__pycache__/validator.cpython-310.pyc +0 -0
  15. Davis_out/hike/code/2024-10-27-121029/flow3d/configs.py +67 -0
  16. Davis_out/hike/code/2024-10-27-121029/flow3d/data/__init__.py +40 -0
  17. Davis_out/hike/code/2024-10-27-121029/flow3d/data/__pycache__/__init__.cpython-310.pyc +0 -0
  18. Davis_out/hike/code/2024-10-27-121029/flow3d/data/__pycache__/base_dataset.cpython-310.pyc +0 -0
  19. Davis_out/hike/code/2024-10-27-121029/flow3d/data/__pycache__/casual_dataset.cpython-310.pyc +0 -0
  20. Davis_out/hike/code/2024-10-27-121029/flow3d/data/__pycache__/colmap.cpython-310.pyc +0 -0
  21. Davis_out/hike/code/2024-10-27-121029/flow3d/data/__pycache__/iphone_dataset.cpython-310.pyc +0 -0
  22. Davis_out/hike/code/2024-10-27-121029/flow3d/data/__pycache__/utils.cpython-310.pyc +0 -0
  23. Davis_out/hike/code/2024-10-27-121029/flow3d/data/base_dataset.py +77 -0
  24. Davis_out/hike/code/2024-10-27-121029/flow3d/data/casual_dataset.py +498 -0
  25. Davis_out/hike/code/2024-10-27-121029/flow3d/data/colmap.py +369 -0
  26. Davis_out/hike/code/2024-10-27-121029/flow3d/data/iphone_dataset.py +865 -0
  27. Davis_out/hike/code/2024-10-27-121029/flow3d/data/utils.py +360 -0
  28. Davis_out/hike/code/2024-10-27-121029/flow3d/init_utils.py +644 -0
  29. Davis_out/hike/code/2024-10-27-121029/flow3d/loss_utils.py +158 -0
  30. Davis_out/hike/code/2024-10-27-121029/flow3d/metrics.py +313 -0
  31. Davis_out/hike/code/2024-10-27-121029/flow3d/params.py +184 -0
  32. Davis_out/hike/code/2024-10-27-121029/flow3d/renderer.py +89 -0
  33. Davis_out/hike/code/2024-10-27-121029/flow3d/scene_model.py +292 -0
  34. Davis_out/hike/code/2024-10-27-121029/flow3d/tensor_dataclass.py +96 -0
  35. Davis_out/hike/code/2024-10-27-121029/flow3d/trainer.py +805 -0
  36. Davis_out/hike/code/2024-10-27-121029/flow3d/trajectories.py +200 -0
  37. Davis_out/hike/code/2024-10-27-121029/flow3d/transforms.py +129 -0
  38. Davis_out/hike/code/2024-10-27-121029/flow3d/validator.py +421 -0
  39. Davis_out/hike/code/2024-10-27-121029/flow3d/vis/__init__.py +0 -0
  40. Davis_out/hike/code/2024-10-27-121029/flow3d/vis/__pycache__/__init__.cpython-310.pyc +0 -0
  41. Davis_out/hike/code/2024-10-27-121029/flow3d/vis/__pycache__/playback_panel.cpython-310.pyc +0 -0
  42. Davis_out/hike/code/2024-10-27-121029/flow3d/vis/__pycache__/render_panel.cpython-310.pyc +0 -0
  43. Davis_out/hike/code/2024-10-27-121029/flow3d/vis/__pycache__/utils.cpython-310.pyc +0 -0
  44. Davis_out/hike/code/2024-10-27-121029/flow3d/vis/__pycache__/viewer.cpython-310.pyc +0 -0
  45. Davis_out/hike/code/2024-10-27-121029/flow3d/vis/playback_panel.py +68 -0
  46. Davis_out/hike/code/2024-10-27-121029/flow3d/vis/render_panel.py +1165 -0
  47. Davis_out/hike/code/2024-10-27-121029/flow3d/vis/utils.py +544 -0
  48. Davis_out/hike/code/2024-10-27-121029/flow3d/vis/viewer.py +69 -0
  49. Davis_out/hike/code/2024-10-27-121029/scripts/batch_eval_ours_iphone_gcp.sh +13 -0
  50. Davis_out/hike/code/2024-10-27-121029/scripts/evaluate_iphone.py +447 -0
Davis_out/hike/cfg.yaml ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ batch_size: 8
2
+ data:
3
+ camera_type: droid_recon
4
+ depth_type: aligned_depth_anything
5
+ end: -1
6
+ image_type: JPEGImages
7
+ load_from_cache: false
8
+ mask_erosion_radius: 3
9
+ mask_type: Annotations
10
+ num_targets_per_frame: 4
11
+ res: 480p
12
+ root_dir: SOM_data_lcx/Davis_Data
13
+ scene_norm_dict: null
14
+ seq_name: hike
15
+ start: 0
16
+ track_2d_type: bootstapir
17
+ loss:
18
+ w_depth_const: 0.1
19
+ w_depth_grad: 1
20
+ w_depth_reg: 0.5
21
+ w_mask: 1.0
22
+ w_rgb: 1.0
23
+ w_scale_var: 0.01
24
+ w_smooth_bases: 0.1
25
+ w_smooth_tracks: 2.0
26
+ w_track: 2.0
27
+ w_z_accel: 1.0
28
+ lr:
29
+ bg:
30
+ colors: 0.01
31
+ means: 0.00016
32
+ opacities: 0.05
33
+ quats: 0.001
34
+ scales: 0.005
35
+ fg:
36
+ colors: 0.01
37
+ means: 0.00016
38
+ motion_coefs: 0.01
39
+ opacities: 0.01
40
+ quats: 0.001
41
+ scales: 0.005
42
+ motion_bases:
43
+ rots: 0.00016
44
+ transls: 0.00016
45
+ num_bg: 100000
46
+ num_dl_workers: 4
47
+ num_epochs: 500
48
+ num_fg: 40000
49
+ num_motion_bases: 10
50
+ optim:
51
+ control_every: 100
52
+ cull_opacity_threshold: 0.1
53
+ cull_scale_threshold: 0.5
54
+ cull_screen_threshold: 0.15
55
+ densify_scale_threshold: 0.01
56
+ densify_screen_threshold: 0.05
57
+ densify_xys_grad_threshold: 0.0002
58
+ max_steps: 5000
59
+ reset_opacity_every_n_controls: 30
60
+ stop_control_by_screen_steps: 4000
61
+ stop_control_steps: 4000
62
+ stop_densify_steps: 15000
63
+ warmup_steps: 200
64
+ port: null
65
+ save_videos_every: 50
66
+ validate_every: 50
67
+ vis_debug: false
68
+ work_dir: SOM_output_lcx/Davis_out/hike
Davis_out/hike/checkpoints/last.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7dad672a98e5960a201773fd014cc3386ea530cb90432ba7974e42c21a7ed434
3
+ size 113062824
Davis_out/hike/code/2024-10-27-121029/flow3d/__init__.py ADDED
File without changes
Davis_out/hike/code/2024-10-27-121029/flow3d/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (152 Bytes). View file
 
Davis_out/hike/code/2024-10-27-121029/flow3d/__pycache__/configs.cpython-310.pyc ADDED
Binary file (2.61 kB). View file
 
Davis_out/hike/code/2024-10-27-121029/flow3d/__pycache__/init_utils.cpython-310.pyc ADDED
Binary file (15.6 kB). View file
 
Davis_out/hike/code/2024-10-27-121029/flow3d/__pycache__/loss_utils.cpython-310.pyc ADDED
Binary file (4.69 kB). View file
 
Davis_out/hike/code/2024-10-27-121029/flow3d/__pycache__/metrics.cpython-310.pyc ADDED
Binary file (10.8 kB). View file
 
Davis_out/hike/code/2024-10-27-121029/flow3d/__pycache__/params.cpython-310.pyc ADDED
Binary file (6.71 kB). View file
 
Davis_out/hike/code/2024-10-27-121029/flow3d/__pycache__/scene_model.cpython-310.pyc ADDED
Binary file (7.71 kB). View file
 
Davis_out/hike/code/2024-10-27-121029/flow3d/__pycache__/tensor_dataclass.cpython-310.pyc ADDED
Binary file (4.24 kB). View file
 
Davis_out/hike/code/2024-10-27-121029/flow3d/__pycache__/trainer.cpython-310.pyc ADDED
Binary file (19.3 kB). View file
 
Davis_out/hike/code/2024-10-27-121029/flow3d/__pycache__/transforms.cpython-310.pyc ADDED
Binary file (3.72 kB). View file
 
Davis_out/hike/code/2024-10-27-121029/flow3d/__pycache__/validator.cpython-310.pyc ADDED
Binary file (9.92 kB). View file
 
Davis_out/hike/code/2024-10-27-121029/flow3d/configs.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+
3
+
4
+ @dataclass
5
+ class FGLRConfig:
6
+ means: float = 1.6e-4
7
+ opacities: float = 1e-2
8
+ scales: float = 5e-3
9
+ quats: float = 1e-3
10
+ colors: float = 1e-2
11
+ motion_coefs: float = 1e-2
12
+
13
+
14
+ @dataclass
15
+ class BGLRConfig:
16
+ means: float = 1.6e-4
17
+ opacities: float = 5e-2
18
+ scales: float = 5e-3
19
+ quats: float = 1e-3
20
+ colors: float = 1e-2
21
+
22
+
23
+ @dataclass
24
+ class MotionLRConfig:
25
+ rots: float = 1.6e-4
26
+ transls: float = 1.6e-4
27
+
28
+
29
+ @dataclass
30
+ class SceneLRConfig:
31
+ fg: FGLRConfig
32
+ bg: BGLRConfig
33
+ motion_bases: MotionLRConfig
34
+
35
+
36
+ @dataclass
37
+ class LossesConfig:
38
+ w_rgb: float = 1.0
39
+ w_depth_reg: float = 0.5
40
+ w_depth_const: float = 0.1
41
+ w_depth_grad: float = 1
42
+ w_track: float = 2.0
43
+ w_mask: float = 1.0
44
+ w_smooth_bases: float = 0.1
45
+ w_smooth_tracks: float = 2.0
46
+ w_scale_var: float = 0.01
47
+ w_z_accel: float = 1.0
48
+
49
+
50
+ @dataclass
51
+ class OptimizerConfig:
52
+ max_steps: int = 5000
53
+ ## Adaptive gaussian control
54
+ warmup_steps: int = 200
55
+ control_every: int = 100
56
+ reset_opacity_every_n_controls: int = 30
57
+ stop_control_by_screen_steps: int = 4000
58
+ stop_control_steps: int = 4000
59
+ ### Densify.
60
+ densify_xys_grad_threshold: float = 0.0002
61
+ densify_scale_threshold: float = 0.01
62
+ densify_screen_threshold: float = 0.05
63
+ stop_densify_steps: int = 15000
64
+ ### Cull.
65
+ cull_opacity_threshold: float = 0.1
66
+ cull_scale_threshold: float = 0.5
67
+ cull_screen_threshold: float = 0.15
Davis_out/hike/code/2024-10-27-121029/flow3d/data/__init__.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import asdict, replace
2
+
3
+ from torch.utils.data import Dataset
4
+
5
+ from .base_dataset import BaseDataset
6
+ from .casual_dataset import CasualDataset, CustomDataConfig, DavisDataConfig
7
+ from .iphone_dataset import (
8
+ iPhoneDataConfig,
9
+ iPhoneDataConfig_Crafter,
10
+ iPhoneDataset,
11
+ iPhoneDatasetKeypointView,
12
+ iPhoneDatasetVideoView,
13
+ )
14
+
15
+
16
+ def get_train_val_datasets(
17
+ data_cfg: iPhoneDataConfig | DavisDataConfig | CustomDataConfig | iPhoneDataConfig_Crafter, load_val: bool
18
+ ) -> tuple[BaseDataset, Dataset | None, Dataset | None, Dataset | None]:
19
+ train_video_view = None
20
+ val_img_dataset = None
21
+ val_kpt_dataset = None
22
+ if isinstance(data_cfg, iPhoneDataConfig) or isinstance(data_cfg, iPhoneDataConfig_Crafter):
23
+ train_dataset = iPhoneDataset(**asdict(data_cfg))
24
+ train_video_view = iPhoneDatasetVideoView(train_dataset)
25
+ if load_val:
26
+ val_img_dataset = (
27
+ iPhoneDataset(
28
+ **asdict(replace(data_cfg, split="val", load_from_cache=True))
29
+ )
30
+ if train_dataset.has_validation
31
+ else None
32
+ )
33
+ val_kpt_dataset = iPhoneDatasetKeypointView(train_dataset)
34
+ elif isinstance(data_cfg, DavisDataConfig) or isinstance(
35
+ data_cfg, CustomDataConfig
36
+ ):
37
+ train_dataset = CasualDataset(**asdict(data_cfg))
38
+ else:
39
+ raise ValueError(f"Unknown data config: {data_cfg}")
40
+ return train_dataset, train_video_view, val_img_dataset, val_kpt_dataset
Davis_out/hike/code/2024-10-27-121029/flow3d/data/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.26 kB). View file
 
Davis_out/hike/code/2024-10-27-121029/flow3d/data/__pycache__/base_dataset.cpython-310.pyc ADDED
Binary file (2.98 kB). View file
 
Davis_out/hike/code/2024-10-27-121029/flow3d/data/__pycache__/casual_dataset.cpython-310.pyc ADDED
Binary file (14.9 kB). View file
 
Davis_out/hike/code/2024-10-27-121029/flow3d/data/__pycache__/colmap.cpython-310.pyc ADDED
Binary file (10.2 kB). View file
 
Davis_out/hike/code/2024-10-27-121029/flow3d/data/__pycache__/iphone_dataset.cpython-310.pyc ADDED
Binary file (18.9 kB). View file
 
Davis_out/hike/code/2024-10-27-121029/flow3d/data/__pycache__/utils.cpython-310.pyc ADDED
Binary file (9.73 kB). View file
 
Davis_out/hike/code/2024-10-27-121029/flow3d/data/base_dataset.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import abstractmethod
2
+
3
+ import torch
4
+ from torch.utils.data import Dataset, default_collate
5
+
6
+
7
+ class BaseDataset(Dataset):
8
+ @property
9
+ @abstractmethod
10
+ def num_frames(self) -> int: ...
11
+
12
+ @property
13
+ def keyframe_idcs(self) -> torch.Tensor:
14
+ return torch.arange(self.num_frames)
15
+
16
+ @abstractmethod
17
+ def get_w2cs(self) -> torch.Tensor: ...
18
+
19
+ @abstractmethod
20
+ def get_Ks(self) -> torch.Tensor: ...
21
+
22
+ @abstractmethod
23
+ def get_image(self, index: int) -> torch.Tensor: ...
24
+
25
+ @abstractmethod
26
+ def get_depth(self, index: int) -> torch.Tensor: ...
27
+
28
+ @abstractmethod
29
+ def get_mask(self, index: int) -> torch.Tensor: ...
30
+
31
+ def get_img_wh(self) -> tuple[int, int]: ...
32
+
33
+ @abstractmethod
34
+ def get_tracks_3d(
35
+ self, num_samples: int, **kwargs
36
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
37
+ """
38
+ Returns 3D tracks:
39
+ coordinates (N, T, 3),
40
+ visibles (N, T),
41
+ invisibles (N, T),
42
+ confidences (N, T),
43
+ colors (N, 3)
44
+ """
45
+ ...
46
+
47
+ @abstractmethod
48
+ def get_bkgd_points(
49
+ self, num_samples: int, **kwargs
50
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
51
+ """
52
+ Returns background points:
53
+ coordinates (N, 3),
54
+ normals (N, 3),
55
+ colors (N, 3)
56
+ """
57
+ ...
58
+
59
+ @staticmethod
60
+ def train_collate_fn(batch):
61
+ collated = {}
62
+ for k in batch[0]:
63
+ if k not in [
64
+ "query_tracks_2d",
65
+ "target_ts",
66
+ "target_w2cs",
67
+ "target_Ks",
68
+ "target_tracks_2d",
69
+ "target_visibles",
70
+ "target_track_depths",
71
+ "target_invisibles",
72
+ "target_confidences",
73
+ ]:
74
+ collated[k] = default_collate([sample[k] for sample in batch])
75
+ else:
76
+ collated[k] = [sample[k] for sample in batch]
77
+ return collated
Davis_out/hike/code/2024-10-27-121029/flow3d/data/casual_dataset.py ADDED
@@ -0,0 +1,498 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from dataclasses import dataclass
3
+ from functools import partial
4
+ from typing import Literal, cast
5
+
6
+ import cv2
7
+ import imageio
8
+ import numpy as np
9
+ import torch
10
+ import torch.nn.functional as F
11
+ import tyro
12
+ from loguru import logger as guru
13
+ from roma import roma
14
+ from tqdm import tqdm
15
+
16
+ from flow3d.data.base_dataset import BaseDataset
17
+ from flow3d.data.utils import (
18
+ UINT16_MAX,
19
+ SceneNormDict,
20
+ get_tracks_3d_for_query_frame,
21
+ median_filter_2d,
22
+ normal_from_depth_image,
23
+ normalize_coords,
24
+ parse_tapir_track_info,
25
+ )
26
+ from flow3d.transforms import rt_to_mat4
27
+
28
+
29
+ @dataclass
30
+ class DavisDataConfig:
31
+ seq_name: str
32
+ root_dir: str
33
+ start: int = 0
34
+ end: int = -1
35
+ res: str = "480p"
36
+ image_type: str = "JPEGImages"
37
+ mask_type: str = "Annotations"
38
+ depth_type: Literal[
39
+ "aligned_depth_anything",
40
+ "aligned_depth_anything_v2",
41
+ "depth_anything",
42
+ "depth_anything_v2",
43
+ "unidepth_disp",
44
+ "aligned_depthcrafter",
45
+ ] = "aligned_depth_anything" #"aligned_depthcrafter"
46
+ camera_type: Literal["droid_recon"] = "droid_recon"
47
+ track_2d_type: Literal["bootstapir", "tapir"] = "bootstapir"
48
+ mask_erosion_radius: int = 3
49
+ scene_norm_dict: tyro.conf.Suppress[SceneNormDict | None] = None
50
+ num_targets_per_frame: int = 4
51
+ load_from_cache: bool = False
52
+
53
+
54
+ @dataclass
55
+ class CustomDataConfig:
56
+ seq_name: str
57
+ root_dir: str
58
+ start: int = 0
59
+ end: int = -1
60
+ res: str = ""
61
+ image_type: str = "images"
62
+ mask_type: str = "masks"
63
+ depth_type: Literal[
64
+ "aligned_depth_anything",
65
+ "aligned_depth_anything_v2",
66
+ "depth_anything",
67
+ "depth_anything_v2",
68
+ "unidepth_disp",
69
+ ] = "aligned_depth_anything"
70
+ camera_type: Literal["droid_recon"] = "droid_recon"
71
+ track_2d_type: Literal["bootstapir", "tapir"] = "bootstapir"
72
+ mask_erosion_radius: int = 7
73
+ scene_norm_dict: tyro.conf.Suppress[SceneNormDict | None] = None
74
+ num_targets_per_frame: int = 4
75
+ load_from_cache: bool = False
76
+
77
+
78
+ class CasualDataset(BaseDataset):
79
+ def __init__(
80
+ self,
81
+ seq_name: str,
82
+ root_dir: str,
83
+ start: int = 0,
84
+ end: int = -1,
85
+ res: str = "480p",
86
+ image_type: str = "JPEGImages",
87
+ mask_type: str = "Annotations",
88
+ depth_type: Literal[
89
+ "aligned_depth_anything",
90
+ "aligned_depth_anything_v2",
91
+ "depth_anything",
92
+ "depth_anything_v2",
93
+ "unidepth_disp",
94
+ "aligned_depthcrafter",
95
+ ] = "aligned_depth_anything", #"aligned_depthcrafter",
96
+ camera_type: Literal["droid_recon"] = "droid_recon",
97
+ track_2d_type: Literal["bootstapir", "tapir"] = "bootstapir",
98
+ mask_erosion_radius: int = 3,
99
+ scene_norm_dict: SceneNormDict | None = None,
100
+ num_targets_per_frame: int = 4,
101
+ load_from_cache: bool = False,
102
+ **_,
103
+ ):
104
+ super().__init__()
105
+
106
+ self.seq_name = seq_name
107
+ self.root_dir = root_dir
108
+ self.res = res
109
+ self.depth_type = depth_type
110
+ self.num_targets_per_frame = num_targets_per_frame
111
+ self.load_from_cache = load_from_cache
112
+ self.has_validation = False
113
+ self.mask_erosion_radius = mask_erosion_radius
114
+
115
+ self.img_dir = f"{root_dir}/{image_type}/{res}/{seq_name}"
116
+ self.img_ext = os.path.splitext(os.listdir(self.img_dir)[0])[1]
117
+ self.depth_dir = f"{root_dir}/{depth_type}/{res}/{seq_name}"
118
+ self.mask_dir = f"{root_dir}/{mask_type}/{res}/{seq_name}"
119
+ self.tracks_dir = f"{root_dir}/{track_2d_type}/{res}/{seq_name}"
120
+ self.cache_dir = f"{root_dir}/flow3d_preprocessed/{res}/{seq_name}"
121
+ # self.cache_dir = f"datasets/davis/flow3d_preprocessed/{res}/{seq_name}"
122
+ frame_names = [os.path.splitext(p)[0] for p in sorted(os.listdir(self.img_dir))]
123
+
124
+ if end == -1:
125
+ end = len(frame_names)
126
+ self.start = start
127
+ self.end = end
128
+ self.frame_names = frame_names[start:end]
129
+
130
+ self.imgs: list[torch.Tensor | None] = [None for _ in self.frame_names]
131
+ self.depths: list[torch.Tensor | None] = [None for _ in self.frame_names]
132
+ self.masks: list[torch.Tensor | None] = [None for _ in self.frame_names]
133
+
134
+ # load cameras
135
+ if camera_type == "droid_recon":
136
+ img = self.get_image(0)
137
+ H, W = img.shape[:2]
138
+ w2cs, Ks, tstamps = load_cameras(
139
+ f"{root_dir}/{camera_type}/{seq_name}.npy", H, W
140
+ )
141
+ else:
142
+ raise ValueError(f"Unknown camera type: {camera_type}")
143
+ assert (
144
+ len(frame_names) == len(w2cs) == len(Ks)
145
+ ), f"{len(frame_names)}, {len(w2cs)}, {len(Ks)}"
146
+ self.w2cs = w2cs[start:end]
147
+ self.Ks = Ks[start:end]
148
+ tmask = (tstamps >= start) & (tstamps < end)
149
+ self._keyframe_idcs = tstamps[tmask] - start
150
+ self.scale = 1
151
+
152
+ if scene_norm_dict is None:
153
+ cached_scene_norm_dict_path = os.path.join(
154
+ self.cache_dir, "scene_norm_dict.pth"
155
+ )
156
+ if os.path.exists(cached_scene_norm_dict_path) and self.load_from_cache:
157
+ guru.info("loading cached scene norm dict...")
158
+ scene_norm_dict = torch.load(
159
+ os.path.join(self.cache_dir, "scene_norm_dict.pth")
160
+ )
161
+ else:
162
+ tracks_3d = self.get_tracks_3d(5000, step=self.num_frames // 10)[0]
163
+ scale, transfm = compute_scene_norm(tracks_3d, self.w2cs)
164
+ scene_norm_dict = SceneNormDict(scale=scale, transfm=transfm)
165
+ os.makedirs(self.cache_dir, exist_ok=True)
166
+ torch.save(scene_norm_dict, cached_scene_norm_dict_path)
167
+
168
+ # transform cameras
169
+ self.scene_norm_dict = cast(SceneNormDict, scene_norm_dict)
170
+ self.scale = self.scene_norm_dict["scale"]
171
+ transform = self.scene_norm_dict["transfm"]
172
+ guru.info(f"scene norm {self.scale=}, {transform=}")
173
+ self.w2cs = torch.einsum("nij,jk->nik", self.w2cs, torch.linalg.inv(transform))
174
+ self.w2cs[:, :3, 3] /= self.scale
175
+
176
+ @property
177
+ def num_frames(self) -> int:
178
+ return len(self.frame_names)
179
+
180
+ @property
181
+ def keyframe_idcs(self) -> torch.Tensor:
182
+ return self._keyframe_idcs
183
+
184
+ def __len__(self):
185
+ return len(self.frame_names)
186
+
187
+ def get_w2cs(self) -> torch.Tensor:
188
+ return self.w2cs
189
+
190
+ def get_Ks(self) -> torch.Tensor:
191
+ return self.Ks
192
+
193
+ def get_img_wh(self) -> tuple[int, int]:
194
+ return self.get_image(0).shape[1::-1]
195
+
196
+ def get_image(self, index) -> torch.Tensor:
197
+ if self.imgs[index] is None:
198
+ self.imgs[index] = self.load_image(index)
199
+ img = cast(torch.Tensor, self.imgs[index])
200
+ return img
201
+
202
+ def get_mask(self, index) -> torch.Tensor:
203
+ if self.masks[index] is None:
204
+ self.masks[index] = self.load_mask(index)
205
+ mask = cast(torch.Tensor, self.masks[index])
206
+ return mask
207
+
208
+ def get_depth(self, index) -> torch.Tensor:
209
+ if self.depths[index] is None:
210
+ self.depths[index] = self.load_depth(index)
211
+ return self.depths[index] / self.scale
212
+
213
+ def load_image(self, index) -> torch.Tensor:
214
+ path = f"{self.img_dir}/{self.frame_names[index]}{self.img_ext}"
215
+ return torch.from_numpy(imageio.imread(path)).float() / 255.0
216
+
217
+ def load_mask(self, index) -> torch.Tensor:
218
+ path = f"{self.mask_dir}/{self.frame_names[index]}.png"
219
+ r = self.mask_erosion_radius
220
+ mask = imageio.imread(path)
221
+ fg_mask = mask.reshape((*mask.shape[:2], -1)).max(axis=-1) > 0
222
+ bg_mask = ~fg_mask
223
+ fg_mask_erode = cv2.erode(
224
+ fg_mask.astype(np.uint8), np.ones((r, r), np.uint8), iterations=1
225
+ )
226
+ bg_mask_erode = cv2.erode(
227
+ bg_mask.astype(np.uint8), np.ones((r, r), np.uint8), iterations=1
228
+ )
229
+ out_mask = np.zeros_like(fg_mask, dtype=np.float32)
230
+ out_mask[bg_mask_erode > 0] = -1
231
+ out_mask[fg_mask_erode > 0] = 1
232
+ return torch.from_numpy(out_mask).float()
233
+
234
+ def load_depth(self, index) -> torch.Tensor:
235
+ path = f"{self.depth_dir}/{self.frame_names[index]}.npy"
236
+ disp = np.load(path)
237
+ depth = 1.0 / np.clip(disp, a_min=1e-6, a_max=1e6)
238
+ depth = torch.from_numpy(depth).float()
239
+ depth = median_filter_2d(depth[None, None], 11, 1)[0, 0]
240
+ return depth
241
+
242
+ def load_target_tracks(
243
+ self, query_index: int, target_indices: list[int], dim: int = 1
244
+ ):
245
+ """
246
+ tracks are 2d, occs and uncertainties
247
+ :param dim (int), default 1: dimension to stack the time axis
248
+ return (N, T, 4) if dim=1, (T, N, 4) if dim=0
249
+ """
250
+ q_name = self.frame_names[query_index]
251
+ all_tracks = []
252
+ for ti in target_indices:
253
+ t_name = self.frame_names[ti]
254
+ path = f"{self.tracks_dir}/{q_name}_{t_name}.npy"
255
+ tracks = np.load(path).astype(np.float32)
256
+ all_tracks.append(tracks)
257
+ return torch.from_numpy(np.stack(all_tracks, axis=dim))
258
+
259
+ def get_tracks_3d(
260
+ self, num_samples: int, start: int = 0, end: int = -1, step: int = 1, **kwargs
261
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
262
+ num_frames = self.num_frames
263
+ if end < 0:
264
+ end = num_frames + 1 + end
265
+ query_idcs = list(range(start, end, step))
266
+ target_idcs = list(range(start, end, step))
267
+ masks = torch.stack([self.get_mask(i) for i in target_idcs], dim=0)
268
+ fg_masks = (masks == 1).float()
269
+ depths = torch.stack([self.get_depth(i) for i in target_idcs], dim=0)
270
+ inv_Ks = torch.linalg.inv(self.Ks[target_idcs])
271
+ c2ws = torch.linalg.inv(self.w2cs[target_idcs])
272
+
273
+ num_per_query_frame = int(np.ceil(num_samples / len(query_idcs)))
274
+ cur_num = 0
275
+ tracks_all_queries = []
276
+ for q_idx in query_idcs:
277
+ # (N, T, 4)
278
+ tracks_2d = self.load_target_tracks(q_idx, target_idcs)
279
+ num_sel = int(
280
+ min(num_per_query_frame, num_samples - cur_num, len(tracks_2d))
281
+ )
282
+ if num_sel < len(tracks_2d):
283
+ sel_idcs = np.random.choice(len(tracks_2d), num_sel, replace=False)
284
+ tracks_2d = tracks_2d[sel_idcs]
285
+ cur_num += tracks_2d.shape[0]
286
+ img = self.get_image(q_idx)
287
+ tidx = target_idcs.index(q_idx)
288
+ tracks_tuple = get_tracks_3d_for_query_frame(
289
+ tidx, img, tracks_2d, depths, fg_masks, inv_Ks, c2ws
290
+ )
291
+ tracks_all_queries.append(tracks_tuple)
292
+ tracks_3d, colors, visibles, invisibles, confidences = map(
293
+ partial(torch.cat, dim=0), zip(*tracks_all_queries)
294
+ )
295
+ return tracks_3d, visibles, invisibles, confidences, colors
296
+
297
+ def get_bkgd_points(
298
+ self,
299
+ num_samples: int,
300
+ use_kf_tstamps: bool = True,
301
+ stride: int = 8,
302
+ down_rate: int = 8,
303
+ min_per_frame: int = 64,
304
+ **kwargs,
305
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
306
+ start = 0
307
+ end = self.num_frames
308
+ H, W = self.get_image(0).shape[:2]
309
+ grid = torch.stack(
310
+ torch.meshgrid(
311
+ torch.arange(0, W, dtype=torch.float32),
312
+ torch.arange(0, H, dtype=torch.float32),
313
+ indexing="xy",
314
+ ),
315
+ dim=-1,
316
+ )
317
+
318
+ if use_kf_tstamps:
319
+ query_idcs = self.keyframe_idcs.tolist()
320
+ else:
321
+ num_query_frames = self.num_frames // stride
322
+ query_endpts = torch.linspace(start, end, num_query_frames + 1)
323
+ query_idcs = ((query_endpts[:-1] + query_endpts[1:]) / 2).long().tolist()
324
+
325
+ bg_geometry = []
326
+ print(f"{query_idcs=}")
327
+ for query_idx in tqdm(query_idcs, desc="Loading bkgd points", leave=False):
328
+ img = self.get_image(query_idx)
329
+ depth = self.get_depth(query_idx)
330
+ bg_mask = self.get_mask(query_idx) < 0
331
+ bool_mask = (bg_mask * (depth > 0)).to(torch.bool)
332
+ w2c = self.w2cs[query_idx]
333
+ K = self.Ks[query_idx]
334
+
335
+ # get the bounding box of previous points that reproject into frame
336
+ # inefficient but works for now
337
+ bmax_x, bmax_y, bmin_x, bmin_y = 0, 0, W, H
338
+ for p3d, _, _ in bg_geometry:
339
+ if len(p3d) < 1:
340
+ continue
341
+ # reproject into current frame
342
+ p2d = torch.einsum(
343
+ "ij,jk,pk->pi", K, w2c[:3], F.pad(p3d, (0, 1), value=1.0)
344
+ )
345
+ p2d = p2d[:, :2] / p2d[:, 2:].clamp(min=1e-6)
346
+ xmin, xmax = p2d[:, 0].min().item(), p2d[:, 0].max().item()
347
+ ymin, ymax = p2d[:, 1].min().item(), p2d[:, 1].max().item()
348
+
349
+ bmin_x = min(bmin_x, int(xmin))
350
+ bmin_y = min(bmin_y, int(ymin))
351
+ bmax_x = max(bmax_x, int(xmax))
352
+ bmax_y = max(bmax_y, int(ymax))
353
+
354
+ # don't include points that are covered by previous points
355
+ bmin_x = max(0, bmin_x)
356
+ bmin_y = max(0, bmin_y)
357
+ bmax_x = min(W, bmax_x)
358
+ bmax_y = min(H, bmax_y)
359
+ overlap_mask = torch.ones_like(bool_mask)
360
+ overlap_mask[bmin_y:bmax_y, bmin_x:bmax_x] = 0
361
+
362
+ bool_mask &= overlap_mask
363
+ if bool_mask.sum() < min_per_frame:
364
+ guru.debug(f"skipping {query_idx=}")
365
+ continue
366
+
367
+ points = (
368
+ torch.einsum(
369
+ "ij,pj->pi",
370
+ torch.linalg.inv(K),
371
+ F.pad(grid[bool_mask], (0, 1), value=1.0),
372
+ )
373
+ * depth[bool_mask][:, None]
374
+ )
375
+ points = torch.einsum(
376
+ "ij,pj->pi", torch.linalg.inv(w2c)[:3], F.pad(points, (0, 1), value=1.0)
377
+ )
378
+ point_normals = normal_from_depth_image(depth, K, w2c)[bool_mask]
379
+ point_colors = img[bool_mask]
380
+
381
+ num_sel = max(len(points) // down_rate, min_per_frame)
382
+ sel_idcs = np.random.choice(len(points), num_sel, replace=False)
383
+ points = points[sel_idcs]
384
+ point_normals = point_normals[sel_idcs]
385
+ point_colors = point_colors[sel_idcs]
386
+ guru.debug(f"{query_idx=} {points.shape=}")
387
+ bg_geometry.append((points, point_normals, point_colors))
388
+
389
+ bg_points, bg_normals, bg_colors = map(
390
+ partial(torch.cat, dim=0), zip(*bg_geometry)
391
+ )
392
+ if len(bg_points) > num_samples:
393
+ sel_idcs = np.random.choice(len(bg_points), num_samples, replace=False)
394
+ bg_points = bg_points[sel_idcs]
395
+ bg_normals = bg_normals[sel_idcs]
396
+ bg_colors = bg_colors[sel_idcs]
397
+
398
+ return bg_points, bg_normals, bg_colors
399
+
400
+ def __getitem__(self, index: int):
401
+ index = np.random.randint(0, self.num_frames)
402
+ data = {
403
+ # ().
404
+ "frame_names": self.frame_names[index],
405
+ # ().
406
+ "ts": torch.tensor(index),
407
+ # (4, 4).
408
+ "w2cs": self.w2cs[index],
409
+ # (3, 3).
410
+ "Ks": self.Ks[index],
411
+ # (H, W, 3).
412
+ "imgs": self.get_image(index),
413
+ "depths": self.get_depth(index),
414
+ }
415
+ tri_mask = self.get_mask(index)
416
+ valid_mask = tri_mask != 0 # not fg or bg
417
+ mask = tri_mask == 1 # fg mask
418
+ data["masks"] = mask.float()
419
+ data["valid_masks"] = valid_mask.float()
420
+
421
+ # (P, 2)
422
+ query_tracks = self.load_target_tracks(index, [index])[:, 0, :2]
423
+ target_inds = torch.from_numpy(
424
+ np.random.choice(
425
+ self.num_frames, (self.num_targets_per_frame,), replace=False
426
+ )
427
+ )
428
+ # (N, P, 4)
429
+ target_tracks = self.load_target_tracks(index, target_inds.tolist(), dim=0)
430
+ data["query_tracks_2d"] = query_tracks
431
+ data["target_ts"] = target_inds
432
+ data["target_w2cs"] = self.w2cs[target_inds]
433
+ data["target_Ks"] = self.Ks[target_inds]
434
+ data["target_tracks_2d"] = target_tracks[..., :2]
435
+ # (N, P).
436
+ (
437
+ data["target_visibles"],
438
+ data["target_invisibles"],
439
+ data["target_confidences"],
440
+ ) = parse_tapir_track_info(target_tracks[..., 2], target_tracks[..., 3])
441
+ # (N, H, W)
442
+ target_depths = torch.stack([self.get_depth(i) for i in target_inds], dim=0)
443
+ H, W = target_depths.shape[-2:]
444
+ data["target_track_depths"] = F.grid_sample(
445
+ target_depths[:, None],
446
+ normalize_coords(target_tracks[..., None, :2], H, W),
447
+ align_corners=True,
448
+ padding_mode="border",
449
+ )[:, 0, :, 0]
450
+ return data
451
+
452
+
453
+ def load_cameras(
454
+ path: str, H: int, W: int
455
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
456
+ assert os.path.exists(path), f"Camera file {path} does not exist."
457
+ recon = np.load(path, allow_pickle=True).item()
458
+ guru.debug(f"{recon.keys()=}")
459
+ traj_c2w = recon["traj_c2w"] # (N, 4, 4)
460
+ h, w = recon["img_shape"]
461
+ sy, sx = H / h, W / w
462
+ traj_w2c = np.linalg.inv(traj_c2w)
463
+ fx, fy, cx, cy = recon["intrinsics"] # (4,)
464
+ K = np.array([[fx * sx, 0, cx * sx], [0, fy * sy, cy * sy], [0, 0, 1]]) # (3, 3)
465
+ Ks = np.tile(K[None, ...], (len(traj_c2w), 1, 1)) # (N, 3, 3)
466
+ kf_tstamps = recon["tstamps"].astype("int")
467
+ return (
468
+ torch.from_numpy(traj_w2c).float(),
469
+ torch.from_numpy(Ks).float(),
470
+ torch.from_numpy(kf_tstamps),
471
+ )
472
+
473
+
474
+ def compute_scene_norm(
475
+ X: torch.Tensor, w2cs: torch.Tensor
476
+ ) -> tuple[float, torch.Tensor]:
477
+ """
478
+ :param X: [N*T, 3]
479
+ :param w2cs: [N, 4, 4]
480
+ """
481
+ X = X.reshape(-1, 3)
482
+ scene_center = X.mean(dim=0)
483
+ X = X - scene_center[None]
484
+ min_scale = X.quantile(0.05, dim=0)
485
+ max_scale = X.quantile(0.95, dim=0)
486
+ scale = (max_scale - min_scale).max().item() / 2.0
487
+ original_up = -F.normalize(w2cs[:, 1, :3].mean(0), dim=-1)
488
+ target_up = original_up.new_tensor([0.0, 0.0, 1.0])
489
+ R = roma.rotvec_to_rotmat(
490
+ F.normalize(original_up.cross(target_up), dim=-1)
491
+ * original_up.dot(target_up).acos_()
492
+ )
493
+ transfm = rt_to_mat4(R, torch.einsum("ij,j->i", -R, scene_center))
494
+ return scale, transfm
495
+
496
+
497
+ if __name__ == "__main__":
498
+ d = CasualDataset("bear", "/shared/vye/datasets/DAVIS", camera_type="droid_recon")
Davis_out/hike/code/2024-10-27-121029/flow3d/data/colmap.py ADDED
@@ -0,0 +1,369 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import struct
3
+ from dataclasses import dataclass
4
+ from pathlib import Path
5
+ from typing import Dict, Union
6
+
7
+ import numpy as np
8
+
9
+
10
+ def get_colmap_camera_params(colmap_dir, img_files):
11
+ cameras = read_cameras_binary(colmap_dir + "/cameras.bin")
12
+ images = read_images_binary(colmap_dir + "/images.bin")
13
+ colmap_image_idcs = {v.name: k for k, v in images.items()}
14
+ img_names = [os.path.basename(img_file) for img_file in img_files]
15
+ num_imgs = len(img_names)
16
+ K_all = np.zeros((num_imgs, 4, 4))
17
+ extrinsics_all = np.zeros((num_imgs, 4, 4))
18
+ for idx, name in enumerate(img_names):
19
+ key = colmap_image_idcs[name]
20
+ image = images[key]
21
+ assert image.name == name
22
+ K, extrinsics = get_intrinsics_extrinsics(image, cameras)
23
+ K_all[idx] = K
24
+ extrinsics_all[idx] = extrinsics
25
+
26
+ return K_all, extrinsics_all
27
+
28
+
29
+ @dataclass(frozen=True)
30
+ class CameraModel:
31
+ model_id: int
32
+ model_name: str
33
+ num_params: int
34
+
35
+
36
+ @dataclass(frozen=True)
37
+ class Camera:
38
+ id: int
39
+ model: str
40
+ width: int
41
+ height: int
42
+ params: np.ndarray
43
+
44
+
45
+ @dataclass(frozen=True)
46
+ class BaseImage:
47
+ id: int
48
+ qvec: np.ndarray
49
+ tvec: np.ndarray
50
+ camera_id: int
51
+ name: str
52
+ xys: np.ndarray
53
+ point3D_ids: np.ndarray
54
+
55
+
56
+ @dataclass(frozen=True)
57
+ class Point3D:
58
+ id: int
59
+ xyz: np.ndarray
60
+ rgb: np.ndarray
61
+ error: Union[float, np.ndarray]
62
+ image_ids: np.ndarray
63
+ point2D_idxs: np.ndarray
64
+
65
+
66
+ class Image(BaseImage):
67
+ def qvec2rotmat(self):
68
+ return qvec2rotmat(self.qvec)
69
+
70
+
71
+ CAMERA_MODELS = {
72
+ CameraModel(model_id=0, model_name="SIMPLE_PINHOLE", num_params=3),
73
+ CameraModel(model_id=1, model_name="PINHOLE", num_params=4),
74
+ CameraModel(model_id=2, model_name="SIMPLE_RADIAL", num_params=4),
75
+ CameraModel(model_id=3, model_name="RADIAL", num_params=5),
76
+ CameraModel(model_id=4, model_name="OPENCV", num_params=8),
77
+ CameraModel(model_id=5, model_name="OPENCV_FISHEYE", num_params=8),
78
+ CameraModel(model_id=6, model_name="FULL_OPENCV", num_params=12),
79
+ CameraModel(model_id=7, model_name="FOV", num_params=5),
80
+ CameraModel(model_id=8, model_name="SIMPLE_RADIAL_FISHEYE", num_params=4),
81
+ CameraModel(model_id=9, model_name="RADIAL_FISHEYE", num_params=5),
82
+ CameraModel(model_id=10, model_name="THIN_PRISM_FISHEYE", num_params=12),
83
+ }
84
+ CAMERA_MODEL_IDS = dict(
85
+ [(camera_model.model_id, camera_model) for camera_model in CAMERA_MODELS]
86
+ )
87
+
88
+
89
+ def read_next_bytes(fid, num_bytes, format_char_sequence, endian_character="<"):
90
+ """Read and unpack the next bytes from a binary file.
91
+ :param fid:
92
+ :param num_bytes: Sum of combination of {2, 4, 8}, e.g. 2, 6, 16, 30, etc.
93
+ :param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}.
94
+ :param endian_character: Any of {@, =, <, >, !}
95
+ :return: Tuple of read and unpacked values.
96
+ """
97
+ data = fid.read(num_bytes)
98
+ return struct.unpack(endian_character + format_char_sequence, data)
99
+
100
+
101
+ def read_cameras_text(path: Union[str, Path]) -> Dict[int, Camera]:
102
+ """
103
+ see: src/base/reconstruction.cc
104
+ void Reconstruction::WriteCamerasText(const std::string& path)
105
+ void Reconstruction::ReadCamerasText(const std::string& path)
106
+ """
107
+ cameras = {}
108
+ with open(path, "r") as fid:
109
+ while True:
110
+ line = fid.readline()
111
+ if not line:
112
+ break
113
+ line = line.strip()
114
+ if len(line) > 0 and line[0] != "#":
115
+ elems = line.split()
116
+ camera_id = int(elems[0])
117
+ model = elems[1]
118
+ width = int(elems[2])
119
+ height = int(elems[3])
120
+ params = np.array(tuple(map(float, elems[4:])))
121
+ cameras[camera_id] = Camera(
122
+ id=camera_id, model=model, width=width, height=height, params=params
123
+ )
124
+ return cameras
125
+
126
+
127
+ def read_cameras_binary(path_to_model_file: Union[str, Path]) -> Dict[int, Camera]:
128
+ """
129
+ see: src/base/reconstruction.cc
130
+ void Reconstruction::WriteCamerasBinary(const std::string& path)
131
+ void Reconstruction::ReadCamerasBinary(const std::string& path)
132
+ """
133
+ cameras = {}
134
+ with open(path_to_model_file, "rb") as fid:
135
+ num_cameras = read_next_bytes(fid, 8, "Q")[0]
136
+ for camera_line_index in range(num_cameras):
137
+ camera_properties = read_next_bytes(
138
+ fid, num_bytes=24, format_char_sequence="iiQQ"
139
+ )
140
+ camera_id = camera_properties[0]
141
+ model_id = camera_properties[1]
142
+ model_name = CAMERA_MODEL_IDS[camera_properties[1]].model_name
143
+ width = camera_properties[2]
144
+ height = camera_properties[3]
145
+ num_params = CAMERA_MODEL_IDS[model_id].num_params
146
+ params = read_next_bytes(
147
+ fid, num_bytes=8 * num_params, format_char_sequence="d" * num_params
148
+ )
149
+ cameras[camera_id] = Camera(
150
+ id=camera_id,
151
+ model=model_name,
152
+ width=width,
153
+ height=height,
154
+ params=np.array(params),
155
+ )
156
+ assert len(cameras) == num_cameras
157
+ return cameras
158
+
159
+
160
+ def read_images_text(path: Union[str, Path]) -> Dict[int, Image]:
161
+ """
162
+ see: src/base/reconstruction.cc
163
+ void Reconstruction::ReadImagesText(const std::string& path)
164
+ void Reconstruction::WriteImagesText(const std::string& path)
165
+ """
166
+ images = {}
167
+ with open(path, "r") as fid:
168
+ while True:
169
+ line = fid.readline()
170
+ if not line:
171
+ break
172
+ line = line.strip()
173
+ if len(line) > 0 and line[0] != "#":
174
+ elems = line.split()
175
+ image_id = int(elems[0])
176
+ qvec = np.array(tuple(map(float, elems[1:5])))
177
+ tvec = np.array(tuple(map(float, elems[5:8])))
178
+ camera_id = int(elems[8])
179
+ image_name = elems[9]
180
+ elems = fid.readline().split()
181
+ xys = np.column_stack(
182
+ [tuple(map(float, elems[0::3])), tuple(map(float, elems[1::3]))]
183
+ )
184
+ point3D_ids = np.array(tuple(map(int, elems[2::3])))
185
+ images[image_id] = Image(
186
+ id=image_id,
187
+ qvec=qvec,
188
+ tvec=tvec,
189
+ camera_id=camera_id,
190
+ name=image_name,
191
+ xys=xys,
192
+ point3D_ids=point3D_ids,
193
+ )
194
+ return images
195
+
196
+
197
+ def read_images_binary(path_to_model_file: Union[str, Path]) -> Dict[int, Image]:
198
+ """
199
+ see: src/base/reconstruction.cc
200
+ void Reconstruction::ReadImagesBinary(const std::string& path)
201
+ void Reconstruction::WriteImagesBinary(const std::string& path)
202
+ """
203
+ images = {}
204
+ with open(path_to_model_file, "rb") as fid:
205
+ num_reg_images = read_next_bytes(fid, 8, "Q")[0]
206
+ for image_index in range(num_reg_images):
207
+ binary_image_properties = read_next_bytes(
208
+ fid, num_bytes=64, format_char_sequence="idddddddi"
209
+ )
210
+ image_id = binary_image_properties[0]
211
+ qvec = np.array(binary_image_properties[1:5])
212
+ tvec = np.array(binary_image_properties[5:8])
213
+ camera_id = binary_image_properties[8]
214
+ image_name = ""
215
+ current_char = read_next_bytes(fid, 1, "c")[0]
216
+ while current_char != b"\x00": # look for the ASCII 0 entry
217
+ image_name += current_char.decode("utf-8")
218
+ current_char = read_next_bytes(fid, 1, "c")[0]
219
+ num_points2D = read_next_bytes(fid, num_bytes=8, format_char_sequence="Q")[
220
+ 0
221
+ ]
222
+ x_y_id_s = read_next_bytes(
223
+ fid,
224
+ num_bytes=24 * num_points2D,
225
+ format_char_sequence="ddq" * num_points2D,
226
+ )
227
+ xys = np.column_stack(
228
+ [tuple(map(float, x_y_id_s[0::3])), tuple(map(float, x_y_id_s[1::3]))]
229
+ )
230
+ point3D_ids = np.array(tuple(map(int, x_y_id_s[2::3])))
231
+ images[image_id] = Image(
232
+ id=image_id,
233
+ qvec=qvec,
234
+ tvec=tvec,
235
+ camera_id=camera_id,
236
+ name=image_name,
237
+ xys=xys,
238
+ point3D_ids=point3D_ids,
239
+ )
240
+ return images
241
+
242
+
243
+ def read_points3D_text(path: Union[str, Path]):
244
+ """
245
+ see: src/base/reconstruction.cc
246
+ void Reconstruction::ReadPoints3DText(const std::string& path)
247
+ void Reconstruction::WritePoints3DText(const std::string& path)
248
+ """
249
+ points3D = {}
250
+ with open(path, "r") as fid:
251
+ while True:
252
+ line = fid.readline()
253
+ if not line:
254
+ break
255
+ line = line.strip()
256
+ if len(line) > 0 and line[0] != "#":
257
+ elems = line.split()
258
+ point3D_id = int(elems[0])
259
+ xyz = np.array(tuple(map(float, elems[1:4])))
260
+ rgb = np.array(tuple(map(int, elems[4:7])))
261
+ error = float(elems[7])
262
+ image_ids = np.array(tuple(map(int, elems[8::2])))
263
+ point2D_idxs = np.array(tuple(map(int, elems[9::2])))
264
+ points3D[point3D_id] = Point3D(
265
+ id=point3D_id,
266
+ xyz=xyz,
267
+ rgb=rgb,
268
+ error=error,
269
+ image_ids=image_ids,
270
+ point2D_idxs=point2D_idxs,
271
+ )
272
+ return points3D
273
+
274
+
275
+ def read_points3d_binary(path_to_model_file: Union[str, Path]) -> Dict[int, Point3D]:
276
+ """
277
+ see: src/base/reconstruction.cc
278
+ void Reconstruction::ReadPoints3DBinary(const std::string& path)
279
+ void Reconstruction::WritePoints3DBinary(const std::string& path)
280
+ """
281
+ points3D = {}
282
+ with open(path_to_model_file, "rb") as fid:
283
+ num_points = read_next_bytes(fid, 8, "Q")[0]
284
+ for point_line_index in range(num_points):
285
+ binary_point_line_properties = read_next_bytes(
286
+ fid, num_bytes=43, format_char_sequence="QdddBBBd"
287
+ )
288
+ point3D_id = binary_point_line_properties[0]
289
+ xyz = np.array(binary_point_line_properties[1:4])
290
+ rgb = np.array(binary_point_line_properties[4:7])
291
+ error = np.array(binary_point_line_properties[7])
292
+ track_length = read_next_bytes(fid, num_bytes=8, format_char_sequence="Q")[
293
+ 0
294
+ ]
295
+ track_elems = read_next_bytes(
296
+ fid,
297
+ num_bytes=8 * track_length,
298
+ format_char_sequence="ii" * track_length,
299
+ )
300
+ image_ids = np.array(tuple(map(int, track_elems[0::2])))
301
+ point2D_idxs = np.array(tuple(map(int, track_elems[1::2])))
302
+ points3D[point3D_id] = Point3D(
303
+ id=point3D_id,
304
+ xyz=xyz,
305
+ rgb=rgb,
306
+ error=error,
307
+ image_ids=image_ids,
308
+ point2D_idxs=point2D_idxs,
309
+ )
310
+ return points3D
311
+
312
+
313
+ def qvec2rotmat(qvec):
314
+ return np.array(
315
+ [
316
+ [
317
+ 1 - 2 * qvec[2] ** 2 - 2 * qvec[3] ** 2,
318
+ 2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3],
319
+ 2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2],
320
+ ],
321
+ [
322
+ 2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3],
323
+ 1 - 2 * qvec[1] ** 2 - 2 * qvec[3] ** 2,
324
+ 2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1],
325
+ ],
326
+ [
327
+ 2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2],
328
+ 2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1],
329
+ 1 - 2 * qvec[1] ** 2 - 2 * qvec[2] ** 2,
330
+ ],
331
+ ]
332
+ )
333
+
334
+
335
+ def get_intrinsics_extrinsics(img, cameras):
336
+ # world to cam transformation
337
+ R = qvec2rotmat(img.qvec)
338
+ # translation
339
+ t = img.tvec
340
+ cam = cameras[img.camera_id]
341
+
342
+ if cam.model in ("SIMPLE_PINHOLE", "SIMPLE_RADIAL", "RADIAL"):
343
+ fx = fy = cam.params[0]
344
+ cx = cam.params[1]
345
+ cy = cam.params[2]
346
+ elif cam.model in (
347
+ "PINHOLE",
348
+ "OPENCV",
349
+ "OPENCV_FISHEYE",
350
+ "FULL_OPENCV",
351
+ ):
352
+ fx = cam.params[0]
353
+ fy = cam.params[1]
354
+ cx = cam.params[2]
355
+ cy = cam.params[3]
356
+ else:
357
+ raise Exception("Camera model not supported")
358
+
359
+ # intrinsics
360
+ K = np.identity(4)
361
+ K[0, 0] = fx
362
+ K[1, 1] = fy
363
+ K[0, 2] = cx
364
+ K[1, 2] = cy
365
+
366
+ extrinsics = np.eye(4)
367
+ extrinsics[:3, :3] = R
368
+ extrinsics[:3, 3] = t
369
+ return K, extrinsics
Davis_out/hike/code/2024-10-27-121029/flow3d/data/iphone_dataset.py ADDED
@@ -0,0 +1,865 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import os.path as osp
4
+ from dataclasses import dataclass
5
+ from glob import glob
6
+ from itertools import product
7
+ from typing import Literal
8
+
9
+ import imageio.v3 as iio
10
+ import numpy as np
11
+ import roma
12
+ import torch
13
+ import torch.nn.functional as F
14
+ import tyro
15
+ from loguru import logger as guru
16
+ from torch.utils.data import Dataset
17
+ from tqdm import tqdm
18
+
19
+ from flow3d.data.base_dataset import BaseDataset
20
+ from flow3d.data.colmap import get_colmap_camera_params
21
+ from flow3d.data.utils import (
22
+ SceneNormDict,
23
+ masked_median_blur,
24
+ normal_from_depth_image,
25
+ normalize_coords,
26
+ parse_tapir_track_info,
27
+ )
28
+ from flow3d.transforms import rt_to_mat4
29
+
30
+
31
+ @dataclass
32
+ class iPhoneDataConfig:
33
+ data_dir: str
34
+ start: int = 0
35
+ end: int = -1
36
+ split: Literal["train", "val"] = "train"
37
+ depth_type: Literal[
38
+ "midas",
39
+ "depth_anything",
40
+ "lidar",
41
+ "depth_anything_colmap",
42
+ "depth_crafter_colmap",
43
+ ] = "depth_anything_colmap"
44
+ camera_type: Literal["original", "refined"] = "refined"
45
+ use_median_filter: bool = False
46
+ num_targets_per_frame: int = 4
47
+ scene_norm_dict: tyro.conf.Suppress[SceneNormDict | None] = None
48
+ load_from_cache: bool = False
49
+ skip_load_imgs: bool = False
50
+
51
+
52
+ @dataclass
53
+ class iPhoneDataConfig_Crafter:
54
+ data_dir: str
55
+ start: int = 0
56
+ end: int = -1
57
+ split: Literal["train", "val"] = "train"
58
+ depth_type: Literal[
59
+ "midas",
60
+ "depth_anything",
61
+ "lidar",
62
+ "depth_anything_colmap",
63
+ "depth_crafter_colmap",
64
+ ] = "depth_crafter_colmap"
65
+ camera_type: Literal["original", "refined"] = "refined"
66
+ use_median_filter: bool = False
67
+ num_targets_per_frame: int = 4
68
+ scene_norm_dict: tyro.conf.Suppress[SceneNormDict | None] = None
69
+ load_from_cache: bool = False
70
+ skip_load_imgs: bool = False
71
+
72
+
73
+ class iPhoneDataset(BaseDataset):
74
+ def __init__(
75
+ self,
76
+ data_dir: str,
77
+ start: int = 0,
78
+ end: int = -1,
79
+ factor: int = 1,
80
+ split: Literal["train", "val"] = "train",
81
+ depth_type: Literal[
82
+ "midas",
83
+ "depth_anything",
84
+ "lidar",
85
+ "depth_anything_colmap",
86
+ "depth_crafter_colmap",
87
+ ] = "depth_crafter_colmap",
88
+ camera_type: Literal["original", "refined"] = "refined",
89
+ use_median_filter: bool = False,
90
+ num_targets_per_frame: int = 1,
91
+ scene_norm_dict: SceneNormDict | None = None,
92
+ load_from_cache: bool = False,
93
+ skip_load_imgs: bool = False,
94
+ **_,
95
+ ):
96
+ super().__init__()
97
+
98
+ self.data_dir = data_dir
99
+ self.training = split == "train"
100
+ self.split = split
101
+ self.factor = factor
102
+ self.start = start
103
+ self.end = end
104
+ self.depth_type = depth_type
105
+ self.camera_type = camera_type
106
+ self.use_median_filter = use_median_filter
107
+ self.num_targets_per_frame = num_targets_per_frame
108
+ self.scene_norm_dict = scene_norm_dict
109
+ self.load_from_cache = load_from_cache
110
+ self.cache_dir = osp.join(data_dir, "flow3d_preprocessed", "cache")
111
+ os.makedirs(self.cache_dir, exist_ok=True)
112
+
113
+ print("!!!!depth_type!!!", depth_type)
114
+
115
+ # Test if the current data has validation set.
116
+ with open(osp.join(data_dir, "splits", "val.json")) as f:
117
+ split_dict = json.load(f)
118
+ self.has_validation = len(split_dict["frame_names"]) > 0
119
+
120
+ # Load metadata.
121
+ with open(osp.join(data_dir, "splits", f"{split}.json")) as f:
122
+ split_dict = json.load(f)
123
+ full_len = len(split_dict["frame_names"])
124
+ end = min(end, full_len) if end > 0 else full_len
125
+ self.end = end
126
+ self.frame_names = split_dict["frame_names"][start:end]
127
+ time_ids = [t for t in split_dict["time_ids"] if t >= start and t < end]
128
+ self.time_ids = torch.tensor(time_ids) - start
129
+ guru.info(f"{self.time_ids.min()=} {self.time_ids.max()=}")
130
+ # with open(osp.join(data_dir, "dataset.json")) as f:
131
+ # dataset_dict = json.load(f)
132
+ # self.num_frames = dataset_dict["num_exemplars"]
133
+ guru.info(f"{self.num_frames=}")
134
+ with open(osp.join(data_dir, "extra.json")) as f:
135
+ extra_dict = json.load(f)
136
+ self.fps = float(extra_dict["fps"])
137
+
138
+ # Load cameras.
139
+ if self.camera_type == "original":
140
+ Ks, w2cs = [], []
141
+ for frame_name in self.frame_names:
142
+ with open(osp.join(data_dir, "camera", f"{frame_name}.json")) as f:
143
+ camera_dict = json.load(f)
144
+ focal_length = camera_dict["focal_length"]
145
+ principal_point = camera_dict["principal_point"]
146
+ Ks.append(
147
+ [
148
+ [focal_length, 0.0, principal_point[0]],
149
+ [0.0, focal_length, principal_point[1]],
150
+ [0.0, 0.0, 1.0],
151
+ ]
152
+ )
153
+ orientation = np.array(camera_dict["orientation"])
154
+ position = np.array(camera_dict["position"])
155
+ w2cs.append(
156
+ np.block(
157
+ [
158
+ [orientation, -orientation @ position[:, None]],
159
+ [np.zeros((1, 3)), np.ones((1, 1))],
160
+ ]
161
+ ).astype(np.float32)
162
+ )
163
+ self.Ks = torch.tensor(Ks)
164
+ self.Ks[:, :2] /= factor
165
+ self.w2cs = torch.from_numpy(np.array(w2cs))
166
+ elif self.camera_type == "refined":
167
+ Ks, w2cs = get_colmap_camera_params(
168
+ osp.join(data_dir, "flow3d_preprocessed/colmap/sparse/"),
169
+ [frame_name + ".png" for frame_name in self.frame_names],
170
+ )
171
+ self.Ks = torch.from_numpy(Ks[:, :3, :3].astype(np.float32))
172
+ self.Ks[:, :2] /= factor
173
+ self.w2cs = torch.from_numpy(w2cs.astype(np.float32))
174
+ if not skip_load_imgs:
175
+ # Load images.
176
+ imgs = torch.from_numpy(
177
+ np.array(
178
+ [
179
+ iio.imread(
180
+ osp.join(self.data_dir, f"rgb/{factor}x/{frame_name}.png")
181
+ )
182
+ for frame_name in tqdm(
183
+ self.frame_names,
184
+ desc=f"Loading {self.split} images",
185
+ leave=False,
186
+ )
187
+ ],
188
+ )
189
+ )
190
+ self.imgs = imgs[..., :3] / 255.0
191
+ self.valid_masks = imgs[..., 3] / 255.0
192
+ # Load masks.
193
+ self.masks = (
194
+ torch.from_numpy(
195
+ np.array(
196
+ [
197
+ iio.imread(
198
+ osp.join(
199
+ self.data_dir,
200
+ "flow3d_preprocessed/track_anything/",
201
+ f"{factor}x/{frame_name}.png",
202
+ )
203
+ )
204
+ for frame_name in tqdm(
205
+ self.frame_names,
206
+ desc=f"Loading {self.split} masks",
207
+ leave=False,
208
+ )
209
+ ],
210
+ )
211
+ )
212
+ / 255.0
213
+ )
214
+ if self.training:
215
+ # Load depths.
216
+ def load_depth(frame_name):
217
+ if self.depth_type == "lidar":
218
+ depth = np.load(
219
+ osp.join(
220
+ self.data_dir,
221
+ f"depth/{factor}x/{frame_name}.npy",
222
+ )
223
+ )[..., 0]
224
+ else:
225
+ depth = np.load(
226
+ osp.join(
227
+ self.data_dir,
228
+ # f"flow3d_preprocessed/aligned_{self.depth_type}_allrect/",
229
+ # TODO: 1023
230
+ f"flow3d_preprocessed/aligned_{self.depth_type}/",
231
+ # f"flow3d_preprocessed/noaligned_{self.depth_type}/",
232
+ f"{factor}x/{frame_name}.npy",
233
+ )
234
+ )
235
+ depth[depth < 1e-3] = 1e-3
236
+ depth = 1.0 / depth
237
+ return depth
238
+
239
+ self.depths = torch.from_numpy(
240
+ np.array(
241
+ [
242
+ load_depth(frame_name)
243
+ for frame_name in tqdm(
244
+ self.frame_names,
245
+ desc=f"Loading {self.split} depths",
246
+ leave=False,
247
+ )
248
+ ],
249
+ np.float32,
250
+ )
251
+ )
252
+ max_depth_values_per_frame = self.depths.reshape(
253
+ self.num_frames, -1
254
+ ).max(1)[0]
255
+ max_depth_value = max_depth_values_per_frame.median() * 2.5
256
+ print("max_depth_value", max_depth_value)
257
+ self.depths = torch.clamp(self.depths, 0, max_depth_value)
258
+ # Median filter depths.
259
+ # NOTE(hangg): This operator is very expensive.
260
+ if self.use_median_filter:
261
+ for i in tqdm(
262
+ range(self.num_frames), desc="Processing depths", leave=False
263
+ ):
264
+ depth = masked_median_blur(
265
+ self.depths[[i]].unsqueeze(1).to("cuda"),
266
+ (
267
+ self.masks[[i]]
268
+ * self.valid_masks[[i]]
269
+ * (self.depths[[i]] > 0)
270
+ )
271
+ .unsqueeze(1)
272
+ .to("cuda"),
273
+ )[0, 0].cpu()
274
+ self.depths[i] = depth * self.masks[i] + self.depths[i] * (
275
+ 1 - self.masks[i]
276
+ )
277
+ # Load the query pixels from 2D tracks.
278
+ self.query_tracks_2d = [
279
+ torch.from_numpy(
280
+ np.load(
281
+ osp.join(
282
+ self.data_dir,
283
+ "flow3d_preprocessed/2d_tracks/",
284
+ f"{factor}x/{frame_name}_{frame_name}.npy",
285
+ )
286
+ ).astype(np.float32)
287
+ )
288
+ for frame_name in self.frame_names
289
+ ]
290
+ guru.info(
291
+ f"{len(self.query_tracks_2d)=} {self.query_tracks_2d[0].shape=}"
292
+ )
293
+
294
+ # Load sam features.
295
+ # sam_feat_dir = osp.join(
296
+ # data_dir, f"flow3d_preprocessed/sam_features/{factor}x"
297
+ # )
298
+ # assert osp.exists(sam_feat_dir), f"SAM features not exist!"
299
+ # sam_features, original_size, input_size = load_sam_features(
300
+ # sam_feat_dir, self.frame_names
301
+ # )
302
+ # guru.info(f"{sam_features.shape=} {original_size=} {input_size=}")
303
+ # self.sam_features = sam_features
304
+ # self.sam_original_size = original_size
305
+ # self.sam_input_size = input_size
306
+ else:
307
+ # Load covisible masks.
308
+ self.covisible_masks = (
309
+ torch.from_numpy(
310
+ np.array(
311
+ [
312
+ iio.imread(
313
+ osp.join(
314
+ self.data_dir,
315
+ "flow3d_preprocessed/covisible/",
316
+ f"{factor}x/{split}/{frame_name}.png",
317
+ )
318
+ )
319
+ for frame_name in tqdm(
320
+ self.frame_names,
321
+ desc=f"Loading {self.split} covisible masks",
322
+ leave=False,
323
+ )
324
+ ],
325
+ )
326
+ )
327
+ / 255.0
328
+ )
329
+
330
+ if self.scene_norm_dict is None:
331
+ cached_scene_norm_dict_path = osp.join(
332
+ self.cache_dir, "scene_norm_dict.pth"
333
+ )
334
+ if osp.exists(cached_scene_norm_dict_path) and self.load_from_cache:
335
+ print("loading cached scene norm dict...")
336
+ self.scene_norm_dict = torch.load(
337
+ osp.join(self.cache_dir, "scene_norm_dict.pth")
338
+ )
339
+ elif self.training:
340
+ # Compute the scene scale and transform for normalization.
341
+ # Normalize the scene based on the foreground 3D tracks.
342
+ subsampled_tracks_3d = self.get_tracks_3d(
343
+ num_samples=10000, step=self.num_frames // 10, show_pbar=False
344
+ )[0]
345
+ scene_center = subsampled_tracks_3d.mean((0, 1))
346
+ tracks_3d_centered = subsampled_tracks_3d - scene_center
347
+ min_scale = tracks_3d_centered.quantile(0.05, dim=0)
348
+ max_scale = tracks_3d_centered.quantile(0.95, dim=0)
349
+ scale = torch.max(max_scale - min_scale).item() / 2.0
350
+ original_up = -F.normalize(self.w2cs[:, 1, :3].mean(0), dim=-1)
351
+ target_up = original_up.new_tensor([0.0, 0.0, 1.0])
352
+ R = roma.rotvec_to_rotmat(
353
+ F.normalize(original_up.cross(target_up, dim=-1), dim=-1)
354
+ * original_up.dot(target_up).acos_()
355
+ )
356
+ transfm = rt_to_mat4(R, torch.einsum("ij,j->i", -R, scene_center))
357
+ self.scene_norm_dict = SceneNormDict(scale=scale, transfm=transfm)
358
+ torch.save(self.scene_norm_dict, cached_scene_norm_dict_path)
359
+ else:
360
+ raise ValueError("scene_norm_dict must be provided for validation.")
361
+
362
+ # Normalize the scene.
363
+ scale = self.scene_norm_dict["scale"]
364
+ transfm = self.scene_norm_dict["transfm"]
365
+ self.w2cs = self.w2cs @ torch.linalg.inv(transfm)
366
+ self.w2cs[:, :3, 3] /= scale
367
+ if self.training and not skip_load_imgs:
368
+ self.depths /= scale
369
+
370
+ if not skip_load_imgs:
371
+ guru.info(
372
+ f"{self.imgs.shape=} {self.valid_masks.shape=} {self.masks.shape=}"
373
+ )
374
+
375
+ @property
376
+ def num_frames(self) -> int:
377
+ return len(self.frame_names)
378
+
379
+ def __len__(self):
380
+ return self.imgs.shape[0]
381
+
382
+ def get_w2cs(self) -> torch.Tensor:
383
+ return self.w2cs
384
+
385
+ def get_Ks(self) -> torch.Tensor:
386
+ return self.Ks
387
+
388
+ def get_image(self, index: int) -> torch.Tensor:
389
+ return self.imgs[index]
390
+
391
+ def get_depth(self, index: int) -> torch.Tensor:
392
+ return self.depths[index]
393
+
394
+ def get_masks(self, index: int) -> torch.Tensor:
395
+ return self.masks[index]
396
+
397
+ def get_img_wh(self) -> tuple[int, int]:
398
+ return iio.imread(
399
+ osp.join(self.data_dir, f"rgb/{self.factor}x/{self.frame_names[0]}.png")
400
+ ).shape[1::-1]
401
+
402
+ # def get_sam_features(self) -> list[torch.Tensor, tuple[int, int], tuple[int, int]]:
403
+ # return self.sam_features, self.sam_original_size, self.sam_input_size
404
+
405
+ def get_tracks_3d(
406
+ self, num_samples: int, step: int = 1, show_pbar: bool = True, **kwargs
407
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
408
+ """Get 3D tracks from the dataset.
409
+
410
+ Args:
411
+ num_samples (int | None): The number of samples to fetch. If None,
412
+ fetch all samples. If not None, fetch roughly a same number of
413
+ samples across each frame. Note that this might result in
414
+ number of samples less than what is specified.
415
+ step (int): The step to temporally subsample the track.
416
+ """
417
+ assert (
418
+ self.split == "train"
419
+ ), "fetch_tracks_3d is only available for the training split."
420
+ cached_track_3d_path = osp.join(self.cache_dir, f"tracks_3d_{num_samples}.pth")
421
+ if osp.exists(cached_track_3d_path) and step == 1 and self.load_from_cache:
422
+ print("loading cached 3d tracks data...")
423
+ start, end = self.start, self.end
424
+ cached_track_3d_data = torch.load(cached_track_3d_path)
425
+ tracks_3d, visibles, invisibles, confidences, track_colors = (
426
+ cached_track_3d_data["tracks_3d"][:, start:end],
427
+ cached_track_3d_data["visibles"][:, start:end],
428
+ cached_track_3d_data["invisibles"][:, start:end],
429
+ cached_track_3d_data["confidences"][:, start:end],
430
+ cached_track_3d_data["track_colors"],
431
+ )
432
+ return tracks_3d, visibles, invisibles, confidences, track_colors
433
+
434
+ # Load 2D tracks.
435
+ raw_tracks_2d = []
436
+ candidate_frames = list(range(0, self.num_frames, step))
437
+ num_sampled_frames = len(candidate_frames)
438
+ for i in (
439
+ tqdm(candidate_frames, desc="Loading 2D tracks", leave=False)
440
+ if show_pbar
441
+ else candidate_frames
442
+ ):
443
+ curr_num_samples = self.query_tracks_2d[i].shape[0]
444
+ num_samples_per_frame = (
445
+ int(np.floor(num_samples / num_sampled_frames))
446
+ if i != candidate_frames[-1]
447
+ else num_samples
448
+ - (num_sampled_frames - 1)
449
+ * int(np.floor(num_samples / num_sampled_frames))
450
+ )
451
+ if num_samples_per_frame < curr_num_samples:
452
+ track_sels = np.random.choice(
453
+ curr_num_samples, (num_samples_per_frame,), replace=False
454
+ )
455
+ else:
456
+ track_sels = np.arange(0, curr_num_samples)
457
+ curr_tracks_2d = []
458
+ for j in range(0, self.num_frames, step):
459
+ if i == j:
460
+ target_tracks_2d = self.query_tracks_2d[i]
461
+ else:
462
+ target_tracks_2d = torch.from_numpy(
463
+ np.load(
464
+ osp.join(
465
+ self.data_dir,
466
+ "flow3d_preprocessed/2d_tracks/",
467
+ f"{self.factor}x/"
468
+ f"{self.frame_names[i]}_"
469
+ f"{self.frame_names[j]}.npy",
470
+ )
471
+ ).astype(np.float32)
472
+ )
473
+ curr_tracks_2d.append(target_tracks_2d[track_sels])
474
+ raw_tracks_2d.append(torch.stack(curr_tracks_2d, dim=1))
475
+ guru.info(f"{step=} {len(raw_tracks_2d)=} {raw_tracks_2d[0].shape=}")
476
+
477
+ # Process 3D tracks.
478
+ inv_Ks = torch.linalg.inv(self.Ks)[::step]
479
+ c2ws = torch.linalg.inv(self.w2cs)[::step]
480
+ H, W = self.imgs.shape[1:3]
481
+ filtered_tracks_3d, filtered_visibles, filtered_track_colors = [], [], []
482
+ filtered_invisibles, filtered_confidences = [], []
483
+ masks = self.masks * self.valid_masks * (self.depths > 0)
484
+ masks = (masks > 0.5).float()
485
+ for i, tracks_2d in enumerate(raw_tracks_2d):
486
+ tracks_2d = tracks_2d.swapdims(0, 1)
487
+ tracks_2d, occs, dists = (
488
+ tracks_2d[..., :2],
489
+ tracks_2d[..., 2],
490
+ tracks_2d[..., 3],
491
+ )
492
+ # visibles = postprocess_occlusions(occs, dists)
493
+ visibles, invisibles, confidences = parse_tapir_track_info(occs, dists)
494
+ # Unproject 2D tracks to 3D.
495
+ track_depths = F.grid_sample(
496
+ self.depths[::step, None],
497
+ normalize_coords(tracks_2d[..., None, :], H, W),
498
+ align_corners=True,
499
+ padding_mode="border",
500
+ )[:, 0]
501
+ tracks_3d = (
502
+ torch.einsum(
503
+ "nij,npj->npi",
504
+ inv_Ks,
505
+ F.pad(tracks_2d, (0, 1), value=1.0),
506
+ )
507
+ * track_depths
508
+ )
509
+ tracks_3d = torch.einsum(
510
+ "nij,npj->npi", c2ws, F.pad(tracks_3d, (0, 1), value=1.0)
511
+ )[..., :3]
512
+ # Filter out out-of-mask tracks.
513
+ is_in_masks = (
514
+ F.grid_sample(
515
+ masks[::step, None],
516
+ normalize_coords(tracks_2d[..., None, :], H, W),
517
+ align_corners=True,
518
+ ).squeeze()
519
+ == 1
520
+ )
521
+ visibles *= is_in_masks
522
+ invisibles *= is_in_masks
523
+ confidences *= is_in_masks.float()
524
+ # Get track's color from the query frame.
525
+ track_colors = (
526
+ F.grid_sample(
527
+ self.imgs[i * step : i * step + 1].permute(0, 3, 1, 2),
528
+ normalize_coords(tracks_2d[i : i + 1, None, :], H, W),
529
+ align_corners=True,
530
+ padding_mode="border",
531
+ )
532
+ .squeeze()
533
+ .T
534
+ )
535
+ # at least visible 5% of the time, otherwise discard
536
+ visible_counts = visibles.sum(0)
537
+ valid = visible_counts >= min(
538
+ int(0.05 * self.num_frames),
539
+ visible_counts.float().quantile(0.1).item(),
540
+ )
541
+
542
+ filtered_tracks_3d.append(tracks_3d[:, valid])
543
+ filtered_visibles.append(visibles[:, valid])
544
+ filtered_invisibles.append(invisibles[:, valid])
545
+ filtered_confidences.append(confidences[:, valid])
546
+ filtered_track_colors.append(track_colors[valid])
547
+
548
+ filtered_tracks_3d = torch.cat(filtered_tracks_3d, dim=1).swapdims(0, 1)
549
+ filtered_visibles = torch.cat(filtered_visibles, dim=1).swapdims(0, 1)
550
+ filtered_invisibles = torch.cat(filtered_invisibles, dim=1).swapdims(0, 1)
551
+ filtered_confidences = torch.cat(filtered_confidences, dim=1).swapdims(0, 1)
552
+ filtered_track_colors = torch.cat(filtered_track_colors, dim=0)
553
+ if step == 1:
554
+ torch.save(
555
+ {
556
+ "tracks_3d": filtered_tracks_3d,
557
+ "visibles": filtered_visibles,
558
+ "invisibles": filtered_invisibles,
559
+ "confidences": filtered_confidences,
560
+ "track_colors": filtered_track_colors,
561
+ },
562
+ cached_track_3d_path,
563
+ )
564
+ return (
565
+ filtered_tracks_3d,
566
+ filtered_visibles,
567
+ filtered_invisibles,
568
+ filtered_confidences,
569
+ filtered_track_colors,
570
+ )
571
+
572
+ def get_bkgd_points(
573
+ self, num_samples: int, **kwargs
574
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
575
+ H, W = self.imgs.shape[1:3]
576
+ grid = torch.stack(
577
+ torch.meshgrid(
578
+ torch.arange(W, dtype=torch.float32),
579
+ torch.arange(H, dtype=torch.float32),
580
+ indexing="xy",
581
+ ),
582
+ dim=-1,
583
+ )
584
+ candidate_frames = list(range(self.num_frames))
585
+ num_sampled_frames = len(candidate_frames)
586
+ bkgd_points, bkgd_point_normals, bkgd_point_colors = [], [], []
587
+ for i in tqdm(candidate_frames, desc="Loading bkgd points", leave=False):
588
+ img = self.imgs[i]
589
+ depth = self.depths[i]
590
+ bool_mask = ((1.0 - self.masks[i]) * self.valid_masks[i] * (depth > 0)).to(
591
+ torch.bool
592
+ )
593
+ w2c = self.w2cs[i]
594
+ K = self.Ks[i]
595
+ points = (
596
+ torch.einsum(
597
+ "ij,pj->pi",
598
+ torch.linalg.inv(K),
599
+ F.pad(grid[bool_mask], (0, 1), value=1.0),
600
+ )
601
+ * depth[bool_mask][:, None]
602
+ )
603
+ points = torch.einsum(
604
+ "ij,pj->pi", torch.linalg.inv(w2c)[:3], F.pad(points, (0, 1), value=1.0)
605
+ )
606
+ point_normals = normal_from_depth_image(depth, K, w2c)[bool_mask]
607
+ point_colors = img[bool_mask]
608
+ curr_num_samples = points.shape[0]
609
+ num_samples_per_frame = (
610
+ int(np.floor(num_samples / num_sampled_frames))
611
+ if i != candidate_frames[-1]
612
+ else num_samples
613
+ - (num_sampled_frames - 1)
614
+ * int(np.floor(num_samples / num_sampled_frames))
615
+ )
616
+ if num_samples_per_frame < curr_num_samples:
617
+ point_sels = np.random.choice(
618
+ curr_num_samples, (num_samples_per_frame,), replace=False
619
+ )
620
+ else:
621
+ point_sels = np.arange(0, curr_num_samples)
622
+ bkgd_points.append(points[point_sels])
623
+ bkgd_point_normals.append(point_normals[point_sels])
624
+ bkgd_point_colors.append(point_colors[point_sels])
625
+ bkgd_points = torch.cat(bkgd_points, dim=0)
626
+ bkgd_point_normals = torch.cat(bkgd_point_normals, dim=0)
627
+ bkgd_point_colors = torch.cat(bkgd_point_colors, dim=0)
628
+ return bkgd_points, bkgd_point_normals, bkgd_point_colors
629
+
630
+ def get_video_dataset(self) -> Dataset:
631
+ return iPhoneDatasetVideoView(self)
632
+
633
+ def __getitem__(self, index: int):
634
+ if self.training:
635
+ index = np.random.randint(0, self.num_frames)
636
+ data = {
637
+ # ().
638
+ "frame_names": self.frame_names[index],
639
+ # ().
640
+ "ts": self.time_ids[index],
641
+ # (4, 4).
642
+ "w2cs": self.w2cs[index],
643
+ # (3, 3).
644
+ "Ks": self.Ks[index],
645
+ # (H, W, 3).
646
+ "imgs": self.imgs[index],
647
+ # (H, W).
648
+ "valid_masks": self.valid_masks[index],
649
+ # (H, W).
650
+ "masks": self.masks[index],
651
+ }
652
+ if self.training:
653
+ # (H, W).
654
+ data["depths"] = self.depths[index]
655
+ # (P, 2).
656
+ data["query_tracks_2d"] = self.query_tracks_2d[index][:, :2]
657
+ target_inds = torch.from_numpy(
658
+ np.random.choice(
659
+ self.num_frames, (self.num_targets_per_frame,), replace=False
660
+ )
661
+ )
662
+ # (N, P, 4).
663
+ target_tracks_2d = torch.stack(
664
+ [
665
+ torch.from_numpy(
666
+ np.load(
667
+ osp.join(
668
+ self.data_dir,
669
+ "flow3d_preprocessed/2d_tracks/",
670
+ f"{self.factor}x/"
671
+ f"{self.frame_names[index]}_"
672
+ f"{self.frame_names[target_index.item()]}.npy",
673
+ )
674
+ ).astype(np.float32)
675
+ )
676
+ for target_index in target_inds
677
+ ],
678
+ dim=0,
679
+ )
680
+ # (N,).
681
+ target_ts = self.time_ids[target_inds]
682
+ data["target_ts"] = target_ts
683
+ # (N, 4, 4).
684
+ data["target_w2cs"] = self.w2cs[target_ts]
685
+ # (N, 3, 3).
686
+ data["target_Ks"] = self.Ks[target_ts]
687
+ # (N, P, 2).
688
+ data["target_tracks_2d"] = target_tracks_2d[..., :2]
689
+ # (N, P).
690
+ (
691
+ data["target_visibles"],
692
+ data["target_invisibles"],
693
+ data["target_confidences"],
694
+ ) = parse_tapir_track_info(
695
+ target_tracks_2d[..., 2], target_tracks_2d[..., 3]
696
+ )
697
+ # (N, P).
698
+ data["target_track_depths"] = F.grid_sample(
699
+ self.depths[target_inds, None],
700
+ normalize_coords(
701
+ target_tracks_2d[..., None, :2],
702
+ self.imgs.shape[1],
703
+ self.imgs.shape[2],
704
+ ),
705
+ align_corners=True,
706
+ padding_mode="border",
707
+ )[:, 0, :, 0]
708
+ else:
709
+ # (H, W).
710
+ data["covisible_masks"] = self.covisible_masks[index]
711
+ return data
712
+
713
+ def preprocess(self, data):
714
+ return data
715
+
716
+
717
+ class iPhoneDatasetKeypointView(Dataset):
718
+ """Return a dataset view of the annotated keypoints."""
719
+
720
+ def __init__(self, dataset: iPhoneDataset):
721
+ super().__init__()
722
+ self.dataset = dataset
723
+ assert self.dataset.split == "train"
724
+ # Load 2D keypoints.
725
+ keypoint_paths = sorted(
726
+ glob(osp.join(self.dataset.data_dir, "keypoint/2x/train/0_*.json"))
727
+ )
728
+ keypoints = []
729
+ for keypoint_path in keypoint_paths:
730
+ with open(keypoint_path) as f:
731
+ keypoints.append(json.load(f))
732
+ time_ids = [
733
+ int(osp.basename(p).split("_")[1].split(".")[0]) for p in keypoint_paths
734
+ ]
735
+ # only use time ids that are in the dataset.
736
+ start = self.dataset.start
737
+ time_ids = [t - start for t in time_ids if t - start in self.dataset.time_ids]
738
+ self.time_ids = torch.tensor(time_ids)
739
+ self.time_pairs = torch.tensor(list(product(self.time_ids, repeat=2)))
740
+ self.index_pairs = torch.tensor(
741
+ list(product(range(len(self.time_ids)), repeat=2))
742
+ )
743
+ self.keypoints = torch.tensor(keypoints, dtype=torch.float32)
744
+ self.keypoints[..., :2] *= 2.0 / self.dataset.factor
745
+
746
+ def __len__(self):
747
+ return len(self.time_pairs)
748
+
749
+ def __getitem__(self, index: int):
750
+ ts = self.time_pairs[index]
751
+ return {
752
+ "ts": ts,
753
+ "w2cs": self.dataset.w2cs[ts],
754
+ "Ks": self.dataset.Ks[ts],
755
+ "imgs": self.dataset.imgs[ts],
756
+ "keypoints": self.keypoints[self.index_pairs[index]],
757
+ }
758
+
759
+
760
+ class iPhoneDatasetVideoView(Dataset):
761
+ """Return a dataset view of the video trajectory."""
762
+
763
+ def __init__(self, dataset: iPhoneDataset):
764
+ super().__init__()
765
+ self.dataset = dataset
766
+ self.fps = self.dataset.fps
767
+ assert self.dataset.split == "train"
768
+
769
+ def __len__(self):
770
+ return self.dataset.num_frames
771
+
772
+ def __getitem__(self, index):
773
+ return {
774
+ "frame_names": self.dataset.frame_names[index],
775
+ "ts": index,
776
+ "w2cs": self.dataset.w2cs[index],
777
+ "Ks": self.dataset.Ks[index],
778
+ "imgs": self.dataset.imgs[index],
779
+ "depths": self.dataset.depths[index],
780
+ "masks": self.dataset.masks[index],
781
+ }
782
+
783
+
784
+ """
785
+ class iPhoneDataModule(BaseDataModule[iPhoneDataset]):
786
+ def __init__(
787
+ self,
788
+ data_dir: str,
789
+ factor: int = 1,
790
+ start: int = 0,
791
+ end: int = -1,
792
+ depth_type: Literal[
793
+ "midas",
794
+ "depth_anything",
795
+ "lidar",
796
+ "depth_anything_colmap",
797
+ ] = "depth_anything_colmap",
798
+ camera_type: Literal["original", "refined"] = "refined",
799
+ use_median_filter: bool = False,
800
+ num_targets_per_frame: int = 1,
801
+ load_from_cache: bool = False,
802
+ **kwargs,
803
+ ):
804
+ super().__init__(dataset_cls=iPhoneDataset, **kwargs)
805
+ self.data_dir = data_dir
806
+ self.start = start
807
+ self.end = end
808
+ self.factor = factor
809
+ self.depth_type = depth_type
810
+ self.camera_type = camera_type
811
+ self.use_median_filter = use_median_filter
812
+ self.num_targets_per_frame = num_targets_per_frame
813
+ self.load_from_cache = load_from_cache
814
+
815
+ self.val_loader_tasks = ["img", "keypoint"]
816
+
817
+ def setup(self, *_, **__) -> None:
818
+ guru.info("Loading train dataset...")
819
+ self.train_dataset = self.dataset_cls(
820
+ data_dir=self.data_dir,
821
+ training=True,
822
+ split="train",
823
+ start=self.start,
824
+ end=self.end,
825
+ factor=self.factor,
826
+ depth_type=self.depth_type, # type: ignore
827
+ camera_type=self.camera_type, # type: ignore
828
+ use_median_filter=self.use_median_filter,
829
+ num_targets_per_frame=self.num_targets_per_frame,
830
+ max_steps=self.max_steps * self.batch_size,
831
+ load_from_cache=self.load_from_cache,
832
+ )
833
+ if self.train_dataset.has_validation:
834
+ guru.info("Loading val dataset...")
835
+ self.val_dataset = self.dataset_cls(
836
+ data_dir=self.data_dir,
837
+ training=False,
838
+ split="val",
839
+ start=self.start,
840
+ end=self.end,
841
+ factor=self.factor,
842
+ depth_type=self.depth_type, # type: ignore
843
+ camera_type=self.camera_type, # type: ignore
844
+ use_median_filter=self.use_median_filter,
845
+ scene_norm_dict=self.train_dataset.scene_norm_dict,
846
+ load_from_cache=self.load_from_cache,
847
+ )
848
+ else:
849
+ # Dummy validation set.
850
+ self.val_dataset = TensorDataset(torch.zeros(0)) # type: ignore
851
+ self.keypoint_dataset = iPhoneDatasetKeypointView(self.train_dataset)
852
+ self.video_dataset = self.train_dataset.get_video_dataset()
853
+ guru.success("Loading finished!")
854
+
855
+ def train_dataloader(self) -> DataLoader:
856
+ return DataLoader(
857
+ self.train_dataset,
858
+ batch_size=self.batch_size,
859
+ num_workers=self.num_workers,
860
+ collate_fn=iPhoneDataset.train_collate_fn,
861
+ )
862
+
863
+ def val_dataloader(self) -> list[DataLoader]:
864
+ return [DataLoader(self.val_dataset), DataLoader(self.keypoint_dataset)]
865
+ """
Davis_out/hike/code/2024-10-27-121029/flow3d/data/utils.py ADDED
@@ -0,0 +1,360 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional, Tuple, TypedDict
2
+
3
+ import numpy as np
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ from torch.nn.modules.utils import _pair, _quadruple
8
+
9
+ UINT16_MAX = 65535
10
+
11
+
12
+ class SceneNormDict(TypedDict):
13
+ scale: float
14
+ transfm: torch.Tensor
15
+
16
+
17
+ def to_device(batch, device):
18
+ if isinstance(batch, dict):
19
+ return {k: to_device(v, device) for k, v in batch.items()}
20
+ if isinstance(batch, (list, tuple)):
21
+ return [to_device(v, device) for v in batch]
22
+ if isinstance(batch, torch.Tensor):
23
+ return batch.to(device)
24
+ return batch
25
+
26
+
27
+ def normalize_coords(coords, h, w):
28
+ assert coords.shape[-1] == 2
29
+ return coords / torch.tensor([w - 1.0, h - 1.0], device=coords.device) * 2 - 1.0
30
+
31
+
32
+ def postprocess_occlusions(occlusions, expected_dist):
33
+ """Postprocess occlusions to boolean visible flag.
34
+
35
+ Args:
36
+ occlusions: [-inf, inf], np.float32
37
+ expected_dist:, [-inf, inf], np.float32
38
+
39
+ Returns:
40
+ visibles: bool
41
+ """
42
+
43
+ def sigmoid(x):
44
+ if x.dtype == np.ndarray:
45
+ return 1 / (1 + np.exp(-x))
46
+ else:
47
+ return torch.sigmoid(x)
48
+
49
+ visibles = (1 - sigmoid(occlusions)) * (1 - sigmoid(expected_dist)) > 0.5
50
+ return visibles
51
+
52
+
53
+ def parse_tapir_track_info(occlusions, expected_dist):
54
+ """
55
+ return:
56
+ valid_visible: mask of visible & confident points
57
+ valid_invisible: mask of invisible & confident points
58
+ confidence: clamped confidence scores (all < 0.5 -> 0)
59
+ """
60
+ visiblility = 1 - F.sigmoid(occlusions)
61
+ confidence = 1 - F.sigmoid(expected_dist)
62
+ valid_visible = visiblility * confidence > 0.5
63
+ valid_invisible = (1 - visiblility) * confidence > 0.5
64
+ # set all confidence < 0.5 to 0
65
+ confidence = confidence * (valid_visible | valid_invisible).float()
66
+ return valid_visible, valid_invisible, confidence
67
+
68
+
69
+ def get_tracks_3d_for_query_frame(
70
+ query_index: int,
71
+ query_img: torch.Tensor,
72
+ tracks_2d: torch.Tensor,
73
+ depths: torch.Tensor,
74
+ masks: torch.Tensor,
75
+ inv_Ks: torch.Tensor,
76
+ c2ws: torch.Tensor,
77
+ ):
78
+ """
79
+ :param query_index (int)
80
+ :param query_img [H, W, 3]
81
+ :param tracks_2d [N, T, 4]
82
+ :param depths [T, H, W]
83
+ :param masks [T, H, W]
84
+ :param inv_Ks [T, 3, 3]
85
+ :param c2ws [T, 4, 4]
86
+ returns (
87
+ tracks_3d [N, T, 3]
88
+ track_colors [N, 3]
89
+ visibles [N, T]
90
+ invisibles [N, T]
91
+ confidences [N, T]
92
+ )
93
+ """
94
+ T, H, W = depths.shape
95
+ query_img = query_img[None].permute(0, 3, 1, 2) # (1, 3, H, W)
96
+ tracks_2d = tracks_2d.swapaxes(0, 1) # (T, N, 4)
97
+ tracks_2d, occs, dists = (
98
+ tracks_2d[..., :2],
99
+ tracks_2d[..., 2],
100
+ tracks_2d[..., 3],
101
+ )
102
+ # visibles = postprocess_occlusions(occs, dists)
103
+ # (T, N), (T, N), (T, N)
104
+ visibles, invisibles, confidences = parse_tapir_track_info(occs, dists)
105
+ # Unproject 2D tracks to 3D.
106
+ # (T, 1, H, W), (T, 1, N, 2) -> (T, 1, 1, N)
107
+ track_depths = F.grid_sample(
108
+ depths[:, None],
109
+ normalize_coords(tracks_2d[:, None], H, W),
110
+ align_corners=True,
111
+ padding_mode="border",
112
+ )[:, 0, 0]
113
+ tracks_3d = (
114
+ torch.einsum(
115
+ "nij,npj->npi",
116
+ inv_Ks,
117
+ F.pad(tracks_2d, (0, 1), value=1.0),
118
+ )
119
+ * track_depths[..., None]
120
+ )
121
+ tracks_3d = torch.einsum("nij,npj->npi", c2ws, F.pad(tracks_3d, (0, 1), value=1.0))[
122
+ ..., :3
123
+ ]
124
+ # Filter out out-of-mask tracks.
125
+ # (T, 1, H, W), (T, 1, N, 2) -> (T, 1, 1, N)
126
+ is_in_masks = (
127
+ F.grid_sample(
128
+ masks[:, None],
129
+ normalize_coords(tracks_2d[:, None], H, W),
130
+ align_corners=True,
131
+ )[:, 0, 0]
132
+ == 1
133
+ )
134
+ visibles *= is_in_masks
135
+ invisibles *= is_in_masks
136
+ confidences *= is_in_masks.float()
137
+
138
+ # valid if in the fg mask at least 40% of the time
139
+ # in_mask_counts = is_in_masks.sum(0)
140
+ # t = 0.25
141
+ # thresh = min(t * T, in_mask_counts.float().quantile(t).item())
142
+ # valid = in_mask_counts > thresh
143
+ valid = is_in_masks[query_index]
144
+ # valid if visible 5% of the time
145
+ visible_counts = visibles.sum(0)
146
+ valid = valid & (
147
+ visible_counts
148
+ >= min(
149
+ int(0.05 * T),
150
+ visible_counts.float().quantile(0.1).item(),
151
+ )
152
+ )
153
+
154
+ # Get track's color from the query frame.
155
+ # (1, 3, H, W), (1, 1, N, 2) -> (1, 3, 1, N) -> (N, 3)
156
+ track_colors = F.grid_sample(
157
+ query_img,
158
+ normalize_coords(tracks_2d[query_index : query_index + 1, None], H, W),
159
+ align_corners=True,
160
+ padding_mode="border",
161
+ )[0, :, 0].T
162
+ return (
163
+ tracks_3d[:, valid].swapdims(0, 1),
164
+ track_colors[valid],
165
+ visibles[:, valid].swapdims(0, 1),
166
+ invisibles[:, valid].swapdims(0, 1),
167
+ confidences[:, valid].swapdims(0, 1),
168
+ )
169
+
170
+
171
+ def _get_padding(x, k, stride, padding, same: bool):
172
+ if same:
173
+ ih, iw = x.size()[2:]
174
+ if ih % stride[0] == 0:
175
+ ph = max(k[0] - stride[0], 0)
176
+ else:
177
+ ph = max(k[0] - (ih % stride[0]), 0)
178
+ if iw % stride[1] == 0:
179
+ pw = max(k[1] - stride[1], 0)
180
+ else:
181
+ pw = max(k[1] - (iw % stride[1]), 0)
182
+ pl = pw // 2
183
+ pr = pw - pl
184
+ pt = ph // 2
185
+ pb = ph - pt
186
+ padding = (pl, pr, pt, pb)
187
+ else:
188
+ padding = padding
189
+ return padding
190
+
191
+
192
+ def median_filter_2d(x, kernel_size=3, stride=1, padding=1, same: bool = True):
193
+ """
194
+ :param x [B, C, H, W]
195
+ """
196
+ k = _pair(kernel_size)
197
+ stride = _pair(stride) # convert to tuple
198
+ padding = _quadruple(padding) # convert to l, r, t, b
199
+ # using existing pytorch functions and tensor ops so that we get autograd,
200
+ # would likely be more efficient to implement from scratch at C/Cuda level
201
+ x = F.pad(x, _get_padding(x, k, stride, padding, same), mode="reflect")
202
+ x = x.unfold(2, k[0], stride[0]).unfold(3, k[1], stride[1])
203
+ x = x.contiguous().view(x.size()[:4] + (-1,)).median(dim=-1)[0]
204
+ return x
205
+
206
+
207
+ def masked_median_blur(image, mask, kernel_size=11):
208
+ """
209
+ Args:
210
+ image: [B, C, H, W]
211
+ mask: [B, C, H, W]
212
+ kernel_size: int
213
+ """
214
+ assert image.shape == mask.shape
215
+ if not isinstance(image, torch.Tensor):
216
+ raise TypeError(f"Input type is not a torch.Tensor. Got {type(image)}")
217
+
218
+ if not len(image.shape) == 4:
219
+ raise ValueError(f"Invalid input shape, we expect BxCxHxW. Got: {image.shape}")
220
+
221
+ padding: Tuple[int, int] = _compute_zero_padding((kernel_size, kernel_size))
222
+
223
+ # prepare kernel
224
+ kernel: torch.Tensor = get_binary_kernel2d((kernel_size, kernel_size)).to(image)
225
+ b, c, h, w = image.shape
226
+
227
+ # map the local window to single vector
228
+ features: torch.Tensor = F.conv2d(
229
+ image.reshape(b * c, 1, h, w), kernel, padding=padding, stride=1
230
+ )
231
+ masks: torch.Tensor = F.conv2d(
232
+ mask.reshape(b * c, 1, h, w), kernel, padding=padding, stride=1
233
+ )
234
+ features = features.view(b, c, -1, h, w).permute(
235
+ 0, 1, 3, 4, 2
236
+ ) # BxCxxHxWx(K_h * K_w)
237
+ min_value, max_value = features.min(), features.max()
238
+ masks = masks.view(b, c, -1, h, w).permute(0, 1, 3, 4, 2) # BxCxHxWx(K_h * K_w)
239
+ index_invalid = (1 - masks).nonzero(as_tuple=True)
240
+ index_b, index_c, index_h, index_w, index_k = index_invalid
241
+ features[(index_b[::2], index_c[::2], index_h[::2], index_w[::2], index_k[::2])] = (
242
+ min_value
243
+ )
244
+ features[
245
+ (index_b[1::2], index_c[1::2], index_h[1::2], index_w[1::2], index_k[1::2])
246
+ ] = max_value
247
+ # compute the median along the feature axis
248
+ median: torch.Tensor = torch.median(features, dim=-1)[0]
249
+
250
+ return median
251
+
252
+
253
+ def _compute_zero_padding(kernel_size: Tuple[int, int]) -> Tuple[int, int]:
254
+ r"""Utility function that computes zero padding tuple."""
255
+ computed: List[int] = [(k - 1) // 2 for k in kernel_size]
256
+ return computed[0], computed[1]
257
+
258
+
259
+ def get_binary_kernel2d(
260
+ window_size: tuple[int, int] | int,
261
+ *,
262
+ device: Optional[torch.device] = None,
263
+ dtype: torch.dtype = torch.float32,
264
+ ) -> torch.Tensor:
265
+ """
266
+ from kornia
267
+ Create a binary kernel to extract the patches.
268
+ If the window size is HxW will create a (H*W)x1xHxW kernel.
269
+ """
270
+ ky, kx = _unpack_2d_ks(window_size)
271
+
272
+ window_range = kx * ky
273
+
274
+ kernel = torch.zeros((window_range, window_range), device=device, dtype=dtype)
275
+ idx = torch.arange(window_range, device=device)
276
+ kernel[idx, idx] += 1.0
277
+ return kernel.view(window_range, 1, ky, kx)
278
+
279
+
280
+ def _unpack_2d_ks(kernel_size: tuple[int, int] | int) -> tuple[int, int]:
281
+ if isinstance(kernel_size, int):
282
+ ky = kx = kernel_size
283
+ else:
284
+ assert len(kernel_size) == 2, "2D Kernel size should have a length of 2."
285
+ ky, kx = kernel_size
286
+
287
+ ky = int(ky)
288
+ kx = int(kx)
289
+
290
+ return (ky, kx)
291
+
292
+
293
+ ## Functions from GaussianShader.
294
+ def ndc_2_cam(ndc_xyz, intrinsic, W, H):
295
+ inv_scale = torch.tensor([[W - 1, H - 1]], device=ndc_xyz.device)
296
+ cam_z = ndc_xyz[..., 2:3]
297
+ cam_xy = ndc_xyz[..., :2] * inv_scale * cam_z
298
+ cam_xyz = torch.cat([cam_xy, cam_z], dim=-1)
299
+ cam_xyz = cam_xyz @ torch.inverse(intrinsic[0, ...].t())
300
+ return cam_xyz
301
+
302
+
303
+ def depth2point_cam(sampled_depth, ref_intrinsic):
304
+ B, N, C, H, W = sampled_depth.shape
305
+ valid_z = sampled_depth
306
+ valid_x = torch.arange(W, dtype=torch.float32, device=sampled_depth.device) / (
307
+ W - 1
308
+ )
309
+ valid_y = torch.arange(H, dtype=torch.float32, device=sampled_depth.device) / (
310
+ H - 1
311
+ )
312
+ valid_y, valid_x = torch.meshgrid(valid_y, valid_x, indexing="ij")
313
+ # B,N,H,W
314
+ valid_x = valid_x[None, None, None, ...].expand(B, N, C, -1, -1)
315
+ valid_y = valid_y[None, None, None, ...].expand(B, N, C, -1, -1)
316
+ ndc_xyz = torch.stack([valid_x, valid_y, valid_z], dim=-1).view(
317
+ B, N, C, H, W, 3
318
+ ) # 1, 1, 5, 512, 640, 3
319
+ cam_xyz = ndc_2_cam(ndc_xyz, ref_intrinsic, W, H) # 1, 1, 5, 512, 640, 3
320
+ return ndc_xyz, cam_xyz
321
+
322
+
323
+ def depth2point_world(depth_image, intrinsic_matrix, extrinsic_matrix):
324
+ # depth_image: (H, W), intrinsic_matrix: (3, 3), extrinsic_matrix: (4, 4)
325
+ _, xyz_cam = depth2point_cam(
326
+ depth_image[None, None, None, ...], intrinsic_matrix[None, ...]
327
+ )
328
+ xyz_cam = xyz_cam.reshape(-1, 3)
329
+ xyz_world = torch.cat(
330
+ [xyz_cam, torch.ones_like(xyz_cam[..., 0:1])], dim=-1
331
+ ) @ torch.inverse(extrinsic_matrix).transpose(0, 1)
332
+ xyz_world = xyz_world[..., :3]
333
+
334
+ return xyz_world
335
+
336
+
337
+ def depth_pcd2normal(xyz):
338
+ hd, wd, _ = xyz.shape
339
+ bottom_point = xyz[..., 2:hd, 1 : wd - 1, :]
340
+ top_point = xyz[..., 0 : hd - 2, 1 : wd - 1, :]
341
+ right_point = xyz[..., 1 : hd - 1, 2:wd, :]
342
+ left_point = xyz[..., 1 : hd - 1, 0 : wd - 2, :]
343
+ left_to_right = right_point - left_point
344
+ bottom_to_top = top_point - bottom_point
345
+ xyz_normal = torch.cross(left_to_right, bottom_to_top, dim=-1)
346
+ xyz_normal = torch.nn.functional.normalize(xyz_normal, p=2, dim=-1)
347
+ xyz_normal = torch.nn.functional.pad(
348
+ xyz_normal.permute(2, 0, 1), (1, 1, 1, 1), mode="constant"
349
+ ).permute(1, 2, 0)
350
+ return xyz_normal
351
+
352
+
353
+ def normal_from_depth_image(depth, intrinsic_matrix, extrinsic_matrix):
354
+ # depth: (H, W), intrinsic_matrix: (3, 3), extrinsic_matrix: (4, 4)
355
+ # xyz_normal: (H, W, 3)
356
+ xyz_world = depth2point_world(depth, intrinsic_matrix, extrinsic_matrix) # (HxW, 3)
357
+ xyz_world = xyz_world.reshape(*depth.shape, 3)
358
+ xyz_normal = depth_pcd2normal(xyz_world)
359
+
360
+ return xyz_normal
Davis_out/hike/code/2024-10-27-121029/flow3d/init_utils.py ADDED
@@ -0,0 +1,644 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ from typing import Literal
3
+
4
+ import cupy as cp
5
+ import imageio.v3 as iio
6
+ import numpy as np
7
+
8
+ # from pytorch3d.ops import sample_farthest_points
9
+ import roma
10
+ import torch
11
+ import torch.nn.functional as F
12
+ from cuml import HDBSCAN, KMeans
13
+ from loguru import logger as guru
14
+ from matplotlib.pyplot import get_cmap
15
+ from tqdm import tqdm
16
+ from viser import ViserServer
17
+
18
+ from flow3d.loss_utils import (
19
+ compute_accel_loss,
20
+ compute_se3_smoothness_loss,
21
+ compute_z_acc_loss,
22
+ get_weights_for_procrustes,
23
+ knn,
24
+ masked_l1_loss,
25
+ )
26
+ from flow3d.params import GaussianParams, MotionBases
27
+ from flow3d.tensor_dataclass import StaticObservations, TrackObservations
28
+ from flow3d.transforms import cont_6d_to_rmat, rt_to_mat4, solve_procrustes
29
+ from flow3d.vis.utils import draw_keypoints_video, get_server, project_2d_tracks
30
+
31
+
32
+ def init_fg_from_tracks_3d(
33
+ cano_t: int, tracks_3d: TrackObservations, motion_coefs: torch.Tensor
34
+ ) -> GaussianParams:
35
+ """
36
+ using dataclasses individual tensors so we know they're consistent
37
+ and are always masked/filtered together
38
+ """
39
+ num_fg = tracks_3d.xyz.shape[0]
40
+
41
+ # Initialize gaussian colors.
42
+ colors = torch.logit(tracks_3d.colors)
43
+ # Initialize gaussian scales: find the average of the three nearest
44
+ # neighbors in the first frame for each point and use that as the
45
+ # scale.
46
+ dists, _ = knn(tracks_3d.xyz[:, cano_t], 3)
47
+ dists = torch.from_numpy(dists)
48
+ scales = dists.mean(dim=-1, keepdim=True)
49
+ scales = scales.clamp(torch.quantile(scales, 0.05), torch.quantile(scales, 0.95))
50
+ scales = torch.log(scales.repeat(1, 3))
51
+ # Initialize gaussian means.
52
+ means = tracks_3d.xyz[:, cano_t]
53
+ # Initialize gaussian orientations as random.
54
+ quats = torch.rand(num_fg, 4)
55
+ # Initialize gaussian opacities.
56
+ opacities = torch.logit(torch.full((num_fg,), 0.7))
57
+ gaussians = GaussianParams(means, quats, scales, colors, opacities, motion_coefs)
58
+ return gaussians
59
+
60
+
61
+ def init_bg(
62
+ points: StaticObservations,
63
+ ) -> GaussianParams:
64
+ """
65
+ using dataclasses instead of individual tensors so we know they're consistent
66
+ and are always masked/filtered together
67
+ """
68
+ num_init_bg_gaussians = points.xyz.shape[0]
69
+ bg_scene_center = points.xyz.mean(0)
70
+ bg_points_centered = points.xyz - bg_scene_center
71
+ bg_min_scale = bg_points_centered.quantile(0.05, dim=0)
72
+ bg_max_scale = bg_points_centered.quantile(0.95, dim=0)
73
+ bg_scene_scale = torch.max(bg_max_scale - bg_min_scale).item() / 2.0
74
+ bkdg_colors = torch.logit(points.colors)
75
+
76
+ # Initialize gaussian scales: find the average of the three nearest
77
+ # neighbors in the first frame for each point and use that as the
78
+ # scale.
79
+ dists, _ = knn(points.xyz, 3)
80
+ dists = torch.from_numpy(dists)
81
+ bg_scales = dists.mean(dim=-1, keepdim=True)
82
+ bkdg_scales = torch.log(bg_scales.repeat(1, 3))
83
+
84
+ bg_means = points.xyz
85
+
86
+ # Initialize gaussian orientations by normals.
87
+ local_normals = points.normals.new_tensor([[0.0, 0.0, 1.0]]).expand_as(
88
+ points.normals
89
+ )
90
+ bg_quats = roma.rotvec_to_unitquat(
91
+ F.normalize(local_normals.cross(points.normals), dim=-1)
92
+ * (local_normals * points.normals).sum(-1, keepdim=True).acos_()
93
+ ).roll(1, dims=-1)
94
+ bg_opacities = torch.logit(torch.full((num_init_bg_gaussians,), 0.7))
95
+ gaussians = GaussianParams(
96
+ bg_means,
97
+ bg_quats,
98
+ bkdg_scales,
99
+ bkdg_colors,
100
+ bg_opacities,
101
+ scene_center=bg_scene_center,
102
+ scene_scale=bg_scene_scale,
103
+ )
104
+ return gaussians
105
+
106
+
107
+ def init_motion_params_with_procrustes(
108
+ tracks_3d: TrackObservations,
109
+ num_bases: int,
110
+ rot_type: Literal["quat", "6d"],
111
+ cano_t: int,
112
+ cluster_init_method: str = "kmeans",
113
+ min_mean_weight: float = 0.1,
114
+ vis: bool = False,
115
+ port: int | None = None,
116
+ ) -> tuple[MotionBases, torch.Tensor, TrackObservations]:
117
+ device = tracks_3d.xyz.device
118
+ num_frames = tracks_3d.xyz.shape[1]
119
+ # sample centers and get initial se3 motion bases by solving procrustes
120
+ means_cano = tracks_3d.xyz[:, cano_t].clone() # [num_gaussians, 3]
121
+
122
+ # remove outliers
123
+ scene_center = means_cano.median(dim=0).values
124
+ print(f"{scene_center=}")
125
+ dists = torch.norm(means_cano - scene_center, dim=-1)
126
+ dists_th = torch.quantile(dists, 0.95)
127
+ valid_mask = dists < dists_th
128
+
129
+ # remove tracks that are not visible in any frame
130
+ valid_mask = valid_mask & tracks_3d.visibles.any(dim=1)
131
+ print(f"{valid_mask.sum()=}")
132
+
133
+ tracks_3d = tracks_3d.filter_valid(valid_mask)
134
+
135
+ if vis and port is not None:
136
+ server = get_server(port)
137
+ try:
138
+ pts = tracks_3d.xyz.cpu().numpy()
139
+ clrs = tracks_3d.colors.cpu().numpy()
140
+ while True:
141
+ for t in range(num_frames):
142
+ server.scene.add_point_cloud("points", pts[:, t], clrs)
143
+ time.sleep(0.3)
144
+ except KeyboardInterrupt:
145
+ pass
146
+
147
+ means_cano = means_cano[valid_mask]
148
+
149
+ sampled_centers, num_bases, labels = sample_initial_bases_centers(
150
+ cluster_init_method, cano_t, tracks_3d, num_bases
151
+ )
152
+
153
+ # assign each point to the label to compute the cluster weight
154
+ ids, counts = labels.unique(return_counts=True)
155
+ ids = ids[counts > 100]
156
+ num_bases = len(ids)
157
+ sampled_centers = sampled_centers[:, ids]
158
+ print(f"{num_bases=} {sampled_centers.shape=}")
159
+
160
+ # compute basis weights from the distance to the cluster centers
161
+ dists2centers = torch.norm(means_cano[:, None] - sampled_centers, dim=-1)
162
+ motion_coefs = 10 * torch.exp(-dists2centers)
163
+
164
+ init_rots, init_ts = [], []
165
+
166
+ if rot_type == "quat":
167
+ id_rot = torch.tensor([1.0, 0.0, 0.0, 0.0], device=device)
168
+ rot_dim = 4
169
+ else:
170
+ id_rot = torch.tensor([1.0, 0.0, 0.0, 0.0, 1.0, 0.0], device=device)
171
+ rot_dim = 6
172
+
173
+ init_rots = id_rot.reshape(1, 1, rot_dim).repeat(num_bases, num_frames, 1)
174
+ init_ts = torch.zeros(num_bases, num_frames, 3, device=device)
175
+ errs_before = np.full((num_bases, num_frames), -1.0)
176
+ errs_after = np.full((num_bases, num_frames), -1.0)
177
+
178
+ tgt_ts = list(range(cano_t - 1, -1, -1)) + list(range(cano_t, num_frames))
179
+ print(f"{tgt_ts=}")
180
+ skipped_ts = {}
181
+ for n, cluster_id in enumerate(ids):
182
+ mask_in_cluster = labels == cluster_id
183
+ cluster = tracks_3d.xyz[mask_in_cluster].transpose(
184
+ 0, 1
185
+ ) # [num_frames, n_pts, 3]
186
+ visibilities = tracks_3d.visibles[mask_in_cluster].swapaxes(
187
+ 0, 1
188
+ ) # [num_frames, n_pts]
189
+ confidences = tracks_3d.confidences[mask_in_cluster].swapaxes(
190
+ 0, 1
191
+ ) # [num_frames, n_pts]
192
+ weights = get_weights_for_procrustes(cluster, visibilities)
193
+ prev_t = cano_t
194
+ cluster_skip_ts = []
195
+ for cur_t in tgt_ts:
196
+ # compute pairwise transform from cano_t
197
+ procrustes_weights = (
198
+ weights[cano_t]
199
+ * weights[cur_t]
200
+ * (confidences[cano_t] + confidences[cur_t])
201
+ / 2
202
+ )
203
+ if procrustes_weights.sum() < min_mean_weight * num_frames:
204
+ init_rots[n, cur_t] = init_rots[n, prev_t]
205
+ init_ts[n, cur_t] = init_ts[n, prev_t]
206
+ cluster_skip_ts.append(cur_t)
207
+ else:
208
+ se3, (err, err_before) = solve_procrustes(
209
+ cluster[cano_t],
210
+ cluster[cur_t],
211
+ weights=procrustes_weights,
212
+ enforce_se3=True,
213
+ rot_type=rot_type,
214
+ )
215
+ init_rot, init_t, _ = se3
216
+ assert init_rot.shape[-1] == rot_dim
217
+ # double cover
218
+ if rot_type == "quat" and torch.linalg.norm(
219
+ init_rot - init_rots[n][prev_t]
220
+ ) > torch.linalg.norm(-init_rot - init_rots[n][prev_t]):
221
+ init_rot = -init_rot
222
+ init_rots[n, cur_t] = init_rot
223
+ init_ts[n, cur_t] = init_t
224
+ if err == np.nan:
225
+ print(f"{cur_t=} {err=}")
226
+ print(f"{procrustes_weights.isnan().sum()=}")
227
+ if err_before == np.nan:
228
+ print(f"{cur_t=} {err_before=}")
229
+ print(f"{procrustes_weights.isnan().sum()=}")
230
+ errs_after[n, cur_t] = err
231
+ errs_before[n, cur_t] = err_before
232
+ prev_t = cur_t
233
+ skipped_ts[cluster_id.item()] = cluster_skip_ts
234
+
235
+ guru.info(f"{skipped_ts=}")
236
+ guru.info(
237
+ "procrustes init median error: {:.5f} => {:.5f}".format(
238
+ np.median(errs_before[errs_before > 0]),
239
+ np.median(errs_after[errs_after > 0]),
240
+ )
241
+ )
242
+ guru.info(
243
+ "procrustes init mean error: {:.5f} => {:.5f}".format(
244
+ np.mean(errs_before[errs_before > 0]), np.mean(errs_after[errs_after > 0])
245
+ )
246
+ )
247
+ guru.info(f"{init_rots.shape=}, {init_ts.shape=}, {motion_coefs.shape=}")
248
+
249
+ if vis:
250
+ server = get_server(port)
251
+ center_idcs = torch.argmin(dists2centers, dim=0)
252
+ print(f"{dists2centers.shape=} {center_idcs.shape=}")
253
+ vis_se3_init_3d(server, init_rots, init_ts, means_cano[center_idcs])
254
+ vis_tracks_3d(server, tracks_3d.xyz[center_idcs].numpy(), name="center_tracks")
255
+ import ipdb
256
+
257
+ ipdb.set_trace()
258
+
259
+ bases = MotionBases(init_rots, init_ts)
260
+ return bases, motion_coefs, tracks_3d
261
+
262
+
263
+ def run_initial_optim(
264
+ fg: GaussianParams,
265
+ bases: MotionBases,
266
+ tracks_3d: TrackObservations,
267
+ Ks: torch.Tensor,
268
+ w2cs: torch.Tensor,
269
+ num_iters: int = 1000,
270
+ use_depth_range_loss: bool = False,
271
+ ):
272
+ """
273
+ :param motion_rots: [num_bases, num_frames, 4|6]
274
+ :param motion_transls: [num_bases, num_frames, 3]
275
+ :param motion_coefs: [num_bases, num_frames]
276
+ :param means: [num_gaussians, 3]
277
+ """
278
+ optimizer = torch.optim.Adam(
279
+ [
280
+ {"params": bases.params["rots"], "lr": 1e-2},
281
+ {"params": bases.params["transls"], "lr": 3e-2},
282
+ {"params": fg.params["motion_coefs"], "lr": 1e-2},
283
+ {"params": fg.params["means"], "lr": 1e-3},
284
+ ],
285
+ )
286
+ scheduler = torch.optim.lr_scheduler.ExponentialLR(
287
+ optimizer, gamma=0.1 ** (1 / num_iters)
288
+ )
289
+ G = fg.params.means.shape[0]
290
+ num_frames = bases.num_frames
291
+ device = bases.params["rots"].device
292
+
293
+ w_smooth_func = lambda i, min_v, max_v, th: (
294
+ min_v if i <= th else (max_v - min_v) * (i - th) / (num_iters - th) + min_v
295
+ )
296
+
297
+ gt_2d, gt_depth = project_2d_tracks(
298
+ tracks_3d.xyz.swapaxes(0, 1), Ks, w2cs, return_depth=True
299
+ )
300
+ # (G, T, 2)
301
+ gt_2d = gt_2d.swapaxes(0, 1)
302
+ # (G, T)
303
+ gt_depth = gt_depth.swapaxes(0, 1)
304
+
305
+ ts = torch.arange(0, num_frames, device=device)
306
+ ts_clamped = torch.clamp(ts, min=1, max=num_frames - 2)
307
+ ts_neighbors = torch.cat((ts_clamped - 1, ts_clamped, ts_clamped + 1)) # i (3B,)
308
+
309
+ pbar = tqdm(range(0, num_iters))
310
+ for i in pbar:
311
+ coefs = fg.get_coefs()
312
+ transfms = bases.compute_transforms(ts, coefs)
313
+ positions = torch.einsum(
314
+ "pnij,pj->pni",
315
+ transfms,
316
+ F.pad(fg.params["means"], (0, 1), value=1.0),
317
+ )
318
+
319
+ loss = 0.0
320
+ track_3d_loss = masked_l1_loss(
321
+ positions,
322
+ tracks_3d.xyz,
323
+ (tracks_3d.visibles.float() * tracks_3d.confidences)[..., None],
324
+ )
325
+ loss += track_3d_loss * 1.0
326
+
327
+ pred_2d, pred_depth = project_2d_tracks(
328
+ positions.swapaxes(0, 1), Ks, w2cs, return_depth=True
329
+ )
330
+ pred_2d = pred_2d.swapaxes(0, 1)
331
+ pred_depth = pred_depth.swapaxes(0, 1)
332
+
333
+ loss_2d = (
334
+ masked_l1_loss(
335
+ pred_2d,
336
+ gt_2d,
337
+ (tracks_3d.invisibles.float() * tracks_3d.confidences)[..., None],
338
+ quantile=0.95,
339
+ )
340
+ / Ks[0, 0, 0]
341
+ )
342
+ loss += 0.5 * loss_2d
343
+
344
+ if use_depth_range_loss:
345
+ near_depths = torch.quantile(gt_depth, 0.0, dim=0, keepdim=True)
346
+ far_depths = torch.quantile(gt_depth, 0.98, dim=0, keepdim=True)
347
+ loss_depth_in_range = 0
348
+ if (pred_depth < near_depths).any():
349
+ loss_depth_in_range += (near_depths - pred_depth)[
350
+ pred_depth < near_depths
351
+ ].mean()
352
+ if (pred_depth > far_depths).any():
353
+ loss_depth_in_range += (pred_depth - far_depths)[
354
+ pred_depth > far_depths
355
+ ].mean()
356
+
357
+ loss += loss_depth_in_range * w_smooth_func(i, 0.05, 0.5, 400)
358
+
359
+ motion_coef_sparse_loss = 1 - (coefs**2).sum(dim=-1).mean()
360
+ loss += motion_coef_sparse_loss * 0.01
361
+
362
+ # motion basis should be smooth.
363
+ w_smooth = w_smooth_func(i, 0.01, 0.1, 400)
364
+ small_acc_loss = compute_se3_smoothness_loss(
365
+ bases.params["rots"], bases.params["transls"]
366
+ )
367
+ loss += small_acc_loss * w_smooth
368
+
369
+ small_acc_loss_tracks = compute_accel_loss(positions)
370
+ loss += small_acc_loss_tracks * w_smooth * 0.5
371
+
372
+ transfms_nbs = bases.compute_transforms(ts_neighbors, coefs)
373
+ means_nbs = torch.einsum(
374
+ "pnij,pj->pni", transfms_nbs, F.pad(fg.params["means"], (0, 1), value=1.0)
375
+ ) # (G, 3n, 3)
376
+ means_nbs = means_nbs.reshape(means_nbs.shape[0], 3, -1, 3) # [G, 3, n, 3]
377
+ z_accel_loss = compute_z_acc_loss(means_nbs, w2cs)
378
+ loss += z_accel_loss * 0.1
379
+
380
+ optimizer.zero_grad()
381
+ loss.backward()
382
+ optimizer.step()
383
+ scheduler.step()
384
+
385
+ pbar.set_description(
386
+ f"{loss.item():.3f} "
387
+ f"{track_3d_loss.item():.3f} "
388
+ f"{motion_coef_sparse_loss.item():.3f} "
389
+ f"{small_acc_loss.item():.3f} "
390
+ f"{small_acc_loss_tracks.item():.3f} "
391
+ f"{z_accel_loss.item():.3f} "
392
+ )
393
+
394
+
395
+ def random_quats(N: int) -> torch.Tensor:
396
+ u = torch.rand(N, 1)
397
+ v = torch.rand(N, 1)
398
+ w = torch.rand(N, 1)
399
+ quats = torch.cat(
400
+ [
401
+ torch.sqrt(1.0 - u) * torch.sin(2.0 * np.pi * v),
402
+ torch.sqrt(1.0 - u) * torch.cos(2.0 * np.pi * v),
403
+ torch.sqrt(u) * torch.sin(2.0 * np.pi * w),
404
+ torch.sqrt(u) * torch.cos(2.0 * np.pi * w),
405
+ ],
406
+ -1,
407
+ )
408
+ return quats
409
+
410
+
411
+ def compute_means(ts, fg: GaussianParams, bases: MotionBases):
412
+ transfms = bases.compute_transforms(ts, fg.get_coefs())
413
+ means = torch.einsum(
414
+ "pnij,pj->pni",
415
+ transfms,
416
+ F.pad(fg.params["means"], (0, 1), value=1.0),
417
+ )
418
+ return means
419
+
420
+
421
+ def vis_init_params(
422
+ server,
423
+ fg: GaussianParams,
424
+ bases: MotionBases,
425
+ name="init_params",
426
+ num_vis: int = 100,
427
+ ):
428
+ idcs = np.random.choice(fg.num_gaussians, num_vis)
429
+ labels = np.linspace(0, 1, num_vis)
430
+ ts = torch.arange(bases.num_frames, device=bases.params["rots"].device)
431
+ with torch.no_grad():
432
+ pred_means = compute_means(ts, fg, bases)
433
+ vis_means = pred_means[idcs].detach().cpu().numpy()
434
+ vis_tracks_3d(server, vis_means, labels, name=name)
435
+
436
+
437
+ @torch.no_grad()
438
+ def vis_se3_init_3d(server, init_rots, init_ts, basis_centers):
439
+ """
440
+ :param init_rots: [num_bases, num_frames, 4|6]
441
+ :param init_ts: [num_bases, num_frames, 3]
442
+ :param basis_centers: [num_bases, 3]
443
+ """
444
+ # visualize the initial centers across time
445
+ rot_dim = init_rots.shape[-1]
446
+ assert rot_dim in [4, 6]
447
+ num_bases = init_rots.shape[0]
448
+ assert init_ts.shape[0] == num_bases
449
+ assert basis_centers.shape[0] == num_bases
450
+ labels = np.linspace(0, 1, num_bases)
451
+ if rot_dim == 4:
452
+ quats = F.normalize(init_rots, dim=-1, p=2)
453
+ rmats = roma.unitquat_to_rotmat(quats.roll(-1, dims=-1))
454
+ else:
455
+ rmats = cont_6d_to_rmat(init_rots)
456
+ transls = init_ts
457
+ transfms = rt_to_mat4(rmats, transls)
458
+ center_tracks3d = torch.einsum(
459
+ "bnij,bj->bni", transfms, F.pad(basis_centers, (0, 1), value=1.0)
460
+ )[..., :3]
461
+ vis_tracks_3d(server, center_tracks3d.cpu().numpy(), labels, name="se3_centers")
462
+
463
+
464
+ @torch.no_grad()
465
+ def vis_tracks_2d_video(
466
+ path,
467
+ imgs: np.ndarray,
468
+ tracks_3d: np.ndarray,
469
+ Ks: np.ndarray,
470
+ w2cs: np.ndarray,
471
+ occs=None,
472
+ radius: int = 3,
473
+ ):
474
+ num_tracks = tracks_3d.shape[0]
475
+ labels = np.linspace(0, 1, num_tracks)
476
+ cmap = get_cmap("gist_rainbow")
477
+ colors = cmap(labels)[:, :3]
478
+ tracks_2d = (
479
+ project_2d_tracks(tracks_3d.swapaxes(0, 1), Ks, w2cs).cpu().numpy() # type: ignore
480
+ )
481
+ frames = np.asarray(
482
+ draw_keypoints_video(imgs, tracks_2d, colors, occs, radius=radius)
483
+ )
484
+ iio.imwrite(path, frames, fps=15)
485
+
486
+
487
+ def vis_tracks_3d(
488
+ server: ViserServer,
489
+ vis_tracks: np.ndarray,
490
+ vis_label: np.ndarray | None = None,
491
+ name: str = "tracks",
492
+ ):
493
+ """
494
+ :param vis_tracks (np.ndarray): (N, T, 3)
495
+ :param vis_label (np.ndarray): (N)
496
+ """
497
+ cmap = get_cmap("gist_rainbow")
498
+ if vis_label is None:
499
+ vis_label = np.linspace(0, 1, len(vis_tracks))
500
+ colors = cmap(np.asarray(vis_label))[:, :3]
501
+ guru.info(f"{colors.shape=}, {vis_tracks.shape=}")
502
+ N, T = vis_tracks.shape[:2]
503
+ vis_tracks = np.asarray(vis_tracks)
504
+ for i in range(N):
505
+ server.scene.add_spline_catmull_rom(
506
+ f"/{name}/{i}/spline", vis_tracks[i], color=colors[i], segments=T - 1
507
+ )
508
+ server.scene.add_point_cloud(
509
+ f"/{name}/{i}/start",
510
+ vis_tracks[i, [0]],
511
+ colors=colors[i : i + 1],
512
+ point_size=0.05,
513
+ point_shape="circle",
514
+ )
515
+ server.scene.add_point_cloud(
516
+ f"/{name}/{i}/end",
517
+ vis_tracks[i, [-1]],
518
+ colors=colors[i : i + 1],
519
+ point_size=0.05,
520
+ point_shape="diamond",
521
+ )
522
+
523
+
524
+ def sample_initial_bases_centers(
525
+ mode: str, cano_t: int, tracks_3d: TrackObservations, num_bases: int
526
+ ):
527
+ """
528
+ :param mode: "farthest" | "hdbscan" | "kmeans"
529
+ :param tracks_3d: [G, T, 3]
530
+ :param cano_t: canonical index
531
+ :param num_bases: number of SE3 bases
532
+ """
533
+ assert mode in ["farthest", "hdbscan", "kmeans"]
534
+ means_canonical = tracks_3d.xyz[:, cano_t].clone()
535
+ # if mode == "farthest":
536
+ # vis_mask = tracks_3d.visibles[:, cano_t]
537
+ # sampled_centers, _ = sample_farthest_points(
538
+ # means_canonical[vis_mask][None],
539
+ # K=num_bases,
540
+ # random_start_point=True,
541
+ # ) # [1, num_bases, 3]
542
+ # dists2centers = torch.norm(means_canonical[:, None] - sampled_centers, dim=-1).T
543
+ # return sampled_centers, num_bases, dists2centers
544
+
545
+ # linearly interpolate missing 3d points
546
+ xyz = cp.asarray(tracks_3d.xyz)
547
+ print(f"{xyz.shape=}")
548
+ visibles = cp.asarray(tracks_3d.visibles)
549
+
550
+ num_tracks = xyz.shape[0]
551
+ xyz_interp = batched_interp_masked(xyz, visibles)
552
+
553
+ # num_vis = 50
554
+ # server = get_server(port=8890)
555
+ # idcs = np.random.choice(num_tracks, num_vis)
556
+ # labels = np.linspace(0, 1, num_vis)
557
+ # vis_tracks_3d(server, tracks_3d.xyz[idcs].get(), labels, name="raw_tracks")
558
+ # vis_tracks_3d(server, xyz_interp[idcs].get(), labels, name="interp_tracks")
559
+ # import ipdb; ipdb.set_trace()
560
+
561
+ velocities = xyz_interp[:, 1:] - xyz_interp[:, :-1]
562
+ vel_dirs = (
563
+ velocities / (cp.linalg.norm(velocities, axis=-1, keepdims=True) + 1e-5)
564
+ ).reshape((num_tracks, -1))
565
+
566
+ # [num_bases, num_gaussians]
567
+ if mode == "kmeans":
568
+ model = KMeans(n_clusters=num_bases)
569
+ else:
570
+ model = HDBSCAN(min_cluster_size=20, max_cluster_size=num_tracks // 4)
571
+ model.fit(vel_dirs)
572
+ labels = model.labels_
573
+ num_bases = labels.max().item() + 1
574
+ sampled_centers = torch.stack(
575
+ [
576
+ means_canonical[torch.tensor(labels == i)].median(dim=0).values
577
+ for i in range(num_bases)
578
+ ]
579
+ )[None]
580
+ print("number of {} clusters: ".format(mode), num_bases)
581
+ return sampled_centers, num_bases, torch.tensor(labels)
582
+
583
+
584
+ def interp_masked(vals: cp.ndarray, mask: cp.ndarray, pad: int = 1) -> cp.ndarray:
585
+ """
586
+ hacky way to interpolate batched with cupy
587
+ by concatenating the batches and pad with dummy values
588
+ :param vals: [B, M, *]
589
+ :param mask: [B, M]
590
+ """
591
+ assert mask.ndim == 2
592
+ assert vals.shape[:2] == mask.shape
593
+
594
+ B, M = mask.shape
595
+
596
+ # get the first and last valid values for each track
597
+ sh = vals.shape[2:]
598
+ vals = vals.reshape((B, M, -1))
599
+ D = vals.shape[-1]
600
+ first_val_idcs = cp.argmax(mask, axis=-1)
601
+ last_val_idcs = M - 1 - cp.argmax(cp.flip(mask, axis=-1), axis=-1)
602
+ bidcs = cp.arange(B)
603
+
604
+ v0 = vals[bidcs, first_val_idcs][:, None]
605
+ v1 = vals[bidcs, last_val_idcs][:, None]
606
+ m0 = mask[bidcs, first_val_idcs][:, None]
607
+ m1 = mask[bidcs, last_val_idcs][:, None]
608
+ if pad > 1:
609
+ v0 = cp.tile(v0, [1, pad, 1])
610
+ v1 = cp.tile(v1, [1, pad, 1])
611
+ m0 = cp.tile(m0, [1, pad])
612
+ m1 = cp.tile(m1, [1, pad])
613
+
614
+ vals_pad = cp.concatenate([v0, vals, v1], axis=1)
615
+ mask_pad = cp.concatenate([m0, mask, m1], axis=1)
616
+
617
+ M_pad = vals_pad.shape[1]
618
+ vals_flat = vals_pad.reshape((B * M_pad, -1))
619
+ mask_flat = mask_pad.reshape((B * M_pad,))
620
+ idcs = cp.where(mask_flat)[0]
621
+
622
+ cx = cp.arange(B * M_pad)
623
+ out = cp.zeros((B * M_pad, D), dtype=vals_flat.dtype)
624
+ for d in range(D):
625
+ out[:, d] = cp.interp(cx, idcs, vals_flat[idcs, d])
626
+
627
+ out = out.reshape((B, M_pad, *sh))[:, pad:-pad]
628
+ return out
629
+
630
+
631
+ def batched_interp_masked(
632
+ vals: cp.ndarray, mask: cp.ndarray, batch_num: int = 4096, batch_time: int = 64
633
+ ):
634
+ assert mask.ndim == 2
635
+ B, M = mask.shape
636
+ out = cp.zeros_like(vals)
637
+ for b in tqdm(range(0, B, batch_num), leave=False):
638
+ for m in tqdm(range(0, M, batch_time), leave=False):
639
+ x = interp_masked(
640
+ vals[b : b + batch_num, m : m + batch_time],
641
+ mask[b : b + batch_num, m : m + batch_time],
642
+ ) # (batch_num, batch_time, *)
643
+ out[b : b + batch_num, m : m + batch_time] = x
644
+ return out
Davis_out/hike/code/2024-10-27-121029/flow3d/loss_utils.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn.functional as F
4
+ from sklearn.neighbors import NearestNeighbors
5
+
6
+
7
+ def masked_mse_loss(pred, gt, mask=None, normalize=True, quantile: float = 1.0):
8
+ if mask is None:
9
+ return trimmed_mse_loss(pred, gt, quantile)
10
+ else:
11
+ sum_loss = F.mse_loss(pred, gt, reduction="none").mean(dim=-1, keepdim=True)
12
+ quantile_mask = (
13
+ (sum_loss < torch.quantile(sum_loss, quantile)).squeeze(-1)
14
+ if quantile < 1
15
+ else torch.ones_like(sum_loss, dtype=torch.bool).squeeze(-1)
16
+ )
17
+ ndim = sum_loss.shape[-1]
18
+ if normalize:
19
+ return torch.sum((sum_loss * mask)[quantile_mask]) / (
20
+ ndim * torch.sum(mask[quantile_mask]) + 1e-8
21
+ )
22
+ else:
23
+ return torch.mean((sum_loss * mask)[quantile_mask])
24
+
25
+
26
+ def masked_l1_loss(pred, gt, mask=None, normalize=True, quantile: float = 1.0):
27
+ if mask is None:
28
+ return trimmed_l1_loss(pred, gt, quantile)
29
+ else:
30
+ sum_loss = F.l1_loss(pred, gt, reduction="none").mean(dim=-1, keepdim=True)
31
+ quantile_mask = (
32
+ (sum_loss < torch.quantile(sum_loss, quantile)).squeeze(-1)
33
+ if quantile < 1
34
+ else torch.ones_like(sum_loss, dtype=torch.bool).squeeze(-1)
35
+ )
36
+ ndim = sum_loss.shape[-1]
37
+ if normalize:
38
+ return torch.sum((sum_loss * mask)[quantile_mask]) / (
39
+ ndim * torch.sum(mask[quantile_mask]) + 1e-8
40
+ )
41
+ else:
42
+ return torch.mean((sum_loss * mask)[quantile_mask])
43
+
44
+
45
+ def masked_huber_loss(pred, gt, delta, mask=None, normalize=True):
46
+ if mask is None:
47
+ return F.huber_loss(pred, gt, delta=delta)
48
+ else:
49
+ sum_loss = F.huber_loss(pred, gt, delta=delta, reduction="none")
50
+ ndim = sum_loss.shape[-1]
51
+ if normalize:
52
+ return torch.sum(sum_loss * mask) / (ndim * torch.sum(mask) + 1e-8)
53
+ else:
54
+ return torch.mean(sum_loss * mask)
55
+
56
+
57
+ def trimmed_mse_loss(pred, gt, quantile=0.9):
58
+ loss = F.mse_loss(pred, gt, reduction="none").mean(dim=-1)
59
+ loss_at_quantile = torch.quantile(loss, quantile)
60
+ trimmed_loss = loss[loss < loss_at_quantile].mean()
61
+ return trimmed_loss
62
+
63
+
64
+ def trimmed_l1_loss(pred, gt, quantile=0.9):
65
+ loss = F.l1_loss(pred, gt, reduction="none").mean(dim=-1)
66
+ loss_at_quantile = torch.quantile(loss, quantile)
67
+ trimmed_loss = loss[loss < loss_at_quantile].mean()
68
+ return trimmed_loss
69
+
70
+
71
+ def compute_gradient_loss(pred, gt, mask, quantile=0.98):
72
+ """
73
+ Compute gradient loss
74
+ pred: (batch_size, H, W, D) or (batch_size, H, W)
75
+ gt: (batch_size, H, W, D) or (batch_size, H, W)
76
+ mask: (batch_size, H, W), bool or float
77
+ """
78
+ # NOTE: messy need to be cleaned up
79
+ mask_x = mask[:, :, 1:] * mask[:, :, :-1]
80
+ mask_y = mask[:, 1:, :] * mask[:, :-1, :]
81
+ pred_grad_x = pred[:, :, 1:] - pred[:, :, :-1]
82
+ pred_grad_y = pred[:, 1:, :] - pred[:, :-1, :]
83
+ gt_grad_x = gt[:, :, 1:] - gt[:, :, :-1]
84
+ gt_grad_y = gt[:, 1:, :] - gt[:, :-1, :]
85
+ loss = masked_l1_loss(
86
+ pred_grad_x[mask_x][..., None], gt_grad_x[mask_x][..., None], quantile=quantile
87
+ ) + masked_l1_loss(
88
+ pred_grad_y[mask_y][..., None], gt_grad_y[mask_y][..., None], quantile=quantile
89
+ )
90
+ return loss
91
+
92
+
93
+ def knn(x: torch.Tensor, k: int) -> tuple[np.ndarray, np.ndarray]:
94
+ x = x.cpu().numpy()
95
+ knn_model = NearestNeighbors(
96
+ n_neighbors=k + 1, algorithm="auto", metric="euclidean"
97
+ ).fit(x)
98
+ distances, indices = knn_model.kneighbors(x)
99
+ return distances[:, 1:].astype(np.float32), indices[:, 1:].astype(np.float32)
100
+
101
+
102
+ def get_weights_for_procrustes(clusters, visibilities=None):
103
+ clusters_median = clusters.median(dim=-2, keepdim=True)[0]
104
+ dists2clusters_center = torch.norm(clusters - clusters_median, dim=-1)
105
+ dists2clusters_center /= dists2clusters_center.median(dim=-1, keepdim=True)[0]
106
+ weights = torch.exp(-dists2clusters_center)
107
+ weights /= weights.mean(dim=-1, keepdim=True) + 1e-6
108
+ if visibilities is not None:
109
+ weights *= visibilities.float() + 1e-6
110
+ invalid = dists2clusters_center > np.quantile(
111
+ dists2clusters_center.cpu().numpy(), 0.9
112
+ )
113
+ invalid |= torch.isnan(weights)
114
+ weights[invalid] = 0
115
+ return weights
116
+
117
+
118
+ def compute_z_acc_loss(means_ts_nb: torch.Tensor, w2cs: torch.Tensor):
119
+ """
120
+ :param means_ts (G, 3, B, 3)
121
+ :param w2cs (B, 4, 4)
122
+ return (float)
123
+ """
124
+ camera_center_t = torch.linalg.inv(w2cs)[:, :3, 3] # (B, 3)
125
+ ray_dir = F.normalize(
126
+ means_ts_nb[:, 1] - camera_center_t, p=2.0, dim=-1
127
+ ) # [G, B, 3]
128
+ # acc = 2 * means[:, 1] - means[:, 0] - means[:, 2] # [G, B, 3]
129
+ # acc_loss = (acc * ray_dir).sum(dim=-1).abs().mean()
130
+ acc_loss = (
131
+ ((means_ts_nb[:, 1] - means_ts_nb[:, 0]) * ray_dir).sum(dim=-1) ** 2
132
+ ).mean() + (
133
+ ((means_ts_nb[:, 2] - means_ts_nb[:, 1]) * ray_dir).sum(dim=-1) ** 2
134
+ ).mean()
135
+ return acc_loss
136
+
137
+
138
+ def compute_se3_smoothness_loss(
139
+ rots: torch.Tensor,
140
+ transls: torch.Tensor,
141
+ weight_rot: float = 1.0,
142
+ weight_transl: float = 2.0,
143
+ ):
144
+ """
145
+ central differences
146
+ :param motion_transls (K, T, 3)
147
+ :param motion_rots (K, T, 6)
148
+ """
149
+ r_accel_loss = compute_accel_loss(rots)
150
+ t_accel_loss = compute_accel_loss(transls)
151
+ return r_accel_loss * weight_rot + t_accel_loss * weight_transl
152
+
153
+
154
+ def compute_accel_loss(transls):
155
+ accel = 2 * transls[:, 1:-1] - transls[:, :-2] - transls[:, 2:]
156
+ loss = accel.norm(dim=-1).mean()
157
+ return loss
158
+
Davis_out/hike/code/2024-10-27-121029/flow3d/metrics.py ADDED
@@ -0,0 +1,313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Literal
2
+
3
+ import numpy as np
4
+ import torch
5
+ import torch.nn.functional as F
6
+ from torchmetrics.functional.image.lpips import _NoTrainLpips
7
+ from torchmetrics.image import PeakSignalNoiseRatio, StructuralSimilarityIndexMeasure
8
+ from torchmetrics.metric import Metric
9
+ from torchmetrics.utilities import dim_zero_cat
10
+ from torchmetrics.utilities.imports import _TORCHVISION_AVAILABLE
11
+
12
+
13
+ def compute_psnr(
14
+ preds: torch.Tensor,
15
+ targets: torch.Tensor,
16
+ masks: torch.Tensor | None = None,
17
+ ) -> float:
18
+ """
19
+ Args:
20
+ preds (torch.Tensor): (..., 3) predicted images in [0, 1].
21
+ targets (torch.Tensor): (..., 3) target images in [0, 1].
22
+ masks (torch.Tensor | None): (...,) optional binary masks where the
23
+ 1-regions will be taken into account.
24
+
25
+ Returns:
26
+ psnr (float): Peak signal-to-noise ratio.
27
+ """
28
+ if masks is None:
29
+ masks = torch.ones_like(preds[..., 0])
30
+ return (
31
+ -10.0
32
+ * torch.log(
33
+ F.mse_loss(
34
+ preds * masks[..., None],
35
+ targets * masks[..., None],
36
+ reduction="sum",
37
+ )
38
+ / masks.sum().clamp(min=1.0)
39
+ / 3.0
40
+ )
41
+ / np.log(10.0)
42
+ ).item()
43
+
44
+
45
+ def compute_pose_errors(
46
+ preds: torch.Tensor, targets: torch.Tensor
47
+ ) -> tuple[float, float, float]:
48
+ """
49
+ Args:
50
+ preds: (N, 4, 4) predicted camera poses.
51
+ targets: (N, 4, 4) target camera poses.
52
+
53
+ Returns:
54
+ ate (float): Absolute trajectory error.
55
+ rpe_t (float): Relative pose error in translation.
56
+ rpe_r (float): Relative pose error in rotation (degree).
57
+ """
58
+ # Compute ATE.
59
+ ate = torch.linalg.norm(preds[:, :3, -1] - targets[:, :3, -1], dim=-1).mean().item()
60
+ # Compute RPE_t and RPE_r.
61
+ # NOTE(hangg): It's important to use numpy here for the accuracy of RPE_r.
62
+ # torch has numerical issues for acos when the value is close to 1.0, i.e.
63
+ # RPE_r is supposed to be very small, and will result in artificially large
64
+ # error.
65
+ preds = preds.detach().cpu().numpy()
66
+ targets = targets.detach().cpu().numpy()
67
+ pred_rels = np.linalg.inv(preds[:-1]) @ preds[1:]
68
+ pred_rels = np.linalg.inv(preds[:-1]) @ preds[1:]
69
+ target_rels = np.linalg.inv(targets[:-1]) @ targets[1:]
70
+ error_rels = np.linalg.inv(target_rels) @ pred_rels
71
+ traces = error_rels[:, :3, :3].trace(axis1=-2, axis2=-1)
72
+ rpe_t = np.linalg.norm(error_rels[:, :3, -1], axis=-1).mean().item()
73
+ rpe_r = (
74
+ np.arccos(np.clip((traces - 1.0) / 2.0, -1.0, 1.0)).mean().item()
75
+ / np.pi
76
+ * 180.0
77
+ )
78
+ return ate, rpe_t, rpe_r
79
+
80
+
81
+ class mPSNR(PeakSignalNoiseRatio):
82
+ sum_squared_error: list[torch.Tensor]
83
+ total: list[torch.Tensor]
84
+
85
+ def __init__(self, **kwargs) -> None:
86
+ super().__init__(
87
+ data_range=1.0,
88
+ base=10.0,
89
+ dim=None,
90
+ reduction="elementwise_mean",
91
+ **kwargs,
92
+ )
93
+ self.add_state("sum_squared_error", default=[], dist_reduce_fx="cat")
94
+ self.add_state("total", default=[], dist_reduce_fx="cat")
95
+
96
+ def __len__(self) -> int:
97
+ return len(self.total)
98
+
99
+ def update(
100
+ self,
101
+ preds: torch.Tensor,
102
+ targets: torch.Tensor,
103
+ masks: torch.Tensor | None = None,
104
+ ):
105
+ """Update state with predictions and targets.
106
+
107
+ Args:
108
+ preds (torch.Tensor): (..., 3) float32 predicted images.
109
+ targets (torch.Tensor): (..., 3) float32 target images.
110
+ masks (torch.Tensor | None): (...,) optional binary masks where the
111
+ 1-regions will be taken into account.
112
+ """
113
+ if masks is None:
114
+ masks = torch.ones_like(preds[..., 0])
115
+ self.sum_squared_error.append(
116
+ torch.sum(torch.pow((preds - targets) * masks[..., None], 2))
117
+ )
118
+ self.total.append(masks.sum().to(torch.int64) * 3)
119
+
120
+ def compute(self) -> torch.Tensor:
121
+ """Compute peak signal-to-noise ratio over state."""
122
+ sum_squared_error = dim_zero_cat(self.sum_squared_error)
123
+ total = dim_zero_cat(self.total)
124
+ return -10.0 * torch.log(sum_squared_error / total).mean() / np.log(10.0)
125
+
126
+
127
+ class mSSIM(StructuralSimilarityIndexMeasure):
128
+ similarity: list
129
+
130
+ def __init__(self, **kwargs) -> None:
131
+ super().__init__(
132
+ reduction=None,
133
+ data_range=1.0,
134
+ return_full_image=False,
135
+ **kwargs,
136
+ )
137
+ assert isinstance(self.sigma, float)
138
+
139
+ def __len__(self) -> int:
140
+ return sum([s.shape[0] for s in self.similarity])
141
+
142
+ def update(
143
+ self,
144
+ preds: torch.Tensor,
145
+ targets: torch.Tensor,
146
+ masks: torch.Tensor | None = None,
147
+ ):
148
+ """Update state with predictions and targets.
149
+
150
+ Args:
151
+ preds (torch.Tensor): (B, H, W, 3) float32 predicted images.
152
+ targets (torch.Tensor): (B, H, W, 3) float32 target images.
153
+ masks (torch.Tensor | None): (B, H, W) optional binary masks where
154
+ the 1-regions will be taken into account.
155
+ """
156
+ if masks is None:
157
+ masks = torch.ones_like(preds[..., 0])
158
+
159
+ # Construct a 1D Gaussian blur filter.
160
+ assert isinstance(self.kernel_size, int)
161
+ hw = self.kernel_size // 2
162
+ shift = (2 * hw - self.kernel_size + 1) / 2
163
+ assert isinstance(self.sigma, float)
164
+ f_i = (
165
+ (torch.arange(self.kernel_size, device=preds.device) - hw + shift)
166
+ / self.sigma
167
+ ) ** 2
168
+ filt = torch.exp(-0.5 * f_i)
169
+ filt /= torch.sum(filt)
170
+
171
+ # Blur in x and y (faster than the 2D convolution).
172
+ def convolve2d(z, m, f):
173
+ # z: (B, H, W, C), m: (B, H, W), f: (Hf, Wf).
174
+ z = z.permute(0, 3, 1, 2)
175
+ m = m[:, None]
176
+ f = f[None, None].expand(z.shape[1], -1, -1, -1)
177
+ z_ = torch.nn.functional.conv2d(
178
+ z * m, f, padding="valid", groups=z.shape[1]
179
+ )
180
+ m_ = torch.nn.functional.conv2d(m, torch.ones_like(f[:1]), padding="valid")
181
+ return torch.where(
182
+ m_ != 0, z_ * torch.ones_like(f).sum() / (m_ * z.shape[1]), 0
183
+ ).permute(0, 2, 3, 1), (m_ != 0)[:, 0].to(z.dtype)
184
+
185
+ filt_fn1 = lambda z, m: convolve2d(z, m, filt[:, None])
186
+ filt_fn2 = lambda z, m: convolve2d(z, m, filt[None, :])
187
+ filt_fn = lambda z, m: filt_fn1(*filt_fn2(z, m))
188
+
189
+ mu0 = filt_fn(preds, masks)[0]
190
+ mu1 = filt_fn(targets, masks)[0]
191
+ mu00 = mu0 * mu0
192
+ mu11 = mu1 * mu1
193
+ mu01 = mu0 * mu1
194
+ sigma00 = filt_fn(preds**2, masks)[0] - mu00
195
+ sigma11 = filt_fn(targets**2, masks)[0] - mu11
196
+ sigma01 = filt_fn(preds * targets, masks)[0] - mu01
197
+
198
+ # Clip the variances and covariances to valid values.
199
+ # Variance must be non-negative:
200
+ sigma00 = sigma00.clamp(min=0.0)
201
+ sigma11 = sigma11.clamp(min=0.0)
202
+ sigma01 = torch.sign(sigma01) * torch.minimum(
203
+ torch.sqrt(sigma00 * sigma11), torch.abs(sigma01)
204
+ )
205
+
206
+ assert isinstance(self.data_range, float)
207
+ c1 = (self.k1 * self.data_range) ** 2
208
+ c2 = (self.k2 * self.data_range) ** 2
209
+ numer = (2 * mu01 + c1) * (2 * sigma01 + c2)
210
+ denom = (mu00 + mu11 + c1) * (sigma00 + sigma11 + c2)
211
+ ssim_map = numer / denom
212
+
213
+ self.similarity.append(ssim_map.mean(dim=(1, 2, 3)))
214
+
215
+ def compute(self) -> torch.Tensor:
216
+ """Compute final SSIM metric."""
217
+ return torch.cat(self.similarity).mean()
218
+
219
+
220
+ class mLPIPS(Metric):
221
+ sum_scores: list[torch.Tensor]
222
+ total: list[torch.Tensor]
223
+
224
+ def __init__(
225
+ self,
226
+ net_type: Literal["vgg", "alex", "squeeze"] = "alex",
227
+ **kwargs,
228
+ ):
229
+ super().__init__(**kwargs)
230
+
231
+ if not _TORCHVISION_AVAILABLE:
232
+ raise ModuleNotFoundError(
233
+ "LPIPS metric requires that torchvision is installed."
234
+ " Either install as `pip install torchmetrics[image]` or `pip install torchvision`."
235
+ )
236
+
237
+ valid_net_type = ("vgg", "alex", "squeeze")
238
+ if net_type not in valid_net_type:
239
+ raise ValueError(
240
+ f"Argument `net_type` must be one of {valid_net_type}, but got {net_type}."
241
+ )
242
+ self.net = _NoTrainLpips(net=net_type, spatial=True)
243
+
244
+ self.add_state("sum_scores", [], dist_reduce_fx="cat")
245
+ self.add_state("total", [], dist_reduce_fx="cat")
246
+
247
+ def __len__(self) -> int:
248
+ return len(self.total)
249
+
250
+ def update(
251
+ self,
252
+ preds: torch.Tensor,
253
+ targets: torch.Tensor,
254
+ masks: torch.Tensor | None = None,
255
+ ):
256
+ """Update internal states with lpips scores.
257
+
258
+ Args:
259
+ preds (torch.Tensor): (B, H, W, 3) float32 predicted images.
260
+ targets (torch.Tensor): (B, H, W, 3) float32 target images.
261
+ masks (torch.Tensor | None): (B, H, W) optional float32 binary
262
+ masks where the 1-regions will be taken into account.
263
+ """
264
+ if masks is None:
265
+ masks = torch.ones_like(preds[..., 0])
266
+ scores = self.net(
267
+ (preds * masks[..., None]).permute(0, 3, 1, 2),
268
+ (targets * masks[..., None]).permute(0, 3, 1, 2),
269
+ normalize=True,
270
+ )
271
+ self.sum_scores.append((scores * masks[:, None]).sum())
272
+ self.total.append(masks.sum().to(torch.int64))
273
+
274
+ def compute(self) -> torch.Tensor:
275
+ """Compute final perceptual similarity metric."""
276
+ return (
277
+ torch.tensor(self.sum_scores, device=self.device)
278
+ / torch.tensor(self.total, device=self.device)
279
+ ).mean()
280
+
281
+
282
+ class PCK(Metric):
283
+ correct: list[torch.Tensor]
284
+ total: list[int]
285
+
286
+ def __init__(self, **kwargs):
287
+ super().__init__(**kwargs)
288
+ self.add_state("correct", default=[], dist_reduce_fx="cat")
289
+ self.add_state("total", default=[], dist_reduce_fx="cat")
290
+
291
+ def __len__(self) -> int:
292
+ return len(self.total)
293
+
294
+ def update(self, preds: torch.Tensor, targets: torch.Tensor, threshold: float):
295
+ """Update internal states with PCK scores.
296
+
297
+ Args:
298
+ preds (torch.Tensor): (N, 2) predicted 2D keypoints.
299
+ targets (torch.Tensor): (N, 2) targets 2D keypoints.
300
+ threshold (float): PCK threshold.
301
+ """
302
+
303
+ self.correct.append(
304
+ (torch.linalg.norm(preds - targets, dim=-1) < threshold).sum()
305
+ )
306
+ self.total.append(preds.shape[0])
307
+
308
+ def compute(self) -> torch.Tensor:
309
+ """Compute PCK over state."""
310
+ return (
311
+ torch.tensor(self.correct, device=self.device)
312
+ / torch.clamp(torch.tensor(self.total, device=self.device), min=1e-8)
313
+ ).mean()
Davis_out/hike/code/2024-10-27-121029/flow3d/params.py ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+
7
+ from flow3d.transforms import cont_6d_to_rmat
8
+
9
+
10
+ class GaussianParams(nn.Module):
11
+ def __init__(
12
+ self,
13
+ means: torch.Tensor,
14
+ quats: torch.Tensor,
15
+ scales: torch.Tensor,
16
+ colors: torch.Tensor,
17
+ opacities: torch.Tensor,
18
+ motion_coefs: torch.Tensor | None = None,
19
+ scene_center: torch.Tensor | None = None,
20
+ scene_scale: torch.Tensor | float = 1.0,
21
+ ):
22
+ super().__init__()
23
+ if not check_gaussian_sizes(
24
+ means, quats, scales, colors, opacities, motion_coefs
25
+ ):
26
+ import ipdb
27
+
28
+ ipdb.set_trace()
29
+ params_dict = {
30
+ "means": nn.Parameter(means),
31
+ "quats": nn.Parameter(quats),
32
+ "scales": nn.Parameter(scales),
33
+ "colors": nn.Parameter(colors),
34
+ "opacities": nn.Parameter(opacities),
35
+ }
36
+ if motion_coefs is not None:
37
+ params_dict["motion_coefs"] = nn.Parameter(motion_coefs)
38
+ self.params = nn.ParameterDict(params_dict)
39
+ self.quat_activation = lambda x: F.normalize(x, dim=-1, p=2)
40
+ self.color_activation = torch.sigmoid
41
+ self.scale_activation = torch.exp
42
+ self.opacity_activation = torch.sigmoid
43
+ self.motion_coef_activation = lambda x: F.softmax(x, dim=-1)
44
+
45
+ if scene_center is None:
46
+ scene_center = torch.zeros(3, device=means.device)
47
+ self.register_buffer("scene_center", scene_center)
48
+ self.register_buffer("scene_scale", torch.as_tensor(scene_scale))
49
+
50
+ @staticmethod
51
+ def init_from_state_dict(state_dict, prefix="params."):
52
+ req_keys = ["means", "quats", "scales", "colors", "opacities"]
53
+ assert all(f"{prefix}{k}" in state_dict for k in req_keys)
54
+ args = {
55
+ "motion_coefs": None,
56
+ "scene_center": torch.zeros(3),
57
+ "scene_scale": torch.tensor(1.0),
58
+ }
59
+ for k in req_keys + list(args.keys()):
60
+ if f"{prefix}{k}" in state_dict:
61
+ args[k] = state_dict[f"{prefix}{k}"]
62
+ return GaussianParams(**args)
63
+
64
+ @property
65
+ def num_gaussians(self) -> int:
66
+ return self.params["means"].shape[0]
67
+
68
+ def get_colors(self) -> torch.Tensor:
69
+ return self.color_activation(self.params["colors"])
70
+
71
+ def get_scales(self) -> torch.Tensor:
72
+ return self.scale_activation(self.params["scales"])
73
+
74
+ def get_opacities(self) -> torch.Tensor:
75
+ return self.opacity_activation(self.params["opacities"])
76
+
77
+ def get_quats(self) -> torch.Tensor:
78
+ return self.quat_activation(self.params["quats"])
79
+
80
+ def get_coefs(self) -> torch.Tensor:
81
+ assert "motion_coefs" in self.params
82
+ return self.motion_coef_activation(self.params["motion_coefs"])
83
+
84
+ def densify_params(self, should_split, should_dup):
85
+ """
86
+ densify gaussians
87
+ """
88
+ updated_params = {}
89
+ for name, x in self.params.items():
90
+ x_dup = x[should_dup]
91
+ x_split = x[should_split].repeat([2] + [1] * (x.ndim - 1))
92
+ if name == "scales":
93
+ x_split -= math.log(1.6)
94
+ x_new = nn.Parameter(torch.cat([x[~should_split], x_dup, x_split], dim=0))
95
+ updated_params[name] = x_new
96
+ self.params[name] = x_new
97
+ return updated_params
98
+
99
+ def cull_params(self, should_cull):
100
+ """
101
+ cull gaussians
102
+ """
103
+ updated_params = {}
104
+ for name, x in self.params.items():
105
+ x_new = nn.Parameter(x[~should_cull])
106
+ updated_params[name] = x_new
107
+ self.params[name] = x_new
108
+ return updated_params
109
+
110
+ def reset_opacities(self, new_val):
111
+ """
112
+ reset all opacities to new_val
113
+ """
114
+ self.params["opacities"].data.fill_(new_val)
115
+ updated_params = {"opacities": self.params["opacities"]}
116
+ return updated_params
117
+
118
+
119
+ class MotionBases(nn.Module):
120
+ def __init__(self, rots, transls):
121
+ super().__init__()
122
+ self.num_frames = rots.shape[1]
123
+ self.num_bases = rots.shape[0]
124
+ assert check_bases_sizes(rots, transls)
125
+ self.params = nn.ParameterDict(
126
+ {
127
+ "rots": nn.Parameter(rots),
128
+ "transls": nn.Parameter(transls),
129
+ }
130
+ )
131
+
132
+ @staticmethod
133
+ def init_from_state_dict(state_dict, prefix="params."):
134
+ param_keys = ["rots", "transls"]
135
+ assert all(f"{prefix}{k}" in state_dict for k in param_keys)
136
+ args = {k: state_dict[f"{prefix}{k}"] for k in param_keys}
137
+ return MotionBases(**args)
138
+
139
+ def compute_transforms(self, ts: torch.Tensor, coefs: torch.Tensor) -> torch.Tensor:
140
+ """
141
+ :param ts (B)
142
+ :param coefs (G, K)
143
+ returns transforms (G, B, 3, 4)
144
+ """
145
+ transls = self.params["transls"][:, ts] # (K, B, 3)
146
+ rots = self.params["rots"][:, ts] # (K, B, 6)
147
+ transls = torch.einsum("pk,kni->pni", coefs, transls)
148
+ rots = torch.einsum("pk,kni->pni", coefs, rots) # (G, B, 6)
149
+ rotmats = cont_6d_to_rmat(rots) # (K, B, 3, 3)
150
+ return torch.cat([rotmats, transls[..., None]], dim=-1)
151
+
152
+
153
+ def check_gaussian_sizes(
154
+ means: torch.Tensor,
155
+ quats: torch.Tensor,
156
+ scales: torch.Tensor,
157
+ colors: torch.Tensor,
158
+ opacities: torch.Tensor,
159
+ motion_coefs: torch.Tensor | None = None,
160
+ ) -> bool:
161
+ dims = means.shape[:-1]
162
+ leading_dims_match = (
163
+ quats.shape[:-1] == dims
164
+ and scales.shape[:-1] == dims
165
+ and colors.shape[:-1] == dims
166
+ and opacities.shape == dims
167
+ )
168
+ if motion_coefs is not None and motion_coefs.numel() > 0:
169
+ leading_dims_match &= motion_coefs.shape[:-1] == dims
170
+ dims_correct = (
171
+ means.shape[-1] == 3
172
+ and (quats.shape[-1] == 4)
173
+ and (scales.shape[-1] == 3)
174
+ and (colors.shape[-1] == 3)
175
+ )
176
+ return leading_dims_match and dims_correct
177
+
178
+
179
+ def check_bases_sizes(motion_rots: torch.Tensor, motion_transls: torch.Tensor) -> bool:
180
+ return (
181
+ motion_rots.shape[-1] == 6
182
+ and motion_transls.shape[-1] == 3
183
+ and motion_rots.shape[:-2] == motion_transls.shape[:-2]
184
+ )
Davis_out/hike/code/2024-10-27-121029/flow3d/renderer.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn.functional as F
4
+ from loguru import logger as guru
5
+ from nerfview import CameraState
6
+
7
+ from flow3d.scene_model import SceneModel
8
+ from flow3d.vis.utils import draw_tracks_2d_th, get_server
9
+ from flow3d.vis.viewer import DynamicViewer
10
+
11
+
12
+ class Renderer:
13
+ def __init__(
14
+ self,
15
+ model: SceneModel,
16
+ device: torch.device,
17
+ # Logging.
18
+ work_dir: str,
19
+ port: int | None = None,
20
+ ):
21
+ self.device = device
22
+
23
+ self.model = model
24
+ self.num_frames = model.num_frames
25
+
26
+ self.work_dir = work_dir
27
+ self.global_step = 0
28
+ self.epoch = 0
29
+
30
+ self.viewer = None
31
+ if port is not None:
32
+ server = get_server(port=port)
33
+ self.viewer = DynamicViewer(
34
+ server, self.render_fn, model.num_frames, work_dir, mode="rendering"
35
+ )
36
+
37
+ self.tracks_3d = self.model.compute_poses_fg(
38
+ # torch.arange(max(0, t - 20), max(1, t), device=self.device),
39
+ torch.arange(self.num_frames, device=self.device),
40
+ inds=torch.arange(10, device=self.device),
41
+ )[0]
42
+
43
+ @staticmethod
44
+ def init_from_checkpoint(
45
+ path: str, device: torch.device, *args, **kwargs
46
+ ) -> "Renderer":
47
+ guru.info(f"Loading checkpoint from {path}")
48
+ ckpt = torch.load(path)
49
+ state_dict = ckpt["model"]
50
+ model = SceneModel.init_from_state_dict(state_dict)
51
+ model = model.to(device)
52
+ renderer = Renderer(model, device, *args, **kwargs)
53
+ renderer.global_step = ckpt.get("global_step", 0)
54
+ renderer.epoch = ckpt.get("epoch", 0)
55
+ return renderer
56
+
57
+ @torch.inference_mode()
58
+ def render_fn(self, camera_state: CameraState, img_wh: tuple[int, int]):
59
+ if self.viewer is None:
60
+ return np.full((img_wh[1], img_wh[0], 3), 255, dtype=np.uint8)
61
+
62
+ W, H = img_wh
63
+
64
+ focal = 0.5 * H / np.tan(0.5 * camera_state.fov).item()
65
+ K = torch.tensor(
66
+ [[focal, 0.0, W / 2.0], [0.0, focal, H / 2.0], [0.0, 0.0, 1.0]],
67
+ device=self.device,
68
+ )
69
+ w2c = torch.linalg.inv(
70
+ torch.from_numpy(camera_state.c2w.astype(np.float32)).to(self.device)
71
+ )
72
+ t = (
73
+ int(self.viewer._playback_guis[0].value)
74
+ if not self.viewer._canonical_checkbox.value
75
+ else None
76
+ )
77
+ self.model.training = False
78
+ img = self.model.render(t, w2c[None], K[None], img_wh)["img"][0]
79
+ if not self.viewer._render_track_checkbox.value:
80
+ img = (img.cpu().numpy() * 255.0).astype(np.uint8)
81
+ else:
82
+ assert t is not None
83
+ tracks_3d = self.tracks_3d[:, max(0, t - 20) : max(1, t)]
84
+ tracks_2d = torch.einsum(
85
+ "ij,jk,nbk->nbi", K, w2c[:3], F.pad(tracks_3d, (0, 1), value=1.0)
86
+ )
87
+ tracks_2d = tracks_2d[..., :2] / tracks_2d[..., 2:]
88
+ img = draw_tracks_2d_th(img, tracks_2d)
89
+ return img
Davis_out/hike/code/2024-10-27-121029/flow3d/scene_model.py ADDED
@@ -0,0 +1,292 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import roma
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ from gsplat.rendering import rasterization
6
+ from torch import Tensor
7
+
8
+ from flow3d.params import GaussianParams, MotionBases
9
+
10
+
11
+ class SceneModel(nn.Module):
12
+ def __init__(
13
+ self,
14
+ Ks: Tensor,
15
+ w2cs: Tensor,
16
+ fg_params: GaussianParams,
17
+ motion_bases: MotionBases,
18
+ bg_params: GaussianParams | None = None,
19
+ ):
20
+ super().__init__()
21
+ self.num_frames = motion_bases.num_frames
22
+ self.fg = fg_params
23
+ self.motion_bases = motion_bases
24
+ self.bg = bg_params
25
+ scene_scale = 1.0 if bg_params is None else bg_params.scene_scale
26
+ self.register_buffer("bg_scene_scale", torch.as_tensor(scene_scale))
27
+ self.register_buffer("Ks", Ks)
28
+ self.register_buffer("w2cs", w2cs)
29
+
30
+ self._current_xys = None
31
+ self._current_radii = None
32
+ self._current_img_wh = None
33
+
34
+ @property
35
+ def num_gaussians(self) -> int:
36
+ return self.num_bg_gaussians + self.num_fg_gaussians
37
+
38
+ @property
39
+ def num_bg_gaussians(self) -> int:
40
+ return self.bg.num_gaussians if self.bg is not None else 0
41
+
42
+ @property
43
+ def num_fg_gaussians(self) -> int:
44
+ return self.fg.num_gaussians
45
+
46
+ @property
47
+ def num_motion_bases(self) -> int:
48
+ return self.motion_bases.num_bases
49
+
50
+ @property
51
+ def has_bg(self) -> bool:
52
+ return self.bg is not None
53
+
54
+ def compute_poses_bg(self) -> tuple[torch.Tensor, torch.Tensor]:
55
+ """
56
+ Returns:
57
+ means: (G, B, 3)
58
+ quats: (G, B, 4)
59
+ """
60
+ assert self.bg is not None
61
+ return self.bg.params["means"], self.bg.get_quats()
62
+
63
+ def compute_transforms(
64
+ self, ts: torch.Tensor, inds: torch.Tensor | None = None
65
+ ) -> torch.Tensor:
66
+ coefs = self.fg.get_coefs() # (G, K)
67
+ if inds is not None:
68
+ coefs = coefs[inds]
69
+ transfms = self.motion_bases.compute_transforms(ts, coefs) # (G, B, 3, 4)
70
+ return transfms
71
+
72
+ def compute_poses_fg(
73
+ self, ts: torch.Tensor | None, inds: torch.Tensor | None = None
74
+ ) -> tuple[torch.Tensor, torch.Tensor]:
75
+ """
76
+ :returns means: (G, B, 3), quats: (G, B, 4)
77
+ """
78
+ means = self.fg.params["means"] # (G, 3)
79
+ quats = self.fg.get_quats() # (G, 4)
80
+ if inds is not None:
81
+ means = means[inds]
82
+ quats = quats[inds]
83
+ if ts is not None:
84
+ transfms = self.compute_transforms(ts, inds) # (G, B, 3, 4)
85
+ means = torch.einsum(
86
+ "pnij,pj->pni",
87
+ transfms,
88
+ F.pad(means, (0, 1), value=1.0),
89
+ )
90
+ quats = roma.quat_xyzw_to_wxyz(
91
+ (
92
+ roma.quat_product(
93
+ roma.rotmat_to_unitquat(transfms[..., :3, :3]),
94
+ roma.quat_wxyz_to_xyzw(quats[:, None]),
95
+ )
96
+ )
97
+ )
98
+ quats = F.normalize(quats, p=2, dim=-1)
99
+ else:
100
+ means = means[:, None]
101
+ quats = quats[:, None]
102
+ return means, quats
103
+
104
+ def compute_poses_all(
105
+ self, ts: torch.Tensor | None
106
+ ) -> tuple[torch.Tensor, torch.Tensor]:
107
+ means, quats = self.compute_poses_fg(ts)
108
+ if self.has_bg:
109
+ bg_means, bg_quats = self.compute_poses_bg()
110
+ means = torch.cat(
111
+ [means, bg_means[:, None].expand(-1, means.shape[1], -1)], dim=0
112
+ ).contiguous()
113
+ quats = torch.cat(
114
+ [quats, bg_quats[:, None].expand(-1, means.shape[1], -1)], dim=0
115
+ ).contiguous()
116
+ return means, quats
117
+
118
+ def get_colors_all(self) -> torch.Tensor:
119
+ colors = self.fg.get_colors()
120
+ if self.bg is not None:
121
+ colors = torch.cat([colors, self.bg.get_colors()], dim=0).contiguous()
122
+ return colors
123
+
124
+ def get_scales_all(self) -> torch.Tensor:
125
+ scales = self.fg.get_scales()
126
+ if self.bg is not None:
127
+ scales = torch.cat([scales, self.bg.get_scales()], dim=0).contiguous()
128
+ return scales
129
+
130
+ def get_opacities_all(self) -> torch.Tensor:
131
+ """
132
+ :returns colors: (G, 3), scales: (G, 3), opacities: (G, 1)
133
+ """
134
+ opacities = self.fg.get_opacities()
135
+ if self.bg is not None:
136
+ opacities = torch.cat(
137
+ [opacities, self.bg.get_opacities()], dim=0
138
+ ).contiguous()
139
+ return opacities
140
+
141
+ @staticmethod
142
+ def init_from_state_dict(state_dict, prefix=""):
143
+ fg = GaussianParams.init_from_state_dict(
144
+ state_dict, prefix=f"{prefix}fg.params."
145
+ )
146
+ bg = None
147
+ if any("bg." in k for k in state_dict):
148
+ bg = GaussianParams.init_from_state_dict(
149
+ state_dict, prefix=f"{prefix}bg.params."
150
+ )
151
+ motion_bases = MotionBases.init_from_state_dict(
152
+ state_dict, prefix=f"{prefix}motion_bases.params."
153
+ )
154
+ Ks = state_dict[f"{prefix}Ks"]
155
+ w2cs = state_dict[f"{prefix}w2cs"]
156
+ return SceneModel(Ks, w2cs, fg, motion_bases, bg)
157
+
158
+ def render(
159
+ self,
160
+ # A single time instance for view rendering.
161
+ t: int | None,
162
+ w2cs: torch.Tensor, # (C, 4, 4)
163
+ Ks: torch.Tensor, # (C, 3, 3)
164
+ img_wh: tuple[int, int],
165
+ # Multiple time instances for track rendering: (B,).
166
+ target_ts: torch.Tensor | None = None, # (B)
167
+ target_w2cs: torch.Tensor | None = None, # (B, 4, 4)
168
+ bg_color: torch.Tensor | float = 1.0,
169
+ colors_override: torch.Tensor | None = None,
170
+ means: torch.Tensor | None = None,
171
+ quats: torch.Tensor | None = None,
172
+ target_means: torch.Tensor | None = None,
173
+ return_color: bool = True,
174
+ return_depth: bool = False,
175
+ return_mask: bool = False,
176
+ fg_only: bool = False,
177
+ filter_mask: torch.Tensor | None = None,
178
+ ) -> dict:
179
+ device = w2cs.device
180
+ C = w2cs.shape[0]
181
+
182
+ W, H = img_wh
183
+ pose_fnc = self.compute_poses_fg if fg_only else self.compute_poses_all
184
+ N = self.num_fg_gaussians if fg_only else self.num_gaussians
185
+
186
+ if means is None or quats is None:
187
+ means, quats = pose_fnc(
188
+ torch.tensor([t], device=device) if t is not None else None
189
+ )
190
+ means = means[:, 0]
191
+ quats = quats[:, 0]
192
+
193
+ if colors_override is None:
194
+ if return_color:
195
+ colors_override = (
196
+ self.fg.get_colors() if fg_only else self.get_colors_all()
197
+ )
198
+ else:
199
+ colors_override = torch.zeros(N, 0, device=device)
200
+
201
+ D = colors_override.shape[-1]
202
+
203
+ scales = self.fg.get_scales() if fg_only else self.get_scales_all()
204
+ opacities = self.fg.get_opacities() if fg_only else self.get_opacities_all()
205
+
206
+ if isinstance(bg_color, float):
207
+ bg_color = torch.full((C, D), bg_color, device=device)
208
+ assert isinstance(bg_color, torch.Tensor)
209
+
210
+ mode = "RGB"
211
+ ds_expected = {"img": D}
212
+
213
+ if return_mask:
214
+ if self.has_bg and not fg_only:
215
+ mask_values = torch.zeros((self.num_gaussians, 1), device=device)
216
+ mask_values[: self.num_fg_gaussians] = 1.0
217
+ else:
218
+ mask_values = torch.ones((self.num_fg_gaussians, 1), device=device)
219
+ colors_override = torch.cat([colors_override, mask_values], dim=-1)
220
+ bg_color = torch.cat([bg_color, torch.zeros(C, 1, device=device)], dim=-1)
221
+ ds_expected["mask"] = 1
222
+
223
+ B = 0
224
+ if target_ts is not None:
225
+ B = target_ts.shape[0]
226
+ if target_means is None:
227
+ target_means, _ = pose_fnc(target_ts) # [G, B, 3]
228
+ if target_w2cs is not None:
229
+ target_means = torch.einsum(
230
+ "bij,pbj->pbi",
231
+ target_w2cs[:, :3],
232
+ F.pad(target_means, (0, 1), value=1.0),
233
+ )
234
+ track_3d_vals = target_means.flatten(-2) # (G, B * 3)
235
+ d_track = track_3d_vals.shape[-1]
236
+ colors_override = torch.cat([colors_override, track_3d_vals], dim=-1)
237
+ bg_color = torch.cat(
238
+ [bg_color, torch.zeros(C, track_3d_vals.shape[-1], device=device)],
239
+ dim=-1,
240
+ )
241
+ ds_expected["tracks_3d"] = d_track
242
+
243
+ assert colors_override.shape[-1] == sum(ds_expected.values())
244
+ assert bg_color.shape[-1] == sum(ds_expected.values())
245
+
246
+ if return_depth:
247
+ mode = "RGB+ED"
248
+ ds_expected["depth"] = 1
249
+
250
+ if filter_mask is not None:
251
+ assert filter_mask.shape == (N,)
252
+ means = means[filter_mask]
253
+ quats = quats[filter_mask]
254
+ scales = scales[filter_mask]
255
+ opacities = opacities[filter_mask]
256
+ colors_override = colors_override[filter_mask]
257
+
258
+ render_colors, alphas, info = rasterization(
259
+ means=means,
260
+ quats=quats,
261
+ scales=scales,
262
+ opacities=opacities,
263
+ colors=colors_override,
264
+ backgrounds=bg_color,
265
+ viewmats=w2cs, # [C, 4, 4]
266
+ Ks=Ks, # [C, 3, 3]
267
+ width=W,
268
+ height=H,
269
+ packed=False,
270
+ render_mode=mode,
271
+ )
272
+
273
+ # Populate the current data for adaptive gaussian control.
274
+ if self.training and info["means2d"].requires_grad:
275
+ self._current_xys = info["means2d"]
276
+ self._current_radii = info["radii"]
277
+ self._current_img_wh = img_wh
278
+ # We want to be able to access to xys' gradients later in a
279
+ # torch.no_grad context.
280
+ self._current_xys.retain_grad()
281
+
282
+ assert render_colors.shape[-1] == sum(ds_expected.values())
283
+ outputs = torch.split(render_colors, list(ds_expected.values()), dim=-1)
284
+ out_dict = {}
285
+ for i, (name, dim) in enumerate(ds_expected.items()):
286
+ x = outputs[i]
287
+ assert x.shape[-1] == dim, f"{x.shape[-1]=} != {dim=}"
288
+ if name == "tracks_3d":
289
+ x = x.reshape(C, H, W, B, 3)
290
+ out_dict[name] = x
291
+ out_dict["acc"] = alphas
292
+ return out_dict
Davis_out/hike/code/2024-10-27-121029/flow3d/tensor_dataclass.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from typing import Callable, TypeVar
3
+
4
+ import torch
5
+ from typing_extensions import Self
6
+
7
+ TensorDataclassT = TypeVar("T", bound="TensorDataclass")
8
+
9
+
10
+ class TensorDataclass:
11
+ """A lighter version of nerfstudio's TensorDataclass:
12
+ https://github.com/nerfstudio-project/nerfstudio/blob/main/nerfstudio/utils/tensor_dataclass.py
13
+ """
14
+
15
+ def __getitem__(self, key) -> Self:
16
+ return self.map(lambda x: x[key])
17
+
18
+ def to(self, device: torch.device | str) -> Self:
19
+ """Move the tensors in the dataclass to the given device.
20
+
21
+ Args:
22
+ device: The device to move to.
23
+
24
+ Returns:
25
+ A new dataclass.
26
+ """
27
+ return self.map(lambda x: x.to(device))
28
+
29
+ def map(self, fn: Callable[[torch.Tensor], torch.Tensor]) -> Self:
30
+ """Apply a function to all tensors in the dataclass.
31
+
32
+ Also recurses into lists, tuples, and dictionaries.
33
+
34
+ Args:
35
+ fn: The function to apply to each tensor.
36
+
37
+ Returns:
38
+ A new dataclass.
39
+ """
40
+
41
+ MapT = TypeVar("MapT")
42
+
43
+ def _map_impl(
44
+ fn: Callable[[torch.Tensor], torch.Tensor],
45
+ val: MapT,
46
+ ) -> MapT:
47
+ if isinstance(val, torch.Tensor):
48
+ return fn(val)
49
+ elif isinstance(val, TensorDataclass):
50
+ return type(val)(**_map_impl(fn, vars(val)))
51
+ elif isinstance(val, (list, tuple)):
52
+ return type(val)(_map_impl(fn, v) for v in val)
53
+ elif isinstance(val, dict):
54
+ assert type(val) is dict # No subclass support.
55
+ return {k: _map_impl(fn, v) for k, v in val.items()} # type: ignore
56
+ else:
57
+ return val
58
+
59
+ return _map_impl(fn, self)
60
+
61
+
62
+ @dataclass
63
+ class TrackObservations(TensorDataclass):
64
+ xyz: torch.Tensor
65
+ visibles: torch.Tensor
66
+ invisibles: torch.Tensor
67
+ confidences: torch.Tensor
68
+ colors: torch.Tensor
69
+
70
+ def check_sizes(self) -> bool:
71
+ dims = self.xyz.shape[:-1]
72
+ return (
73
+ self.visibles.shape == dims
74
+ and self.invisibles.shape == dims
75
+ and self.confidences.shape == dims
76
+ and self.colors.shape[:-1] == dims[:-1]
77
+ and self.xyz.shape[-1] == 3
78
+ and self.colors.shape[-1] == 3
79
+ )
80
+
81
+ def filter_valid(self, valid_mask: torch.Tensor) -> Self:
82
+ return self.map(lambda x: x[valid_mask])
83
+
84
+
85
+ @dataclass
86
+ class StaticObservations(TensorDataclass):
87
+ xyz: torch.Tensor
88
+ normals: torch.Tensor
89
+ colors: torch.Tensor
90
+
91
+ def check_sizes(self) -> bool:
92
+ dims = self.xyz.shape
93
+ return self.normals.shape == dims and self.colors.shape == dims
94
+
95
+ def filter_valid(self, valid_mask: torch.Tensor) -> Self:
96
+ return self.map(lambda x: x[valid_mask])
Davis_out/hike/code/2024-10-27-121029/flow3d/trainer.py ADDED
@@ -0,0 +1,805 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import functools
2
+ import time
3
+ from dataclasses import asdict
4
+ from typing import cast
5
+
6
+ import numpy as np
7
+ import torch
8
+ import torch.nn.functional as F
9
+ from loguru import logger as guru
10
+ from nerfview import CameraState
11
+ from pytorch_msssim import SSIM
12
+ from torch.utils.tensorboard import SummaryWriter # type: ignore
13
+
14
+ from flow3d.configs import LossesConfig, OptimizerConfig, SceneLRConfig
15
+ from flow3d.loss_utils import (
16
+ compute_gradient_loss,
17
+ compute_se3_smoothness_loss,
18
+ compute_z_acc_loss,
19
+ masked_l1_loss,
20
+ )
21
+ from flow3d.metrics import PCK, mLPIPS, mPSNR, mSSIM
22
+ from flow3d.scene_model import SceneModel
23
+ from flow3d.vis.utils import get_server
24
+ from flow3d.vis.viewer import DynamicViewer
25
+
26
+
27
+ class Trainer:
28
+ def __init__(
29
+ self,
30
+ model: SceneModel,
31
+ device: torch.device,
32
+ lr_cfg: SceneLRConfig,
33
+ losses_cfg: LossesConfig,
34
+ optim_cfg: OptimizerConfig,
35
+ # Logging.
36
+ work_dir: str,
37
+ port: int | None = None,
38
+ log_every: int = 10,
39
+ checkpoint_every: int = 200,
40
+ validate_every: int = 500,
41
+ validate_video_every: int = 1000,
42
+ validate_viewer_assets_every: int = 100,
43
+ ):
44
+
45
+ self.device = device
46
+ self.log_every = log_every
47
+ self.checkpoint_every = checkpoint_every
48
+ self.validate_every = validate_every
49
+ self.validate_video_every = validate_video_every
50
+ self.validate_viewer_assets_every = validate_viewer_assets_every
51
+
52
+ self.model = model
53
+ self.num_frames = model.num_frames
54
+
55
+ self.lr_cfg = lr_cfg
56
+ self.losses_cfg = losses_cfg
57
+ self.optim_cfg = optim_cfg
58
+
59
+ self.reset_opacity_every = (
60
+ self.optim_cfg.reset_opacity_every_n_controls * self.optim_cfg.control_every
61
+ )
62
+ self.optimizers, self.scheduler = self.configure_optimizers()
63
+
64
+ # running stats for adaptive density control
65
+ self.running_stats = {
66
+ "xys_grad_norm_acc": torch.zeros(self.model.num_gaussians, device=device),
67
+ "vis_count": torch.zeros(
68
+ self.model.num_gaussians, device=device, dtype=torch.int64
69
+ ),
70
+ "max_radii": torch.zeros(self.model.num_gaussians, device=device),
71
+ }
72
+
73
+ self.work_dir = work_dir
74
+ self.writer = SummaryWriter(log_dir=work_dir)
75
+ self.global_step = 0
76
+ self.epoch = 0
77
+
78
+ self.viewer = None
79
+ if port is not None:
80
+ server = get_server(port=port)
81
+ self.viewer = DynamicViewer(
82
+ server, self.render_fn, model.num_frames, work_dir, mode="training"
83
+ )
84
+
85
+ # metrics
86
+ self.ssim = SSIM(data_range=1.0, size_average=True, channel=3)
87
+ self.psnr_metric = mPSNR()
88
+ self.ssim_metric = mSSIM()
89
+ self.lpips_metric = mLPIPS()
90
+ self.pck_metric = PCK()
91
+ self.bg_psnr_metric = mPSNR()
92
+ self.fg_psnr_metric = mPSNR()
93
+ self.bg_ssim_metric = mSSIM()
94
+ self.fg_ssim_metric = mSSIM()
95
+ self.bg_lpips_metric = mLPIPS()
96
+ self.fg_lpips_metric = mLPIPS()
97
+
98
+ def set_epoch(self, epoch: int):
99
+ self.epoch = epoch
100
+
101
+ def save_checkpoint(self, path: str):
102
+ model_dict = self.model.state_dict()
103
+ optimizer_dict = {k: v.state_dict() for k, v in self.optimizers.items()}
104
+ scheduler_dict = {k: v.state_dict() for k, v in self.scheduler.items()}
105
+ ckpt = {
106
+ "model": model_dict,
107
+ "optimizers": optimizer_dict,
108
+ "schedulers": scheduler_dict,
109
+ "global_step": self.global_step,
110
+ "epoch": self.epoch,
111
+ }
112
+ torch.save(ckpt, path)
113
+ guru.info(f"Saved checkpoint at {self.global_step=} to {path}")
114
+
115
+ @staticmethod
116
+ def init_from_checkpoint(
117
+ path: str, device: torch.device, *args, **kwargs
118
+ ) -> tuple["Trainer", int]:
119
+ guru.info(f"Loading checkpoint from {path}")
120
+ ckpt = torch.load(path)
121
+ state_dict = ckpt["model"]
122
+ model = SceneModel.init_from_state_dict(state_dict)
123
+ model = model.to(device)
124
+ trainer = Trainer(model, device, *args, **kwargs)
125
+ if "optimizers" in ckpt:
126
+ trainer.load_checkpoint_optimizers(ckpt["optimizers"])
127
+ if "schedulers" in ckpt:
128
+ trainer.load_checkpoint_schedulers(ckpt["schedulers"])
129
+ trainer.global_step = ckpt.get("global_step", 0)
130
+ start_epoch = ckpt.get("epoch", 0)
131
+ trainer.set_epoch(start_epoch)
132
+ return trainer, start_epoch
133
+
134
+ def load_checkpoint_optimizers(self, opt_ckpt):
135
+ for k, v in self.optimizers.items():
136
+ v.load_state_dict(opt_ckpt[k])
137
+
138
+ def load_checkpoint_schedulers(self, sched_ckpt):
139
+ for k, v in self.scheduler.items():
140
+ v.load_state_dict(sched_ckpt[k])
141
+
142
+ @torch.inference_mode()
143
+ def render_fn(self, camera_state: CameraState, img_wh: tuple[int, int]):
144
+ W, H = img_wh
145
+
146
+ focal = 0.5 * H / np.tan(0.5 * camera_state.fov).item()
147
+ K = torch.tensor(
148
+ [[focal, 0.0, W / 2.0], [0.0, focal, H / 2.0], [0.0, 0.0, 1.0]],
149
+ device=self.device,
150
+ )
151
+ w2c = torch.linalg.inv(
152
+ torch.from_numpy(camera_state.c2w.astype(np.float32)).to(self.device)
153
+ )
154
+ t = 0
155
+ if self.viewer is not None:
156
+ t = (
157
+ int(self.viewer._playback_guis[0].value)
158
+ if not self.viewer._canonical_checkbox.value
159
+ else None
160
+ )
161
+ self.model.training = False
162
+ img = self.model.render(t, w2c[None], K[None], img_wh)["img"][0]
163
+ return (img.cpu().numpy() * 255.0).astype(np.uint8)
164
+
165
+ def train_step(self, batch):
166
+ if self.viewer is not None:
167
+ while self.viewer.state.status == "paused":
168
+ time.sleep(0.1)
169
+ self.viewer.lock.acquire()
170
+
171
+ loss, stats, num_rays_per_step, num_rays_per_sec = self.compute_losses(batch)
172
+ if loss.isnan():
173
+ guru.info(f"Loss is NaN at step {self.global_step}!!")
174
+ import ipdb
175
+
176
+ ipdb.set_trace()
177
+ loss.backward()
178
+
179
+ for opt in self.optimizers.values():
180
+ opt.step()
181
+ opt.zero_grad(set_to_none=True)
182
+ for sched in self.scheduler.values():
183
+ sched.step()
184
+
185
+ self.log_dict(stats)
186
+ self.global_step += 1
187
+ self.run_control_steps()
188
+
189
+ if self.viewer is not None:
190
+ self.viewer.lock.release()
191
+ self.viewer.state.num_train_rays_per_sec = num_rays_per_sec
192
+ if self.viewer.mode == "training":
193
+ self.viewer.update(self.global_step, num_rays_per_step)
194
+
195
+ if self.global_step % self.checkpoint_every == 0:
196
+ self.save_checkpoint(f"{self.work_dir}/checkpoints/last.ckpt")
197
+
198
+ return loss.item()
199
+
200
+ def compute_losses(self, batch):
201
+ self.model.training = True
202
+ B = batch["imgs"].shape[0]
203
+ W, H = img_wh = batch["imgs"].shape[2:0:-1]
204
+ N = batch["target_ts"][0].shape[0]
205
+
206
+ # (B,).
207
+ ts = batch["ts"]
208
+ # (B, 4, 4).
209
+ w2cs = batch["w2cs"]
210
+ # (B, 3, 3).
211
+ Ks = batch["Ks"]
212
+ # (B, H, W, 3).
213
+ imgs = batch["imgs"]
214
+ # (B, H, W).
215
+ valid_masks = batch.get("valid_masks", torch.ones_like(batch["imgs"][..., 0]))
216
+ # (B, H, W).
217
+ masks = batch["masks"]
218
+ masks *= valid_masks
219
+ # (B, H, W).
220
+ depths = batch["depths"]
221
+ # [(P, 2), ...].
222
+ query_tracks_2d = batch["query_tracks_2d"]
223
+ # [(N,), ...].
224
+ target_ts = batch["target_ts"]
225
+ # [(N, 4, 4), ...].
226
+ target_w2cs = batch["target_w2cs"]
227
+ # [(N, 3, 3), ...].
228
+ target_Ks = batch["target_Ks"]
229
+ # [(N, P, 2), ...].
230
+ target_tracks_2d = batch["target_tracks_2d"]
231
+ # [(N, P), ...].
232
+ target_visibles = batch["target_visibles"]
233
+ # [(N, P), ...].
234
+ target_invisibles = batch["target_invisibles"]
235
+ # [(N, P), ...].
236
+ target_confidences = batch["target_confidences"]
237
+ # [(N, P), ...].
238
+ target_track_depths = batch["target_track_depths"]
239
+
240
+ _tic = time.time()
241
+ # (B, G, 3).
242
+ means, quats = self.model.compute_poses_all(ts) # (G, B, 3), (G, B, 4)
243
+ device = means.device
244
+ means = means.transpose(0, 1)
245
+ quats = quats.transpose(0, 1)
246
+ # [(N, G, 3), ...].
247
+ target_ts_vec = torch.cat(target_ts)
248
+ # (B * N, G, 3).
249
+ target_means, _ = self.model.compute_poses_all(target_ts_vec)
250
+ target_means = target_means.transpose(0, 1)
251
+ target_mean_list = target_means.split(N)
252
+ num_frames = self.model.num_frames
253
+
254
+ loss = 0.0
255
+
256
+ bg_colors = []
257
+ rendered_all = []
258
+ self._batched_xys = []
259
+ self._batched_radii = []
260
+ self._batched_img_wh = []
261
+ for i in range(B):
262
+ bg_color = torch.ones(1, 3, device=device)
263
+ rendered = self.model.render(
264
+ ts[i].item(),
265
+ w2cs[None, i],
266
+ Ks[None, i],
267
+ img_wh,
268
+ target_ts=target_ts[i],
269
+ target_w2cs=target_w2cs[i],
270
+ bg_color=bg_color,
271
+ means=means[i],
272
+ quats=quats[i],
273
+ target_means=target_mean_list[i].transpose(0, 1),
274
+ return_depth=True,
275
+ return_mask=self.model.has_bg,
276
+ )
277
+ rendered_all.append(rendered)
278
+ bg_colors.append(bg_color)
279
+ if (
280
+ self.model._current_xys is not None
281
+ and self.model._current_radii is not None
282
+ and self.model._current_img_wh is not None
283
+ ):
284
+ self._batched_xys.append(self.model._current_xys)
285
+ self._batched_radii.append(self.model._current_radii)
286
+ self._batched_img_wh.append(self.model._current_img_wh)
287
+
288
+ # Necessary to make viewer work.
289
+ num_rays_per_step = H * W * B
290
+ num_rays_per_sec = num_rays_per_step / (time.time() - _tic)
291
+
292
+ # (B, H, W, N, *).
293
+ rendered_all = {
294
+ key: (
295
+ torch.cat([out_dict[key] for out_dict in rendered_all], dim=0)
296
+ if rendered_all[0][key] is not None
297
+ else None
298
+ )
299
+ for key in rendered_all[0]
300
+ }
301
+ bg_colors = torch.cat(bg_colors, dim=0)
302
+
303
+ # Compute losses.
304
+ # (B * N).
305
+ frame_intervals = (ts.repeat_interleave(N) - target_ts_vec).abs()
306
+ if not self.model.has_bg:
307
+ imgs = (
308
+ imgs * masks[..., None]
309
+ + (1.0 - masks[..., None]) * bg_colors[:, None, None]
310
+ )
311
+ else:
312
+ imgs = (
313
+ imgs * valid_masks[..., None]
314
+ + (1.0 - valid_masks[..., None]) * bg_colors[:, None, None]
315
+ )
316
+ # (P_all, 2).
317
+ tracks_2d = torch.cat([x.reshape(-1, 2) for x in target_tracks_2d], dim=0)
318
+ # (P_all,)
319
+ visibles = torch.cat([x.reshape(-1) for x in target_visibles], dim=0)
320
+ # (P_all,)
321
+ confidences = torch.cat([x.reshape(-1) for x in target_confidences], dim=0)
322
+
323
+ # RGB loss.
324
+ rendered_imgs = cast(torch.Tensor, rendered_all["img"])
325
+ if self.model.has_bg:
326
+ rendered_imgs = (
327
+ rendered_imgs * valid_masks[..., None]
328
+ + (1.0 - valid_masks[..., None]) * bg_colors[:, None, None]
329
+ )
330
+ rgb_loss = 0.8 * F.l1_loss(rendered_imgs, imgs) + 0.2 * (
331
+ 1 - self.ssim(rendered_imgs.permute(0, 3, 1, 2), imgs.permute(0, 3, 1, 2))
332
+ )
333
+ loss += rgb_loss * self.losses_cfg.w_rgb
334
+
335
+ # Mask loss.
336
+ if not self.model.has_bg:
337
+ mask_loss = F.mse_loss(rendered_all["acc"], masks[..., None]) # type: ignore
338
+ else:
339
+ mask_loss = F.mse_loss(
340
+ rendered_all["acc"], torch.ones_like(rendered_all["acc"]) # type: ignore
341
+ ) + masked_l1_loss(
342
+ rendered_all["mask"],
343
+ masks[..., None],
344
+ quantile=0.98, # type: ignore
345
+ )
346
+ loss += mask_loss * self.losses_cfg.w_mask
347
+
348
+ # (B * N, H * W, 3).
349
+ pred_tracks_3d = (
350
+ rendered_all["tracks_3d"].permute(0, 3, 1, 2, 4).reshape(-1, H * W, 3) # type: ignore
351
+ )
352
+ pred_tracks_2d = torch.einsum(
353
+ "bij,bpj->bpi", torch.cat(target_Ks), pred_tracks_3d
354
+ )
355
+ # (B * N, H * W, 1).
356
+ mapped_depth = torch.clamp(pred_tracks_2d[..., 2:], min=1e-6)
357
+ # (B * N, H * W, 2).
358
+ pred_tracks_2d = pred_tracks_2d[..., :2] / mapped_depth
359
+
360
+ # (B * N).
361
+ w_interval = torch.exp(-2 * frame_intervals / num_frames)
362
+ # w_track_loss = min(1, (self.max_steps - self.global_step) / 6000)
363
+ track_weights = confidences[..., None] * w_interval
364
+
365
+ # (B, H, W).
366
+ masks_flatten = torch.zeros_like(masks)
367
+ for i in range(B):
368
+ # This takes advantage of the fact that the query 2D tracks are
369
+ # always on the grid.
370
+ query_pixels = query_tracks_2d[i].to(torch.int64)
371
+ masks_flatten[i, query_pixels[:, 1], query_pixels[:, 0]] = 1.0
372
+ # (B * N, H * W).
373
+ masks_flatten = (
374
+ masks_flatten.reshape(-1, H * W).tile(1, N).reshape(-1, H * W) > 0.5
375
+ )
376
+
377
+ track_2d_loss = masked_l1_loss(
378
+ pred_tracks_2d[masks_flatten][visibles],
379
+ tracks_2d[visibles],
380
+ mask=track_weights[visibles],
381
+ quantile=0.98,
382
+ ) / max(H, W)
383
+ loss += track_2d_loss * self.losses_cfg.w_track
384
+
385
+ depth_masks = (
386
+ masks[..., None] if not self.model.has_bg else valid_masks[..., None]
387
+ )
388
+
389
+ pred_depth = cast(torch.Tensor, rendered_all["depth"])
390
+ pred_disp = 1.0 / (pred_depth + 1e-5)
391
+ tgt_disp = 1.0 / (depths[..., None] + 1e-5)
392
+ depth_loss = masked_l1_loss(
393
+ pred_disp,
394
+ tgt_disp,
395
+ mask=depth_masks,
396
+ quantile=0.98,
397
+ )
398
+ # depth_loss = cauchy_loss_with_uncertainty(
399
+ # pred_disp.squeeze(-1),
400
+ # tgt_disp.squeeze(-1),
401
+ # depth_masks.squeeze(-1),
402
+ # self.depth_uncertainty_activation(self.depth_uncertainties)[ts],
403
+ # bias=1e-3,
404
+ # )
405
+ loss += depth_loss * self.losses_cfg.w_depth_reg
406
+
407
+ # mapped depth loss (using cached depth with EMA)
408
+ # mapped_depth_loss = 0.0
409
+ mapped_depth_gt = torch.cat([x.reshape(-1) for x in target_track_depths], dim=0)
410
+ mapped_depth_loss = masked_l1_loss(
411
+ 1 / (mapped_depth[masks_flatten][visibles] + 1e-5),
412
+ 1 / (mapped_depth_gt[visibles, None] + 1e-5),
413
+ track_weights[visibles],
414
+ )
415
+
416
+ loss += mapped_depth_loss * self.losses_cfg.w_depth_const
417
+
418
+ # depth_gradient_loss = 0.0
419
+ depth_gradient_loss = compute_gradient_loss(
420
+ pred_disp,
421
+ tgt_disp,
422
+ mask=depth_masks > 0.5,
423
+ quantile=0.95,
424
+ )
425
+ # depth_gradient_loss = compute_gradient_loss(
426
+ # pred_disps,
427
+ # ref_disps,
428
+ # mask=depth_masks.squeeze(-1) > 0.5,
429
+ # c=depth_uncertainty.detach(),
430
+ # mode="l1",
431
+ # bias=1e-3,
432
+ # )
433
+ loss += depth_gradient_loss * self.losses_cfg.w_depth_grad
434
+
435
+ # bases should be smooth.
436
+ small_accel_loss = compute_se3_smoothness_loss(
437
+ self.model.motion_bases.params["rots"],
438
+ self.model.motion_bases.params["transls"],
439
+ )
440
+ loss += small_accel_loss * self.losses_cfg.w_smooth_bases
441
+
442
+ # tracks should be smooth
443
+ ts = torch.clamp(ts, min=1, max=num_frames - 2)
444
+ ts_neighbors = torch.cat((ts - 1, ts, ts + 1))
445
+ transfms_nbs = self.model.compute_transforms(ts_neighbors) # (G, 3n, 3, 4)
446
+ means_fg_nbs = torch.einsum(
447
+ "pnij,pj->pni",
448
+ transfms_nbs,
449
+ F.pad(self.model.fg.params["means"], (0, 1), value=1.0),
450
+ )
451
+ means_fg_nbs = means_fg_nbs.reshape(
452
+ means_fg_nbs.shape[0], 3, -1, 3
453
+ ) # [G, 3, n, 3]
454
+ if self.losses_cfg.w_smooth_tracks > 0:
455
+ small_accel_loss_tracks = 0.5 * (
456
+ (2 * means_fg_nbs[:, 1:-1] - means_fg_nbs[:, :-2] - means_fg_nbs[:, 2:])
457
+ .norm(dim=-1)
458
+ .mean()
459
+ )
460
+ loss += small_accel_loss_tracks * self.losses_cfg.w_smooth_tracks
461
+
462
+ # Constrain the std of scales.
463
+ # TODO: do we want to penalize before or after exp?
464
+ loss += (
465
+ self.losses_cfg.w_scale_var
466
+ * torch.var(self.model.fg.params["scales"], dim=-1).mean()
467
+ )
468
+ if self.model.bg is not None:
469
+ loss += (
470
+ self.losses_cfg.w_scale_var
471
+ * torch.var(self.model.bg.params["scales"], dim=-1).mean()
472
+ )
473
+
474
+ # # sparsity loss
475
+ # loss += 0.01 * self.opacity_activation(self.opacities).abs().mean()
476
+
477
+ # Acceleration along ray direction should be small.
478
+ z_accel_loss = compute_z_acc_loss(means_fg_nbs, w2cs)
479
+ loss += self.losses_cfg.w_z_accel * z_accel_loss
480
+
481
+ # Prepare stats for logging.
482
+ stats = {
483
+ "train/loss": loss.item(),
484
+ "train/rgb_loss": rgb_loss.item(),
485
+ "train/mask_loss": mask_loss.item(),
486
+ "train/depth_loss": depth_loss.item(),
487
+ "train/depth_gradient_loss": depth_gradient_loss.item(),
488
+ "train/mapped_depth_loss": mapped_depth_loss.item(),
489
+ "train/track_2d_loss": track_2d_loss.item(),
490
+ "train/small_accel_loss": small_accel_loss.item(),
491
+ "train/z_acc_loss": z_accel_loss.item(),
492
+ "train/num_gaussians": self.model.num_gaussians,
493
+ "train/num_fg_gaussians": self.model.num_fg_gaussians,
494
+ "train/num_bg_gaussians": self.model.num_bg_gaussians,
495
+ }
496
+
497
+ # Compute metrics.
498
+ with torch.no_grad():
499
+ psnr = self.psnr_metric(
500
+ rendered_imgs, imgs, masks if not self.model.has_bg else valid_masks
501
+ )
502
+ self.psnr_metric.reset()
503
+ stats["train/psnr"] = psnr
504
+ if self.model.has_bg:
505
+ bg_psnr = self.bg_psnr_metric(rendered_imgs, imgs, 1.0 - masks)
506
+ fg_psnr = self.fg_psnr_metric(rendered_imgs, imgs, masks)
507
+ self.bg_psnr_metric.reset()
508
+ self.fg_psnr_metric.reset()
509
+ stats["train/bg_psnr"] = bg_psnr
510
+ stats["train/fg_psnr"] = fg_psnr
511
+
512
+ stats.update(
513
+ **{
514
+ "train/num_rays_per_sec": num_rays_per_sec,
515
+ "train/num_rays_per_step": float(num_rays_per_step),
516
+ }
517
+ )
518
+
519
+ return loss, stats, num_rays_per_step, num_rays_per_sec
520
+
521
+ def log_dict(self, stats: dict):
522
+ for k, v in stats.items():
523
+ self.writer.add_scalar(k, v, self.global_step)
524
+
525
+ def run_control_steps(self):
526
+ global_step = self.global_step
527
+ # Adaptive gaussian control.
528
+ cfg = self.optim_cfg
529
+ num_frames = self.model.num_frames
530
+ ready = self._prepare_control_step()
531
+ if (
532
+ ready
533
+ and global_step > cfg.warmup_steps
534
+ and global_step % cfg.control_every == 0
535
+ and global_step < cfg.stop_control_steps
536
+ ):
537
+ if (
538
+ global_step < cfg.stop_densify_steps
539
+ and global_step % self.reset_opacity_every > num_frames
540
+ ):
541
+ self._densify_control_step(global_step)
542
+ if global_step % self.reset_opacity_every > min(3 * num_frames, 1000):
543
+ self._cull_control_step(global_step)
544
+ if global_step % self.reset_opacity_every == 0:
545
+ self._reset_opacity_control_step()
546
+
547
+ # Reset stats after every control.
548
+ for k in self.running_stats:
549
+ self.running_stats[k].zero_()
550
+
551
+ @torch.no_grad()
552
+ def _prepare_control_step(self) -> bool:
553
+ # Prepare for adaptive gaussian control based on the current stats.
554
+ if not (
555
+ self.model._current_radii is not None
556
+ and self.model._current_xys is not None
557
+ ):
558
+ guru.warning("Model not training, skipping control step preparation")
559
+ return False
560
+
561
+ batch_size = len(self._batched_xys)
562
+ # these quantities are for each rendered view and have shapes (C, G, *)
563
+ # must be aggregated over all views
564
+ for _current_xys, _current_radii, _current_img_wh in zip(
565
+ self._batched_xys, self._batched_radii, self._batched_img_wh
566
+ ):
567
+ sel = _current_radii > 0
568
+ gidcs = torch.where(sel)[1]
569
+ # normalize grads to [-1, 1] screen space
570
+ xys_grad = _current_xys.grad.clone()
571
+ xys_grad[..., 0] *= _current_img_wh[0] / 2.0 * batch_size
572
+ xys_grad[..., 1] *= _current_img_wh[1] / 2.0 * batch_size
573
+ self.running_stats["xys_grad_norm_acc"].index_add_(
574
+ 0, gidcs, xys_grad[sel].norm(dim=-1)
575
+ )
576
+ self.running_stats["vis_count"].index_add_(
577
+ 0, gidcs, torch.ones_like(gidcs, dtype=torch.int64)
578
+ )
579
+ max_radii = torch.maximum(
580
+ self.running_stats["max_radii"].index_select(0, gidcs),
581
+ _current_radii[sel] / max(_current_img_wh),
582
+ )
583
+ self.running_stats["max_radii"].index_put((gidcs,), max_radii)
584
+ return True
585
+
586
+ @torch.no_grad()
587
+ def _densify_control_step(self, global_step):
588
+ assert (self.running_stats["vis_count"] > 0).any()
589
+
590
+ cfg = self.optim_cfg
591
+ xys_grad_avg = self.running_stats["xys_grad_norm_acc"] / self.running_stats[
592
+ "vis_count"
593
+ ].clamp_min(1)
594
+ is_grad_too_high = xys_grad_avg > cfg.densify_xys_grad_threshold
595
+ # Split gaussians.
596
+ scales = self.model.get_scales_all()
597
+ is_scale_too_big = scales.amax(dim=-1) > cfg.densify_scale_threshold
598
+ if global_step < cfg.stop_control_by_screen_steps:
599
+ is_radius_too_big = (
600
+ self.running_stats["max_radii"] > cfg.densify_screen_threshold
601
+ )
602
+ else:
603
+ is_radius_too_big = torch.zeros_like(is_grad_too_high, dtype=torch.bool)
604
+
605
+ should_split = is_grad_too_high & (is_scale_too_big | is_radius_too_big)
606
+ should_dup = is_grad_too_high & ~is_scale_too_big
607
+
608
+ num_fg = self.model.num_fg_gaussians
609
+ should_fg_split = should_split[:num_fg]
610
+ num_fg_splits = int(should_fg_split.sum().item())
611
+ should_fg_dup = should_dup[:num_fg]
612
+ num_fg_dups = int(should_fg_dup.sum().item())
613
+
614
+ should_bg_split = should_split[num_fg:]
615
+ num_bg_splits = int(should_bg_split.sum().item())
616
+ should_bg_dup = should_dup[num_fg:]
617
+ num_bg_dups = int(should_bg_dup.sum().item())
618
+
619
+ fg_param_map = self.model.fg.densify_params(should_fg_split, should_fg_dup)
620
+ for param_name, new_params in fg_param_map.items():
621
+ full_param_name = f"fg.params.{param_name}"
622
+ optimizer = self.optimizers[full_param_name]
623
+ dup_in_optim(
624
+ optimizer,
625
+ [new_params],
626
+ should_fg_split,
627
+ num_fg_splits * 2 + num_fg_dups,
628
+ )
629
+
630
+ if self.model.bg is not None:
631
+ bg_param_map = self.model.bg.densify_params(should_bg_split, should_bg_dup)
632
+ for param_name, new_params in bg_param_map.items():
633
+ full_param_name = f"bg.params.{param_name}"
634
+ optimizer = self.optimizers[full_param_name]
635
+ dup_in_optim(
636
+ optimizer,
637
+ [new_params],
638
+ should_bg_split,
639
+ num_bg_splits * 2 + num_bg_dups,
640
+ )
641
+
642
+ # update running stats
643
+ for k, v in self.running_stats.items():
644
+ v_fg, v_bg = v[:num_fg], v[num_fg:]
645
+ new_v = torch.cat(
646
+ [
647
+ v_fg[~should_fg_split],
648
+ v_fg[should_fg_dup],
649
+ v_fg[should_fg_split].repeat(2),
650
+ v_bg[~should_bg_split],
651
+ v_bg[should_bg_dup],
652
+ v_bg[should_bg_split].repeat(2),
653
+ ],
654
+ dim=0,
655
+ )
656
+ self.running_stats[k] = new_v
657
+ guru.info(
658
+ f"Split {should_split.sum().item()} gaussians, "
659
+ f"Duplicated {should_dup.sum().item()} gaussians, "
660
+ f"{self.model.num_gaussians} gaussians left"
661
+ )
662
+
663
+ @torch.no_grad()
664
+ def _cull_control_step(self, global_step):
665
+ # Cull gaussians.
666
+ cfg = self.optim_cfg
667
+ opacities = self.model.get_opacities_all()
668
+ device = opacities.device
669
+ is_opacity_too_small = opacities < cfg.cull_opacity_threshold
670
+ is_radius_too_big = torch.zeros_like(is_opacity_too_small, dtype=torch.bool)
671
+ is_scale_too_big = torch.zeros_like(is_opacity_too_small, dtype=torch.bool)
672
+ cull_scale_threshold = (
673
+ torch.ones(len(is_scale_too_big), device=device) * cfg.cull_scale_threshold
674
+ )
675
+ num_fg = self.model.num_fg_gaussians
676
+ cull_scale_threshold[num_fg:] *= self.model.bg_scene_scale
677
+ if global_step > self.reset_opacity_every:
678
+ scales = self.model.get_scales_all()
679
+ is_scale_too_big = scales.amax(dim=-1) > cull_scale_threshold
680
+ if global_step < cfg.stop_control_by_screen_steps:
681
+ is_radius_too_big = (
682
+ self.running_stats["max_radii"] > cfg.cull_screen_threshold
683
+ )
684
+ should_cull = is_opacity_too_small | is_radius_too_big | is_scale_too_big
685
+ should_fg_cull = should_cull[:num_fg]
686
+ should_bg_cull = should_cull[num_fg:]
687
+
688
+ fg_param_map = self.model.fg.cull_params(should_fg_cull)
689
+ for param_name, new_params in fg_param_map.items():
690
+ full_param_name = f"fg.params.{param_name}"
691
+ optimizer = self.optimizers[full_param_name]
692
+ remove_from_optim(optimizer, [new_params], should_fg_cull)
693
+
694
+ if self.model.bg is not None:
695
+ bg_param_map = self.model.bg.cull_params(should_bg_cull)
696
+ for param_name, new_params in bg_param_map.items():
697
+ full_param_name = f"bg.params.{param_name}"
698
+ optimizer = self.optimizers[full_param_name]
699
+ remove_from_optim(optimizer, [new_params], should_bg_cull)
700
+
701
+ # update running stats
702
+ for k, v in self.running_stats.items():
703
+ self.running_stats[k] = v[~should_cull]
704
+
705
+ guru.info(
706
+ f"Culled {should_cull.sum().item()} gaussians, "
707
+ f"{self.model.num_gaussians} gaussians left"
708
+ )
709
+
710
+ @torch.no_grad()
711
+ def _reset_opacity_control_step(self):
712
+ # Reset gaussian opacities.
713
+ new_val = torch.logit(torch.tensor(0.8 * self.optim_cfg.cull_opacity_threshold))
714
+ for part in ["fg", "bg"]:
715
+ part_params = getattr(self.model, part).reset_opacities(new_val)
716
+ # Modify optimizer states by new assignment.
717
+ for param_name, new_params in part_params.items():
718
+ full_param_name = f"{part}.params.{param_name}"
719
+ optimizer = self.optimizers[full_param_name]
720
+ reset_in_optim(optimizer, [new_params])
721
+ guru.info("Reset opacities")
722
+
723
+ def configure_optimizers(self):
724
+ def _exponential_decay(step, *, lr_init, lr_final):
725
+ t = np.clip(step / self.optim_cfg.max_steps, 0.0, 1.0)
726
+ lr = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t)
727
+ return lr / lr_init
728
+
729
+ lr_dict = asdict(self.lr_cfg)
730
+ optimizers = {}
731
+ schedulers = {}
732
+ # named parameters will be [part].params.[field]
733
+ # e.g. fg.params.means
734
+ # lr config is a nested dict for each fg/bg part
735
+ for name, params in self.model.named_parameters():
736
+ part, _, field = name.split(".")
737
+ lr = lr_dict[part][field]
738
+ optim = torch.optim.Adam([{"params": params, "lr": lr, "name": name}])
739
+
740
+ if "scales" in name:
741
+ fnc = functools.partial(_exponential_decay, lr_final=0.1 * lr)
742
+ else:
743
+ fnc = lambda _, **__: 1.0
744
+
745
+ optimizers[name] = optim
746
+ schedulers[name] = torch.optim.lr_scheduler.LambdaLR(
747
+ optim, functools.partial(fnc, lr_init=lr)
748
+ )
749
+ return optimizers, schedulers
750
+
751
+
752
+ def dup_in_optim(optimizer, new_params: list, should_dup: torch.Tensor, num_dups: int):
753
+ assert len(optimizer.param_groups) == len(new_params)
754
+ for i, p_new in enumerate(new_params):
755
+ old_params = optimizer.param_groups[i]["params"][0]
756
+ param_state = optimizer.state[old_params]
757
+ if len(param_state) == 0:
758
+ return
759
+ for key in param_state:
760
+ if key == "step":
761
+ continue
762
+ p = param_state[key]
763
+ param_state[key] = torch.cat(
764
+ [p[~should_dup], p.new_zeros(num_dups, *p.shape[1:])],
765
+ dim=0,
766
+ )
767
+ del optimizer.state[old_params]
768
+ optimizer.state[p_new] = param_state
769
+ optimizer.param_groups[i]["params"] = [p_new]
770
+ del old_params
771
+ torch.cuda.empty_cache()
772
+
773
+
774
+ def remove_from_optim(optimizer, new_params: list, _should_cull: torch.Tensor):
775
+ assert len(optimizer.param_groups) == len(new_params)
776
+ for i, p_new in enumerate(new_params):
777
+ old_params = optimizer.param_groups[i]["params"][0]
778
+ param_state = optimizer.state[old_params]
779
+ if len(param_state) == 0:
780
+ return
781
+ for key in param_state:
782
+ if key == "step":
783
+ continue
784
+ param_state[key] = param_state[key][~_should_cull]
785
+ del optimizer.state[old_params]
786
+ optimizer.state[p_new] = param_state
787
+ optimizer.param_groups[i]["params"] = [p_new]
788
+ del old_params
789
+ torch.cuda.empty_cache()
790
+
791
+
792
+ def reset_in_optim(optimizer, new_params: list):
793
+ assert len(optimizer.param_groups) == len(new_params)
794
+ for i, p_new in enumerate(new_params):
795
+ old_params = optimizer.param_groups[i]["params"][0]
796
+ param_state = optimizer.state[old_params]
797
+ if len(param_state) == 0:
798
+ return
799
+ for key in param_state:
800
+ param_state[key] = torch.zeros_like(param_state[key])
801
+ del optimizer.state[old_params]
802
+ optimizer.state[p_new] = param_state
803
+ optimizer.param_groups[i]["params"] = [p_new]
804
+ del old_params
805
+ torch.cuda.empty_cache()
Davis_out/hike/code/2024-10-27-121029/flow3d/trajectories.py ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import roma
3
+ import torch
4
+ import torch.nn.functional as F
5
+
6
+ from .transforms import rt_to_mat4
7
+
8
+
9
+ def get_avg_w2c(w2cs: torch.Tensor):
10
+ c2ws = torch.linalg.inv(w2cs)
11
+ # 1. Compute the center
12
+ center = c2ws[:, :3, -1].mean(0)
13
+ # 2. Compute the z axis
14
+ z = F.normalize(c2ws[:, :3, 2].mean(0), dim=-1)
15
+ # 3. Compute axis y' (no need to normalize as it's not the final output)
16
+ y_ = c2ws[:, :3, 1].mean(0) # (3)
17
+ # 4. Compute the x axis
18
+ x = F.normalize(torch.cross(y_, z, dim=-1), dim=-1) # (3)
19
+ # 5. Compute the y axis (as z and x are normalized, y is already of norm 1)
20
+ y = torch.cross(z, x, dim=-1) # (3)
21
+ avg_c2w = rt_to_mat4(torch.stack([x, y, z], 1), center)
22
+ avg_w2c = torch.linalg.inv(avg_c2w)
23
+ return avg_w2c
24
+
25
+
26
+ def get_lookat(origins: torch.Tensor, viewdirs: torch.Tensor) -> torch.Tensor:
27
+ """Triangulate a set of rays to find a single lookat point.
28
+
29
+ Args:
30
+ origins (torch.Tensor): A (N, 3) array of ray origins.
31
+ viewdirs (torch.Tensor): A (N, 3) array of ray view directions.
32
+
33
+ Returns:
34
+ torch.Tensor: A (3,) lookat point.
35
+ """
36
+
37
+ viewdirs = torch.nn.functional.normalize(viewdirs, dim=-1)
38
+ eye = torch.eye(3, device=origins.device, dtype=origins.dtype)[None]
39
+ # Calculate projection matrix I - rr^T
40
+ I_min_cov = eye - (viewdirs[..., None] * viewdirs[..., None, :])
41
+ # Compute sum of projections
42
+ sum_proj = I_min_cov.matmul(origins[..., None]).sum(dim=-3)
43
+ # Solve for the intersection point using least squares
44
+ lookat = torch.linalg.lstsq(I_min_cov.sum(dim=-3), sum_proj).solution[..., 0]
45
+ # Check NaNs.
46
+ assert not torch.any(torch.isnan(lookat))
47
+ return lookat
48
+
49
+
50
+ def get_lookat_w2cs(positions: torch.Tensor, lookat: torch.Tensor, up: torch.Tensor):
51
+ """
52
+ Args:
53
+ positions: (N, 3) tensor of camera positions
54
+ lookat: (3,) tensor of lookat point
55
+ up: (3,) tensor of up vector
56
+
57
+ Returns:
58
+ w2cs: (N, 3, 3) tensor of world to camera rotation matrices
59
+ """
60
+ forward_vectors = F.normalize(lookat - positions, dim=-1)
61
+ right_vectors = F.normalize(torch.cross(forward_vectors, up[None], dim=-1), dim=-1)
62
+ down_vectors = F.normalize(
63
+ torch.cross(forward_vectors, right_vectors, dim=-1), dim=-1
64
+ )
65
+ Rs = torch.stack([right_vectors, down_vectors, forward_vectors], dim=-1)
66
+ w2cs = torch.linalg.inv(rt_to_mat4(Rs, positions))
67
+ return w2cs
68
+
69
+
70
+ def get_arc_w2cs(
71
+ ref_w2c: torch.Tensor,
72
+ lookat: torch.Tensor,
73
+ up: torch.Tensor,
74
+ num_frames: int,
75
+ degree: float,
76
+ **_,
77
+ ) -> torch.Tensor:
78
+ ref_position = torch.linalg.inv(ref_w2c)[:3, 3]
79
+ thetas = (
80
+ torch.sin(
81
+ torch.linspace(0.0, torch.pi * 2.0, num_frames + 1, device=ref_w2c.device)[
82
+ :-1
83
+ ]
84
+ )
85
+ * (degree / 2.0)
86
+ / 180.0
87
+ * torch.pi
88
+ )
89
+ positions = torch.einsum(
90
+ "nij,j->ni",
91
+ roma.rotvec_to_rotmat(thetas[:, None] * up[None]),
92
+ ref_position - lookat,
93
+ )
94
+ return get_lookat_w2cs(positions, lookat, up)
95
+
96
+
97
+ def get_lemniscate_w2cs(
98
+ ref_w2c: torch.Tensor,
99
+ lookat: torch.Tensor,
100
+ up: torch.Tensor,
101
+ num_frames: int,
102
+ degree: float,
103
+ **_,
104
+ ) -> torch.Tensor:
105
+ ref_c2w = torch.linalg.inv(ref_w2c)
106
+ a = torch.linalg.norm(ref_c2w[:3, 3] - lookat) * np.tan(degree / 360 * np.pi)
107
+ # Lemniscate curve in camera space. Starting at the origin.
108
+ thetas = (
109
+ torch.linspace(0, 2 * torch.pi, num_frames + 1, device=ref_w2c.device)[:-1]
110
+ + torch.pi / 2
111
+ )
112
+ positions = torch.stack(
113
+ [
114
+ a * torch.cos(thetas) / (1 + torch.sin(thetas) ** 2),
115
+ a * torch.cos(thetas) * torch.sin(thetas) / (1 + torch.sin(thetas) ** 2),
116
+ torch.zeros(num_frames, device=ref_w2c.device),
117
+ ],
118
+ dim=-1,
119
+ )
120
+ # Transform to world space.
121
+ positions = torch.einsum(
122
+ "ij,nj->ni", ref_c2w[:3], F.pad(positions, (0, 1), value=1.0)
123
+ )
124
+ return get_lookat_w2cs(positions, lookat, up)
125
+
126
+
127
+ def get_spiral_w2cs(
128
+ ref_w2c: torch.Tensor,
129
+ lookat: torch.Tensor,
130
+ up: torch.Tensor,
131
+ num_frames: int,
132
+ rads: float | torch.Tensor,
133
+ zrate: float,
134
+ rots: int,
135
+ **_,
136
+ ) -> torch.Tensor:
137
+ ref_c2w = torch.linalg.inv(ref_w2c)
138
+ thetas = torch.linspace(
139
+ 0, 2 * torch.pi * rots, num_frames + 1, device=ref_w2c.device
140
+ )[:-1]
141
+ # Spiral curve in camera space. Starting at the origin.
142
+ if isinstance(rads, torch.Tensor):
143
+ rads = rads.reshape(-1, 3).to(ref_w2c.device)
144
+ positions = (
145
+ torch.stack(
146
+ [
147
+ torch.cos(thetas),
148
+ -torch.sin(thetas),
149
+ -torch.sin(thetas * zrate),
150
+ ],
151
+ dim=-1,
152
+ )
153
+ * rads
154
+ )
155
+ # Transform to world space.
156
+ positions = torch.einsum(
157
+ "ij,nj->ni", ref_c2w[:3], F.pad(positions, (0, 1), value=1.0)
158
+ )
159
+ return get_lookat_w2cs(positions, lookat, up)
160
+
161
+
162
+ def get_wander_w2cs(ref_w2c, focal_length, num_frames, **_):
163
+ device = ref_w2c.device
164
+ c2w = np.linalg.inv(ref_w2c.detach().cpu().numpy())
165
+ max_disp = 48.0
166
+
167
+ max_trans = max_disp / focal_length
168
+ output_poses = []
169
+
170
+ for i in range(num_frames):
171
+ x_trans = max_trans * np.sin(2.0 * np.pi * float(i) / float(num_frames))
172
+ y_trans = 0.0
173
+ z_trans = max_trans * np.cos(2.0 * np.pi * float(i) / float(num_frames)) / 2.0
174
+
175
+ i_pose = np.concatenate(
176
+ [
177
+ np.concatenate(
178
+ [
179
+ np.eye(3),
180
+ np.array([x_trans, y_trans, z_trans])[:, np.newaxis],
181
+ ],
182
+ axis=1,
183
+ ),
184
+ np.array([0.0, 0.0, 0.0, 1.0])[np.newaxis, :],
185
+ ],
186
+ axis=0,
187
+ )
188
+
189
+ i_pose = np.linalg.inv(i_pose)
190
+
191
+ ref_pose = np.concatenate(
192
+ [c2w[:3, :4], np.array([0.0, 0.0, 0.0, 1.0])[np.newaxis, :]], axis=0
193
+ )
194
+
195
+ render_pose = np.dot(ref_pose, i_pose)
196
+ output_poses.append(render_pose)
197
+ output_poses = torch.from_numpy(np.array(output_poses, dtype=np.float32)).to(device)
198
+ w2cs = torch.linalg.inv(output_poses)
199
+
200
+ return w2cs
Davis_out/hike/code/2024-10-27-121029/flow3d/transforms.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Literal
2
+
3
+ import roma
4
+ import torch
5
+ import torch.nn.functional as F
6
+
7
+
8
+ def rt_to_mat4(
9
+ R: torch.Tensor, t: torch.Tensor, s: torch.Tensor | None = None
10
+ ) -> torch.Tensor:
11
+ """
12
+ Args:
13
+ R (torch.Tensor): (..., 3, 3).
14
+ t (torch.Tensor): (..., 3).
15
+ s (torch.Tensor): (...,).
16
+
17
+ Returns:
18
+ torch.Tensor: (..., 4, 4)
19
+ """
20
+ mat34 = torch.cat([R, t[..., None]], dim=-1)
21
+ if s is None:
22
+ bottom = (
23
+ mat34.new_tensor([[0.0, 0.0, 0.0, 1.0]])
24
+ .reshape((1,) * (mat34.dim() - 2) + (1, 4))
25
+ .expand(mat34.shape[:-2] + (1, 4))
26
+ )
27
+ else:
28
+ bottom = F.pad(1.0 / s[..., None, None], (3, 0), value=0.0)
29
+ mat4 = torch.cat([mat34, bottom], dim=-2)
30
+ return mat4
31
+
32
+
33
+ def rmat_to_cont_6d(matrix):
34
+ """
35
+ :param matrix (*, 3, 3)
36
+ :returns 6d vector (*, 6)
37
+ """
38
+ return torch.cat([matrix[..., 0], matrix[..., 1]], dim=-1)
39
+
40
+
41
+ def cont_6d_to_rmat(cont_6d):
42
+ """
43
+ :param 6d vector (*, 6)
44
+ :returns matrix (*, 3, 3)
45
+ """
46
+ x1 = cont_6d[..., 0:3]
47
+ y1 = cont_6d[..., 3:6]
48
+
49
+ x = F.normalize(x1, dim=-1)
50
+ y = F.normalize(y1 - (y1 * x).sum(dim=-1, keepdim=True) * x, dim=-1)
51
+ z = torch.linalg.cross(x, y, dim=-1)
52
+
53
+ return torch.stack([x, y, z], dim=-1)
54
+
55
+
56
+ def solve_procrustes(
57
+ src: torch.Tensor,
58
+ dst: torch.Tensor,
59
+ weights: torch.Tensor | None = None,
60
+ enforce_se3: bool = False,
61
+ rot_type: Literal["quat", "mat", "6d"] = "quat",
62
+ ):
63
+ """
64
+ Solve the Procrustes problem to align two point clouds, by solving the
65
+ following problem:
66
+
67
+ min_{s, R, t} || s * (src @ R.T + t) - dst ||_2, s.t. R.T @ R = I and det(R) = 1.
68
+
69
+ Args:
70
+ src (torch.Tensor): (N, 3).
71
+ dst (torch.Tensor): (N, 3).
72
+ weights (torch.Tensor | None): (N,), optional weights for alignment.
73
+ enforce_se3 (bool): Whether to enforce the transfm to be SE3.
74
+
75
+ Returns:
76
+ sim3 (tuple[torch.Tensor, torch.Tensor, torch.Tensor]):
77
+ q (torch.Tensor): (4,), rotation component in quaternion of WXYZ
78
+ format.
79
+ t (torch.Tensor): (3,), translation component.
80
+ s (torch.Tensor): (), scale component.
81
+ error (torch.Tensor): (), average L2 distance after alignment.
82
+ """
83
+ # Compute weights.
84
+ if weights is None:
85
+ weights = src.new_ones(src.shape[0])
86
+ weights = weights[:, None] / weights.sum()
87
+ # Normalize point positions.
88
+ src_mean = (src * weights).sum(dim=0)
89
+ dst_mean = (dst * weights).sum(dim=0)
90
+ src_cent = src - src_mean
91
+ dst_cent = dst - dst_mean
92
+ # Normalize point scales.
93
+ if not enforce_se3:
94
+ src_scale = (src_cent**2 * weights).sum(dim=-1).mean().sqrt()
95
+ dst_scale = (dst_cent**2 * weights).sum(dim=-1).mean().sqrt()
96
+ else:
97
+ src_scale = dst_scale = src.new_tensor(1.0)
98
+ src_scaled = src_cent / src_scale
99
+ dst_scaled = dst_cent / dst_scale
100
+ # Compute the matrix for the singular value decomposition (SVD).
101
+ matrix = (weights * dst_scaled).T @ src_scaled
102
+ U, _, Vh = torch.linalg.svd(matrix)
103
+ # Special reflection case.
104
+ S = torch.eye(3, device=src.device)
105
+ if torch.det(U) * torch.det(Vh) < 0:
106
+ S[2, 2] = -1
107
+ R = U @ S @ Vh
108
+ # Compute the transformation.
109
+ if rot_type == "quat":
110
+ rot = roma.rotmat_to_unitquat(R).roll(1, dims=-1)
111
+ elif rot_type == "6d":
112
+ rot = rmat_to_cont_6d(R)
113
+ else:
114
+ rot = R
115
+ s = dst_scale / src_scale
116
+ t = dst_mean / s - src_mean @ R.T
117
+ sim3 = rot, t, s
118
+ # Debug: error.
119
+ procrustes_dst = torch.einsum(
120
+ "ij,nj->ni", rt_to_mat4(R, t, s), F.pad(src, (0, 1), value=1.0)
121
+ )
122
+ procrustes_dst = procrustes_dst[:, :3] / procrustes_dst[:, 3:]
123
+ error_before = (torch.linalg.norm(dst - src, dim=-1) * weights[:, 0]).sum()
124
+ error = (torch.linalg.norm(dst - procrustes_dst, dim=-1) * weights[:, 0]).sum()
125
+ # print(f"Procrustes error: {error_before} -> {error}")
126
+ # if error_before < error:
127
+ # print("Something is wrong.")
128
+ # __import__("ipdb").set_trace()
129
+ return sim3, (error.item(), error_before.item())
Davis_out/hike/code/2024-10-27-121029/flow3d/validator.py ADDED
@@ -0,0 +1,421 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import functools
2
+ import os
3
+ import os.path as osp
4
+ import time
5
+ from dataclasses import asdict
6
+ from typing import cast
7
+
8
+ import imageio as iio
9
+ import numpy as np
10
+ import torch
11
+ import torch.nn.functional as F
12
+ from loguru import logger as guru
13
+ from nerfview import CameraState, Viewer
14
+ from pytorch_msssim import SSIM
15
+ from torch.utils.data import DataLoader, Dataset
16
+ from torch.utils.tensorboard import SummaryWriter
17
+ from tqdm import tqdm
18
+
19
+ from flow3d.configs import LossesConfig, OptimizerConfig, SceneLRConfig
20
+ from flow3d.data.utils import normalize_coords, to_device
21
+ from flow3d.metrics import PCK, mLPIPS, mPSNR, mSSIM
22
+ from flow3d.scene_model import SceneModel
23
+ from flow3d.vis.utils import (
24
+ apply_depth_colormap,
25
+ make_video_divisble,
26
+ plot_correspondences,
27
+ )
28
+
29
+
30
+ class Validator:
31
+ def __init__(
32
+ self,
33
+ model: SceneModel,
34
+ device: torch.device,
35
+ train_loader: DataLoader | None,
36
+ val_img_loader: DataLoader | None,
37
+ val_kpt_loader: DataLoader | None,
38
+ save_dir: str,
39
+ ):
40
+ self.model = model
41
+ self.device = device
42
+ self.train_loader = train_loader
43
+ self.val_img_loader = val_img_loader
44
+ self.val_kpt_loader = val_kpt_loader
45
+ self.save_dir = save_dir
46
+ self.has_bg = self.model.has_bg
47
+
48
+ # metrics
49
+ self.ssim = SSIM(data_range=1.0, size_average=True, channel=3)
50
+ self.psnr_metric = mPSNR()
51
+ self.ssim_metric = mSSIM()
52
+ self.lpips_metric = mLPIPS().to(device)
53
+ self.fg_psnr_metric = mPSNR()
54
+ self.fg_ssim_metric = mSSIM()
55
+ self.fg_lpips_metric = mLPIPS().to(device)
56
+ self.bg_psnr_metric = mPSNR()
57
+ self.bg_ssim_metric = mSSIM()
58
+ self.bg_lpips_metric = mLPIPS().to(device)
59
+ self.pck_metric = PCK()
60
+
61
+ def reset_metrics(self):
62
+ self.psnr_metric.reset()
63
+ self.ssim_metric.reset()
64
+ self.lpips_metric.reset()
65
+ self.fg_psnr_metric.reset()
66
+ self.fg_ssim_metric.reset()
67
+ self.fg_lpips_metric.reset()
68
+ self.bg_psnr_metric.reset()
69
+ self.bg_ssim_metric.reset()
70
+ self.bg_lpips_metric.reset()
71
+ self.pck_metric.reset()
72
+
73
+ @torch.no_grad()
74
+ def validate(self):
75
+ self.reset_metrics()
76
+ metric_imgs = self.validate_imgs() or {}
77
+ metric_kpts = self.validate_keypoints() or {}
78
+ return {**metric_imgs, **metric_kpts}
79
+
80
+ @torch.no_grad()
81
+ def validate_imgs(self):
82
+ guru.info("rendering validation images...")
83
+ if self.val_img_loader is None:
84
+ return
85
+
86
+ for batch in tqdm(self.val_img_loader, desc="render val images"):
87
+ batch = to_device(batch, self.device)
88
+ frame_name = batch["frame_names"][0]
89
+ t = batch["ts"][0]
90
+ # (1, 4, 4).
91
+ w2c = batch["w2cs"]
92
+ # (1, 3, 3).
93
+ K = batch["Ks"]
94
+ # (1, H, W, 3).
95
+ img = batch["imgs"]
96
+ # (1, H, W).
97
+ valid_mask = batch.get(
98
+ "valid_masks", torch.ones_like(batch["imgs"][..., 0])
99
+ )
100
+ # (1, H, W).
101
+ fg_mask = batch["masks"]
102
+
103
+ # (H, W).
104
+ covisible_mask = batch.get(
105
+ "covisible_masks",
106
+ torch.ones_like(fg_mask)[None],
107
+ )
108
+ W, H = img_wh = img[0].shape[-2::-1]
109
+ rendered = self.model.render(t, w2c, K, img_wh, return_depth=True)
110
+
111
+ # Compute metrics.
112
+ valid_mask *= covisible_mask
113
+ fg_valid_mask = fg_mask * valid_mask
114
+ bg_valid_mask = (1 - fg_mask) * valid_mask
115
+ main_valid_mask = valid_mask if self.has_bg else fg_valid_mask
116
+
117
+ self.psnr_metric.update(rendered["img"], img, main_valid_mask)
118
+ self.ssim_metric.update(rendered["img"], img, main_valid_mask)
119
+ self.lpips_metric.update(rendered["img"], img, main_valid_mask)
120
+
121
+ if self.has_bg:
122
+ self.fg_psnr_metric.update(rendered["img"], img, fg_valid_mask)
123
+ self.fg_ssim_metric.update(rendered["img"], img, fg_valid_mask)
124
+ self.fg_lpips_metric.update(rendered["img"], img, fg_valid_mask)
125
+
126
+ self.bg_psnr_metric.update(rendered["img"], img, bg_valid_mask)
127
+ self.bg_ssim_metric.update(rendered["img"], img, bg_valid_mask)
128
+ self.bg_lpips_metric.update(rendered["img"], img, bg_valid_mask)
129
+
130
+ # Dump results.
131
+ results_dir = osp.join(self.save_dir, "results", "rgb")
132
+ os.makedirs(results_dir, exist_ok=True)
133
+ iio.imwrite(
134
+ osp.join(results_dir, f"{frame_name}.png"),
135
+ (rendered["img"][0].cpu().numpy() * 255).astype(np.uint8),
136
+ )
137
+
138
+ return {
139
+ "val/psnr": self.psnr_metric.compute(),
140
+ "val/ssim": self.ssim_metric.compute(),
141
+ "val/lpips": self.lpips_metric.compute(),
142
+ "val/fg_psnr": self.fg_psnr_metric.compute(),
143
+ "val/fg_ssim": self.fg_ssim_metric.compute(),
144
+ "val/fg_lpips": self.fg_lpips_metric.compute(),
145
+ "val/bg_psnr": self.bg_psnr_metric.compute(),
146
+ "val/bg_ssim": self.bg_ssim_metric.compute(),
147
+ "val/bg_lpips": self.bg_lpips_metric.compute(),
148
+ }
149
+
150
+ @torch.no_grad()
151
+ def validate_keypoints(self):
152
+ if self.val_kpt_loader is None:
153
+ return
154
+ pred_keypoints_3d_all = []
155
+ time_ids = self.val_kpt_loader.dataset.time_ids.tolist()
156
+ h, w = self.val_kpt_loader.dataset.dataset.imgs.shape[1:3]
157
+ pred_train_depths = np.zeros((len(time_ids), h, w))
158
+
159
+ for batch in tqdm(self.val_kpt_loader, desc="render val keypoints"):
160
+ batch = to_device(batch, self.device)
161
+ # (2,).
162
+ ts = batch["ts"][0]
163
+ # (2, 4, 4).
164
+ w2cs = batch["w2cs"][0]
165
+ # (2, 3, 3).
166
+ Ks = batch["Ks"][0]
167
+ # (2, H, W, 3).
168
+ imgs = batch["imgs"][0]
169
+ # (2, P, 3).
170
+ keypoints = batch["keypoints"][0]
171
+ # (P,)
172
+ keypoint_masks = (keypoints[..., -1] > 0.5).all(dim=0)
173
+ src_keypoints, target_keypoints = keypoints[:, keypoint_masks, :2]
174
+ W, H = img_wh = imgs.shape[-2:0:-1]
175
+ rendered = self.model.render(
176
+ ts[0].item(),
177
+ w2cs[:1],
178
+ Ks[:1],
179
+ img_wh,
180
+ target_ts=ts[1:],
181
+ target_w2cs=w2cs[1:],
182
+ return_depth=True,
183
+ )
184
+ pred_tracks_3d = rendered["tracks_3d"][0, ..., 0, :]
185
+ pred_tracks_2d = torch.einsum("ij,hwj->hwi", Ks[1], pred_tracks_3d)
186
+ pred_tracks_2d = pred_tracks_2d[..., :2] / torch.clamp(
187
+ pred_tracks_2d[..., -1:], min=1e-6
188
+ )
189
+ pred_keypoints = F.grid_sample(
190
+ pred_tracks_2d[None].permute(0, 3, 1, 2),
191
+ normalize_coords(src_keypoints, H, W)[None, None],
192
+ align_corners=True,
193
+ ).permute(0, 2, 3, 1)[0, 0]
194
+
195
+ # Compute metrics.
196
+ self.pck_metric.update(pred_keypoints, target_keypoints, max(img_wh) * 0.05)
197
+
198
+ padded_keypoints_3d = torch.zeros_like(keypoints[0])
199
+ pred_keypoints_3d = F.grid_sample(
200
+ pred_tracks_3d[None].permute(0, 3, 1, 2),
201
+ normalize_coords(src_keypoints, H, W)[None, None],
202
+ align_corners=True,
203
+ ).permute(0, 2, 3, 1)[0, 0]
204
+ # Transform 3D keypoints back to world space.
205
+ pred_keypoints_3d = torch.einsum(
206
+ "ij,pj->pi",
207
+ torch.linalg.inv(w2cs[1])[:3],
208
+ F.pad(pred_keypoints_3d, (0, 1), value=1.0),
209
+ )
210
+ padded_keypoints_3d[keypoint_masks] = pred_keypoints_3d
211
+ # Cache predicted keypoints.
212
+ pred_keypoints_3d_all.append(padded_keypoints_3d.cpu().numpy())
213
+ pred_train_depths[time_ids.index(ts[0].item())] = (
214
+ rendered["depth"][0, ..., 0].cpu().numpy()
215
+ )
216
+
217
+ # Dump unified results.
218
+ all_Ks = self.val_kpt_loader.dataset.dataset.Ks
219
+ all_w2cs = self.val_kpt_loader.dataset.dataset.w2cs
220
+
221
+ keypoint_result_dict = {
222
+ "Ks": all_Ks[time_ids].cpu().numpy(),
223
+ "w2cs": all_w2cs[time_ids].cpu().numpy(),
224
+ "pred_keypoints_3d": np.stack(pred_keypoints_3d_all, 0),
225
+ "pred_train_depths": pred_train_depths,
226
+ }
227
+
228
+ results_dir = osp.join(self.save_dir, "results")
229
+ os.makedirs(results_dir, exist_ok=True)
230
+ np.savez(
231
+ osp.join(results_dir, "keypoints.npz"),
232
+ **keypoint_result_dict,
233
+ )
234
+ guru.info(
235
+ f"Dumped keypoint results to {results_dir=} {keypoint_result_dict['pred_keypoints_3d'].shape=}"
236
+ )
237
+
238
+ return {"val/pck": self.pck_metric.compute()}
239
+
240
+ @torch.no_grad()
241
+ def save_train_videos(self, epoch: int):
242
+ if self.train_loader is None:
243
+ return
244
+ video_dir = osp.join(self.save_dir, "videos", f"epoch_{epoch:04d}")
245
+ os.makedirs(video_dir, exist_ok=True)
246
+ fps = getattr(self.train_loader.dataset.dataset, "fps", 15.0)
247
+ # Render video.
248
+ video = []
249
+ ref_pred_depths = []
250
+ masks = []
251
+ depth_min, depth_max = 1e6, 0
252
+ for batch_idx, batch in enumerate(
253
+ tqdm(self.train_loader, desc="Rendering video", leave=False)
254
+ ):
255
+ batch = {
256
+ k: v.to(self.device) if isinstance(v, torch.Tensor) else v
257
+ for k, v in batch.items()
258
+ }
259
+ # ().
260
+ t = batch["ts"][0]
261
+ # (4, 4).
262
+ w2c = batch["w2cs"][0]
263
+ # (3, 3).
264
+ K = batch["Ks"][0]
265
+ # (H, W, 3).
266
+ img = batch["imgs"][0]
267
+ # (H, W).
268
+ depth = batch["depths"][0]
269
+
270
+ img_wh = img.shape[-2::-1]
271
+ rendered = self.model.render(
272
+ t, w2c[None], K[None], img_wh, return_depth=True, return_mask=True
273
+ )
274
+ # Putting results onto CPU since it will consume unnecessarily
275
+ # large GPU memory for long sequence OW.
276
+ video.append(torch.cat([img, rendered["img"][0]], dim=1).cpu())
277
+ ref_pred_depth = torch.cat(
278
+ (depth[..., None], rendered["depth"][0]), dim=1
279
+ ).cpu()
280
+ ref_pred_depths.append(ref_pred_depth)
281
+ depth_min = min(depth_min, ref_pred_depth.min().item())
282
+ depth_max = max(depth_max, ref_pred_depth.quantile(0.99).item())
283
+ if rendered["mask"] is not None:
284
+ masks.append(rendered["mask"][0].cpu().squeeze(-1))
285
+
286
+ # rgb video
287
+ video = torch.stack(video, dim=0)
288
+ iio.mimwrite(
289
+ osp.join(video_dir, "rgbs.mp4"),
290
+ make_video_divisble((video.numpy() * 255).astype(np.uint8)),
291
+ fps=fps,
292
+ )
293
+ # depth video
294
+ depth_video = torch.stack(
295
+ [
296
+ apply_depth_colormap(
297
+ ref_pred_depth, near_plane=depth_min, far_plane=depth_max
298
+ )
299
+ for ref_pred_depth in ref_pred_depths
300
+ ],
301
+ dim=0,
302
+ )
303
+ iio.mimwrite(
304
+ osp.join(video_dir, "depths.mp4"),
305
+ make_video_divisble((depth_video.numpy() * 255).astype(np.uint8)),
306
+ fps=fps,
307
+ )
308
+ if len(masks) > 0:
309
+ # mask video
310
+ mask_video = torch.stack(masks, dim=0)
311
+ iio.mimwrite(
312
+ osp.join(video_dir, "masks.mp4"),
313
+ make_video_divisble((mask_video.numpy() * 255).astype(np.uint8)),
314
+ fps=fps,
315
+ )
316
+
317
+ # Render 2D track video.
318
+ tracks_2d, target_imgs = [], []
319
+ sample_interval = 10
320
+ batch0 = {
321
+ k: v.to(self.device) if isinstance(v, torch.Tensor) else v
322
+ for k, v in self.train_loader.dataset[0].items()
323
+ }
324
+ # ().
325
+ t = batch0["ts"]
326
+ # (4, 4).
327
+ w2c = batch0["w2cs"]
328
+ # (3, 3).
329
+ K = batch0["Ks"]
330
+ # (H, W, 3).
331
+ img = batch0["imgs"]
332
+ # (H, W).
333
+ bool_mask = batch0["masks"] > 0.5
334
+ img_wh = img.shape[-2::-1]
335
+ for batch in tqdm(
336
+ self.train_loader, desc="Rendering 2D track video", leave=False
337
+ ):
338
+ batch = {
339
+ k: v.to(self.device) if isinstance(v, torch.Tensor) else v
340
+ for k, v in batch.items()
341
+ }
342
+ # Putting results onto CPU since it will consume unnecessarily
343
+ # large GPU memory for long sequence OW.
344
+ # (1, H, W, 3).
345
+ target_imgs.append(batch["imgs"].cpu())
346
+ # (1,).
347
+ target_ts = batch["ts"]
348
+ # (1, 4, 4).
349
+ target_w2cs = batch["w2cs"]
350
+ # (1, 3, 3).
351
+ target_Ks = batch["Ks"]
352
+ rendered = self.model.render(
353
+ t,
354
+ w2c[None],
355
+ K[None],
356
+ img_wh,
357
+ target_ts=target_ts,
358
+ target_w2cs=target_w2cs,
359
+ )
360
+ pred_tracks_3d = rendered["tracks_3d"][0][
361
+ ::sample_interval, ::sample_interval
362
+ ][bool_mask[::sample_interval, ::sample_interval]].swapaxes(0, 1)
363
+ pred_tracks_2d = torch.einsum("bij,bpj->bpi", target_Ks, pred_tracks_3d)
364
+ pred_tracks_2d = pred_tracks_2d[..., :2] / torch.clamp(
365
+ pred_tracks_2d[..., 2:], min=1e-6
366
+ )
367
+ tracks_2d.append(pred_tracks_2d.cpu())
368
+ tracks_2d = torch.cat(tracks_2d, dim=0)
369
+ target_imgs = torch.cat(target_imgs, dim=0)
370
+ track_2d_video = plot_correspondences(
371
+ target_imgs.numpy(),
372
+ tracks_2d.numpy(),
373
+ query_id=cast(int, t),
374
+ )
375
+ iio.mimwrite(
376
+ osp.join(video_dir, "tracks_2d.mp4"),
377
+ make_video_divisble(np.stack(track_2d_video, 0)),
378
+ fps=fps,
379
+ )
380
+ # Render motion coefficient video.
381
+ with torch.random.fork_rng():
382
+ torch.random.manual_seed(0)
383
+ motion_coef_colors = torch.pca_lowrank(
384
+ self.model.fg.get_coefs()[None],
385
+ q=3,
386
+ )[0][0]
387
+ motion_coef_colors = (motion_coef_colors - motion_coef_colors.min(0)[0]) / (
388
+ motion_coef_colors.max(0)[0] - motion_coef_colors.min(0)[0]
389
+ )
390
+ motion_coef_colors = F.pad(
391
+ motion_coef_colors, (0, 0, 0, self.model.bg.num_gaussians), value=0.5
392
+ )
393
+ video = []
394
+ for batch in tqdm(
395
+ self.train_loader, desc="Rendering motion coefficient video", leave=False
396
+ ):
397
+ batch = {
398
+ k: v.to(self.device) if isinstance(v, torch.Tensor) else v
399
+ for k, v in batch.items()
400
+ }
401
+ # ().
402
+ t = batch["ts"][0]
403
+ # (4, 4).
404
+ w2c = batch["w2cs"][0]
405
+ # (3, 3).
406
+ K = batch["Ks"][0]
407
+ # (3, 3).
408
+ img = batch["imgs"][0]
409
+ img_wh = img.shape[-2::-1]
410
+ rendered = self.model.render(
411
+ t, w2c[None], K[None], img_wh, colors_override=motion_coef_colors
412
+ )
413
+ # Putting results onto CPU since it will consume unnecessarily
414
+ # large GPU memory for long sequence OW.
415
+ video.append(torch.cat([img, rendered["img"][0]], dim=1).cpu())
416
+ video = torch.stack(video, dim=0)
417
+ iio.mimwrite(
418
+ osp.join(video_dir, "motion_coefs.mp4"),
419
+ make_video_divisble((video.numpy() * 255).astype(np.uint8)),
420
+ fps=fps,
421
+ )
Davis_out/hike/code/2024-10-27-121029/flow3d/vis/__init__.py ADDED
File without changes
Davis_out/hike/code/2024-10-27-121029/flow3d/vis/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (156 Bytes). View file
 
Davis_out/hike/code/2024-10-27-121029/flow3d/vis/__pycache__/playback_panel.cpython-310.pyc ADDED
Binary file (1.92 kB). View file
 
Davis_out/hike/code/2024-10-27-121029/flow3d/vis/__pycache__/render_panel.cpython-310.pyc ADDED
Binary file (28.9 kB). View file
 
Davis_out/hike/code/2024-10-27-121029/flow3d/vis/__pycache__/utils.cpython-310.pyc ADDED
Binary file (13.4 kB). View file
 
Davis_out/hike/code/2024-10-27-121029/flow3d/vis/__pycache__/viewer.cpython-310.pyc ADDED
Binary file (2.65 kB). View file
 
Davis_out/hike/code/2024-10-27-121029/flow3d/vis/playback_panel.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import threading
2
+ import time
3
+
4
+ import viser
5
+
6
+
7
+ def add_gui_playback_group(
8
+ server: viser.ViserServer,
9
+ num_frames: int,
10
+ min_fps: float = 1.0,
11
+ max_fps: float = 60.0,
12
+ fps_step: float = 0.1,
13
+ initial_fps: float = 10.0,
14
+ ):
15
+ gui_timestep = server.gui.add_slider(
16
+ "Timestep",
17
+ min=0,
18
+ max=num_frames - 1,
19
+ step=1,
20
+ initial_value=0,
21
+ disabled=True,
22
+ )
23
+ gui_next_frame = server.gui.add_button("Next Frame")
24
+ gui_prev_frame = server.gui.add_button("Prev Frame")
25
+ gui_playing_pause = server.gui.add_button("Pause")
26
+ gui_playing_pause.visible = False
27
+ gui_playing_resume = server.gui.add_button("Resume")
28
+ gui_framerate = server.gui.add_slider(
29
+ "FPS", min=min_fps, max=max_fps, step=fps_step, initial_value=initial_fps
30
+ )
31
+
32
+ # Frame step buttons.
33
+ @gui_next_frame.on_click
34
+ def _(_) -> None:
35
+ gui_timestep.value = (gui_timestep.value + 1) % num_frames
36
+
37
+ @gui_prev_frame.on_click
38
+ def _(_) -> None:
39
+ gui_timestep.value = (gui_timestep.value - 1) % num_frames
40
+
41
+ # Disable frame controls when we're playing.
42
+ def _toggle_gui_playing(_):
43
+ gui_playing_pause.visible = not gui_playing_pause.visible
44
+ gui_playing_resume.visible = not gui_playing_resume.visible
45
+ gui_timestep.disabled = gui_playing_pause.visible
46
+ gui_next_frame.disabled = gui_playing_pause.visible
47
+ gui_prev_frame.disabled = gui_playing_pause.visible
48
+
49
+ gui_playing_pause.on_click(_toggle_gui_playing)
50
+ gui_playing_resume.on_click(_toggle_gui_playing)
51
+
52
+ # Create a thread to update the timestep indefinitely.
53
+ def _update_timestep():
54
+ while True:
55
+ if gui_playing_pause.visible:
56
+ gui_timestep.value = (gui_timestep.value + 1) % num_frames
57
+ time.sleep(1 / gui_framerate.value)
58
+
59
+ threading.Thread(target=_update_timestep, daemon=True).start()
60
+
61
+ return (
62
+ gui_timestep,
63
+ gui_next_frame,
64
+ gui_prev_frame,
65
+ gui_playing_pause,
66
+ gui_playing_resume,
67
+ gui_framerate,
68
+ )
Davis_out/hike/code/2024-10-27-121029/flow3d/vis/render_panel.py ADDED
@@ -0,0 +1,1165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 the Regents of the University of California, Nerfstudio Team and contributors. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from __future__ import annotations
16
+
17
+ import colorsys
18
+ import dataclasses
19
+ import datetime
20
+ import json
21
+ import threading
22
+ import time
23
+ from pathlib import Path
24
+ from typing import Dict, List, Literal, Optional, Tuple
25
+
26
+ import numpy as np
27
+ import scipy
28
+ import splines
29
+ import splines.quaternion
30
+ import viser
31
+ import viser.transforms as tf
32
+
33
+ VISER_SCALE_RATIO = 10.0
34
+
35
+
36
+ @dataclasses.dataclass
37
+ class Keyframe:
38
+ time: float
39
+ position: np.ndarray
40
+ wxyz: np.ndarray
41
+ override_fov_enabled: bool
42
+ override_fov_rad: float
43
+ aspect: float
44
+ override_transition_enabled: bool
45
+ override_transition_sec: Optional[float]
46
+
47
+ @staticmethod
48
+ def from_camera(time: float, camera: viser.CameraHandle, aspect: float) -> Keyframe:
49
+ return Keyframe(
50
+ time,
51
+ camera.position,
52
+ camera.wxyz,
53
+ override_fov_enabled=False,
54
+ override_fov_rad=camera.fov,
55
+ aspect=aspect,
56
+ override_transition_enabled=False,
57
+ override_transition_sec=None,
58
+ )
59
+
60
+
61
+ class CameraPath:
62
+ def __init__(
63
+ self, server: viser.ViserServer, duration_element: viser.GuiInputHandle[float]
64
+ ):
65
+ self._server = server
66
+ self._keyframes: Dict[int, Tuple[Keyframe, viser.CameraFrustumHandle]] = {}
67
+ self._keyframe_counter: int = 0
68
+ self._spline_nodes: List[viser.SceneNodeHandle] = []
69
+ self._camera_edit_panel: Optional[viser.Gui3dContainerHandle] = None
70
+
71
+ self._orientation_spline: Optional[splines.quaternion.KochanekBartels] = None
72
+ self._position_spline: Optional[splines.KochanekBartels] = None
73
+ self._fov_spline: Optional[splines.KochanekBartels] = None
74
+ self._time_spline: Optional[splines.KochanekBartels] = None
75
+
76
+ self._keyframes_visible: bool = True
77
+
78
+ self._duration_element = duration_element
79
+
80
+ # These parameters should be overridden externally.
81
+ self.loop: bool = False
82
+ self.framerate: float = 30.0
83
+ self.tension: float = 0.5 # Tension / alpha term.
84
+ self.default_fov: float = 0.0
85
+ self.default_transition_sec: float = 0.0
86
+ self.show_spline: bool = True
87
+
88
+ def set_keyframes_visible(self, visible: bool) -> None:
89
+ self._keyframes_visible = visible
90
+ for keyframe in self._keyframes.values():
91
+ keyframe[1].visible = visible
92
+
93
+ def add_camera(
94
+ self, keyframe: Keyframe, keyframe_index: Optional[int] = None
95
+ ) -> None:
96
+ """Add a new camera, or replace an old one if `keyframe_index` is passed in."""
97
+ server = self._server
98
+
99
+ # Add a keyframe if we aren't replacing an existing one.
100
+ if keyframe_index is None:
101
+ keyframe_index = self._keyframe_counter
102
+ self._keyframe_counter += 1
103
+
104
+ print(
105
+ f"{keyframe.wxyz=} {keyframe.position=} {keyframe_index=} {keyframe.aspect=}"
106
+ )
107
+ frustum_handle = server.scene.add_camera_frustum(
108
+ f"/render_cameras/{keyframe_index}",
109
+ fov=(
110
+ keyframe.override_fov_rad
111
+ if keyframe.override_fov_enabled
112
+ else self.default_fov
113
+ ),
114
+ aspect=keyframe.aspect,
115
+ scale=0.1,
116
+ color=(200, 10, 30),
117
+ wxyz=keyframe.wxyz,
118
+ position=keyframe.position,
119
+ visible=self._keyframes_visible,
120
+ )
121
+ self._server.scene.add_icosphere(
122
+ f"/render_cameras/{keyframe_index}/sphere",
123
+ radius=0.03,
124
+ color=(200, 10, 30),
125
+ )
126
+
127
+ @frustum_handle.on_click
128
+ def _(_) -> None:
129
+ if self._camera_edit_panel is not None:
130
+ self._camera_edit_panel.remove()
131
+ self._camera_edit_panel = None
132
+
133
+ with server.scene.add_3d_gui_container(
134
+ "/camera_edit_panel",
135
+ position=keyframe.position,
136
+ ) as camera_edit_panel:
137
+ self._camera_edit_panel = camera_edit_panel
138
+ override_fov = server.gui.add_checkbox(
139
+ "Override FOV", initial_value=keyframe.override_fov_enabled
140
+ )
141
+ override_fov_degrees = server.gui.add_slider(
142
+ "Override FOV (degrees)",
143
+ 5.0,
144
+ 175.0,
145
+ step=0.1,
146
+ initial_value=keyframe.override_fov_rad * 180.0 / np.pi,
147
+ disabled=not keyframe.override_fov_enabled,
148
+ )
149
+ delete_button = server.gui.add_button(
150
+ "Delete", color="red", icon=viser.Icon.TRASH
151
+ )
152
+ go_to_button = server.gui.add_button("Go to")
153
+ close_button = server.gui.add_button("Close")
154
+
155
+ @override_fov.on_update
156
+ def _(_) -> None:
157
+ keyframe.override_fov_enabled = override_fov.value
158
+ override_fov_degrees.disabled = not override_fov.value
159
+ self.add_camera(keyframe, keyframe_index)
160
+
161
+ @override_fov_degrees.on_update
162
+ def _(_) -> None:
163
+ keyframe.override_fov_rad = override_fov_degrees.value / 180.0 * np.pi
164
+ self.add_camera(keyframe, keyframe_index)
165
+
166
+ @delete_button.on_click
167
+ def _(event: viser.GuiEvent) -> None:
168
+ assert event.client is not None
169
+ with event.client.gui.add_modal("Confirm") as modal:
170
+ event.client.gui.add_markdown("Delete keyframe?")
171
+ confirm_button = event.client.gui.add_button(
172
+ "Yes", color="red", icon=viser.Icon.TRASH
173
+ )
174
+ exit_button = event.client.gui.add_button("Cancel")
175
+
176
+ @confirm_button.on_click
177
+ def _(_) -> None:
178
+ assert camera_edit_panel is not None
179
+
180
+ keyframe_id = None
181
+ for i, keyframe_tuple in self._keyframes.items():
182
+ if keyframe_tuple[1] is frustum_handle:
183
+ keyframe_id = i
184
+ break
185
+ assert keyframe_id is not None
186
+
187
+ self._keyframes.pop(keyframe_id)
188
+ frustum_handle.remove()
189
+ camera_edit_panel.remove()
190
+ self._camera_edit_panel = None
191
+ modal.close()
192
+ self.update_spline()
193
+
194
+ @exit_button.on_click
195
+ def _(_) -> None:
196
+ modal.close()
197
+
198
+ @go_to_button.on_click
199
+ def _(event: viser.GuiEvent) -> None:
200
+ assert event.client is not None
201
+ client = event.client
202
+ T_world_current = tf.SE3.from_rotation_and_translation(
203
+ tf.SO3(client.camera.wxyz), client.camera.position
204
+ )
205
+ T_world_target = tf.SE3.from_rotation_and_translation(
206
+ tf.SO3(keyframe.wxyz), keyframe.position
207
+ ) @ tf.SE3.from_translation(np.array([0.0, 0.0, -0.5]))
208
+
209
+ T_current_target = T_world_current.inverse() @ T_world_target
210
+
211
+ for j in range(10):
212
+ T_world_set = T_world_current @ tf.SE3.exp(
213
+ T_current_target.log() * j / 9.0
214
+ )
215
+
216
+ # Important bit: we atomically set both the orientation and the position
217
+ # of the camera.
218
+ with client.atomic():
219
+ client.camera.wxyz = T_world_set.rotation().wxyz
220
+ client.camera.position = T_world_set.translation()
221
+ time.sleep(1.0 / 30.0)
222
+
223
+ @close_button.on_click
224
+ def _(_) -> None:
225
+ assert camera_edit_panel is not None
226
+ camera_edit_panel.remove()
227
+ self._camera_edit_panel = None
228
+
229
+ self._keyframes[keyframe_index] = (keyframe, frustum_handle)
230
+
231
+ def update_aspect(self, aspect: float) -> None:
232
+ for keyframe_index, frame in self._keyframes.items():
233
+ frame = dataclasses.replace(frame[0], aspect=aspect)
234
+ self.add_camera(frame, keyframe_index=keyframe_index)
235
+
236
+ def get_aspect(self) -> float:
237
+ """Get W/H aspect ratio, which is shared across all keyframes."""
238
+ assert len(self._keyframes) > 0
239
+ return next(iter(self._keyframes.values()))[0].aspect
240
+
241
+ def reset(self) -> None:
242
+ for frame in self._keyframes.values():
243
+ print(f"removing {frame[1]}")
244
+ frame[1].remove()
245
+ self._keyframes.clear()
246
+ self.update_spline()
247
+ print("camera path reset")
248
+
249
+ def spline_t_from_t_sec(self, time: np.ndarray) -> np.ndarray:
250
+ """From a time value in seconds, compute a t value for our geometric
251
+ spline interpolation. An increment of 1 for the latter will move the
252
+ camera forward by one keyframe.
253
+
254
+ We use a PCHIP spline here to guarantee monotonicity.
255
+ """
256
+ transition_times_cumsum = self.compute_transition_times_cumsum()
257
+ spline_indices = np.arange(transition_times_cumsum.shape[0])
258
+
259
+ if self.loop:
260
+ # In the case of a loop, we pad the spline to match the start/end
261
+ # slopes.
262
+ interpolator = scipy.interpolate.PchipInterpolator(
263
+ x=np.concatenate(
264
+ [
265
+ [-(transition_times_cumsum[-1] - transition_times_cumsum[-2])],
266
+ transition_times_cumsum,
267
+ transition_times_cumsum[-1:] + transition_times_cumsum[1:2],
268
+ ],
269
+ axis=0,
270
+ ),
271
+ y=np.concatenate(
272
+ [[-1], spline_indices, [spline_indices[-1] + 1]], axis=0
273
+ ),
274
+ )
275
+ else:
276
+ interpolator = scipy.interpolate.PchipInterpolator(
277
+ x=transition_times_cumsum, y=spline_indices
278
+ )
279
+
280
+ # Clip to account for floating point error.
281
+ return np.clip(interpolator(time), 0, spline_indices[-1])
282
+
283
+ def interpolate_pose_and_fov_rad(
284
+ self, normalized_t: float
285
+ ) -> Optional[Tuple[tf.SE3, float, float]]:
286
+ if len(self._keyframes) < 2:
287
+ return None
288
+
289
+ self._time_spline = splines.KochanekBartels(
290
+ [keyframe[0].time for keyframe in self._keyframes.values()],
291
+ tcb=(self.tension, 0.0, 0.0),
292
+ endconditions="closed" if self.loop else "natural",
293
+ )
294
+
295
+ self._fov_spline = splines.KochanekBartels(
296
+ [
297
+ (
298
+ keyframe[0].override_fov_rad
299
+ if keyframe[0].override_fov_enabled
300
+ else self.default_fov
301
+ )
302
+ for keyframe in self._keyframes.values()
303
+ ],
304
+ tcb=(self.tension, 0.0, 0.0),
305
+ endconditions="closed" if self.loop else "natural",
306
+ )
307
+
308
+ assert self._orientation_spline is not None
309
+ assert self._position_spline is not None
310
+ assert self._fov_spline is not None
311
+ assert self._time_spline is not None
312
+
313
+ max_t = self.compute_duration()
314
+ t = max_t * normalized_t
315
+ spline_t = float(self.spline_t_from_t_sec(np.array(t)))
316
+
317
+ quat = self._orientation_spline.evaluate(spline_t)
318
+ assert isinstance(quat, splines.quaternion.UnitQuaternion)
319
+ return (
320
+ tf.SE3.from_rotation_and_translation(
321
+ tf.SO3(np.array([quat.scalar, *quat.vector])),
322
+ self._position_spline.evaluate(spline_t),
323
+ ),
324
+ float(self._fov_spline.evaluate(spline_t)),
325
+ float(self._time_spline.evaluate(spline_t)),
326
+ )
327
+
328
+ def update_spline(self) -> None:
329
+ num_frames = int(self.compute_duration() * self.framerate)
330
+ keyframes = list(self._keyframes.values())
331
+
332
+ if num_frames <= 0 or not self.show_spline or len(keyframes) < 2:
333
+ for node in self._spline_nodes:
334
+ node.remove()
335
+ self._spline_nodes.clear()
336
+ return
337
+
338
+ transition_times_cumsum = self.compute_transition_times_cumsum()
339
+
340
+ self._orientation_spline = splines.quaternion.KochanekBartels(
341
+ [
342
+ splines.quaternion.UnitQuaternion.from_unit_xyzw(
343
+ np.roll(keyframe[0].wxyz, shift=-1)
344
+ )
345
+ for keyframe in keyframes
346
+ ],
347
+ tcb=(self.tension, 0.0, 0.0),
348
+ endconditions="closed" if self.loop else "natural",
349
+ )
350
+ self._position_spline = splines.KochanekBartels(
351
+ [keyframe[0].position for keyframe in keyframes],
352
+ tcb=(self.tension, 0.0, 0.0),
353
+ endconditions="closed" if self.loop else "natural",
354
+ )
355
+
356
+ # Update visualized spline.
357
+ points_array = self._position_spline.evaluate(
358
+ self.spline_t_from_t_sec(
359
+ np.linspace(0, transition_times_cumsum[-1], num_frames)
360
+ )
361
+ )
362
+ colors_array = np.array(
363
+ [
364
+ colorsys.hls_to_rgb(h, 0.5, 1.0)
365
+ for h in np.linspace(0.0, 1.0, len(points_array))
366
+ ]
367
+ )
368
+
369
+ # Clear prior spline nodes.
370
+ for node in self._spline_nodes:
371
+ node.remove()
372
+ self._spline_nodes.clear()
373
+
374
+ self._spline_nodes.append(
375
+ self._server.scene.add_spline_catmull_rom(
376
+ "/render_camera_spline",
377
+ positions=points_array,
378
+ color=(220, 220, 220),
379
+ closed=self.loop,
380
+ line_width=1.0,
381
+ segments=points_array.shape[0] + 1,
382
+ )
383
+ )
384
+ self._spline_nodes.append(
385
+ self._server.scene.add_point_cloud(
386
+ "/render_camera_spline/points",
387
+ points=points_array,
388
+ colors=colors_array,
389
+ point_size=0.04,
390
+ )
391
+ )
392
+
393
+ def make_transition_handle(i: int) -> None:
394
+ assert self._position_spline is not None
395
+ transition_pos = self._position_spline.evaluate(
396
+ float(
397
+ self.spline_t_from_t_sec(
398
+ (transition_times_cumsum[i] + transition_times_cumsum[i + 1])
399
+ / 2.0,
400
+ )
401
+ )
402
+ )
403
+ transition_sphere = self._server.scene.add_icosphere(
404
+ f"/render_camera_spline/transition_{i}",
405
+ radius=0.04,
406
+ color=(255, 0, 0),
407
+ position=transition_pos,
408
+ )
409
+ self._spline_nodes.append(transition_sphere)
410
+
411
+ @transition_sphere.on_click
412
+ def _(_) -> None:
413
+ server = self._server
414
+
415
+ if self._camera_edit_panel is not None:
416
+ self._camera_edit_panel.remove()
417
+ self._camera_edit_panel = None
418
+
419
+ keyframe_index = (i + 1) % len(self._keyframes)
420
+ keyframe = keyframes[keyframe_index][0]
421
+
422
+ with server.scene.add_3d_gui_container(
423
+ "/camera_edit_panel",
424
+ position=transition_pos,
425
+ ) as camera_edit_panel:
426
+ self._camera_edit_panel = camera_edit_panel
427
+ override_transition_enabled = server.gui.add_checkbox(
428
+ "Override transition",
429
+ initial_value=keyframe.override_transition_enabled,
430
+ )
431
+ override_transition_sec = server.gui.add_number(
432
+ "Override transition (sec)",
433
+ initial_value=(
434
+ keyframe.override_transition_sec
435
+ if keyframe.override_transition_sec is not None
436
+ else self.default_transition_sec
437
+ ),
438
+ min=0.001,
439
+ max=30.0,
440
+ step=0.001,
441
+ disabled=not override_transition_enabled.value,
442
+ )
443
+ close_button = server.gui.add_button("Close")
444
+
445
+ @override_transition_enabled.on_update
446
+ def _(_) -> None:
447
+ keyframe.override_transition_enabled = (
448
+ override_transition_enabled.value
449
+ )
450
+ override_transition_sec.disabled = (
451
+ not override_transition_enabled.value
452
+ )
453
+ self._duration_element.value = self.compute_duration()
454
+
455
+ @override_transition_sec.on_update
456
+ def _(_) -> None:
457
+ keyframe.override_transition_sec = override_transition_sec.value
458
+ self._duration_element.value = self.compute_duration()
459
+
460
+ @close_button.on_click
461
+ def _(_) -> None:
462
+ assert camera_edit_panel is not None
463
+ camera_edit_panel.remove()
464
+ self._camera_edit_panel = None
465
+
466
+ (num_transitions_plus_1,) = transition_times_cumsum.shape
467
+ for i in range(num_transitions_plus_1 - 1):
468
+ make_transition_handle(i)
469
+
470
+ # for i in range(transition_times.shape[0])
471
+
472
+ def compute_duration(self) -> float:
473
+ """Compute the total duration of the trajectory."""
474
+ total = 0.0
475
+ for i, (keyframe, frustum) in enumerate(self._keyframes.values()):
476
+ if i == 0 and not self.loop:
477
+ continue
478
+ del frustum
479
+ total += (
480
+ keyframe.override_transition_sec
481
+ if keyframe.override_transition_enabled
482
+ and keyframe.override_transition_sec is not None
483
+ else self.default_transition_sec
484
+ )
485
+ return total
486
+
487
+ def compute_transition_times_cumsum(self) -> np.ndarray:
488
+ """Compute the total duration of the trajectory."""
489
+ total = 0.0
490
+ out = [0.0]
491
+ for i, (keyframe, frustum) in enumerate(self._keyframes.values()):
492
+ if i == 0:
493
+ continue
494
+ del frustum
495
+ total += (
496
+ keyframe.override_transition_sec
497
+ if keyframe.override_transition_enabled
498
+ and keyframe.override_transition_sec is not None
499
+ else self.default_transition_sec
500
+ )
501
+ out.append(total)
502
+
503
+ if self.loop:
504
+ keyframe = next(iter(self._keyframes.values()))[0]
505
+ total += (
506
+ keyframe.override_transition_sec
507
+ if keyframe.override_transition_enabled
508
+ and keyframe.override_transition_sec is not None
509
+ else self.default_transition_sec
510
+ )
511
+ out.append(total)
512
+
513
+ return np.array(out)
514
+
515
+
516
+ @dataclasses.dataclass
517
+ class RenderTabState:
518
+ """Useful GUI handles exposed by the render tab."""
519
+
520
+ preview_render: bool
521
+ preview_fov: float
522
+ preview_aspect: float
523
+ preview_camera_type: Literal["Perspective", "Fisheye", "Equirectangular"]
524
+
525
+
526
+ def populate_render_tab(
527
+ server: viser.ViserServer,
528
+ datapath: Path,
529
+ gui_timestep_handle: viser.GuiInputHandle[int] | None,
530
+ ) -> RenderTabState:
531
+
532
+ render_tab_state = RenderTabState(
533
+ preview_render=False,
534
+ preview_fov=0.0,
535
+ preview_aspect=1.0,
536
+ preview_camera_type="Perspective",
537
+ )
538
+
539
+ fov_degrees = server.gui.add_slider(
540
+ "Default FOV",
541
+ initial_value=75.0,
542
+ min=0.1,
543
+ max=175.0,
544
+ step=0.01,
545
+ hint="Field-of-view for rendering, which can also be overridden on a per-keyframe basis.",
546
+ )
547
+
548
+ @fov_degrees.on_update
549
+ def _(_) -> None:
550
+ fov_radians = fov_degrees.value / 180.0 * np.pi
551
+ for client in server.get_clients().values():
552
+ client.camera.fov = fov_radians
553
+ camera_path.default_fov = fov_radians
554
+
555
+ # Updating the aspect ratio will also re-render the camera frustums.
556
+ # Could rethink this.
557
+ camera_path.update_aspect(resolution.value[0] / resolution.value[1])
558
+ compute_and_update_preview_camera_state()
559
+
560
+ resolution = server.gui.add_vector2(
561
+ "Resolution",
562
+ initial_value=(1920, 1080),
563
+ min=(50, 50),
564
+ max=(10_000, 10_000),
565
+ step=1,
566
+ hint="Render output resolution in pixels.",
567
+ )
568
+
569
+ @resolution.on_update
570
+ def _(_) -> None:
571
+ camera_path.update_aspect(resolution.value[0] / resolution.value[1])
572
+ compute_and_update_preview_camera_state()
573
+
574
+ camera_type = server.gui.add_dropdown(
575
+ "Camera type",
576
+ ("Perspective", "Fisheye", "Equirectangular"),
577
+ initial_value="Perspective",
578
+ hint="Camera model to render with. This is applied to all keyframes.",
579
+ )
580
+ add_button = server.gui.add_button(
581
+ "Add Keyframe",
582
+ icon=viser.Icon.PLUS,
583
+ hint="Add a new keyframe at the current pose.",
584
+ )
585
+
586
+ @add_button.on_click
587
+ def _(event: viser.GuiEvent) -> None:
588
+ assert event.client_id is not None
589
+ camera = server.get_clients()[event.client_id].camera
590
+ pose = tf.SE3.from_rotation_and_translation(
591
+ tf.SO3(camera.wxyz), camera.position
592
+ )
593
+ print(f"client {event.client_id} at {camera.position} {camera.wxyz}")
594
+ print(f"camera pose {pose.as_matrix()}")
595
+ if gui_timestep_handle is not None:
596
+ print(f"timestep {gui_timestep_handle.value}")
597
+
598
+ # Add this camera to the path.
599
+ time = 0
600
+ if gui_timestep_handle is not None:
601
+ time = gui_timestep_handle.value
602
+ camera_path.add_camera(
603
+ Keyframe.from_camera(
604
+ time,
605
+ camera,
606
+ aspect=resolution.value[0] / resolution.value[1],
607
+ ),
608
+ )
609
+ duration_number.value = camera_path.compute_duration()
610
+ camera_path.update_spline()
611
+
612
+ clear_keyframes_button = server.gui.add_button(
613
+ "Clear Keyframes",
614
+ icon=viser.Icon.TRASH,
615
+ hint="Remove all keyframes from the render path.",
616
+ )
617
+
618
+ @clear_keyframes_button.on_click
619
+ def _(event: viser.GuiEvent) -> None:
620
+ assert event.client_id is not None
621
+ client = server.get_clients()[event.client_id]
622
+ with client.atomic(), client.gui.add_modal("Confirm") as modal:
623
+ client.gui.add_markdown("Clear all keyframes?")
624
+ confirm_button = client.gui.add_button(
625
+ "Yes", color="red", icon=viser.Icon.TRASH
626
+ )
627
+ exit_button = client.gui.add_button("Cancel")
628
+
629
+ @confirm_button.on_click
630
+ def _(_) -> None:
631
+ camera_path.reset()
632
+ modal.close()
633
+
634
+ duration_number.value = camera_path.compute_duration()
635
+
636
+ # Clear move handles.
637
+ if len(transform_controls) > 0:
638
+ for t in transform_controls:
639
+ t.remove()
640
+ transform_controls.clear()
641
+ return
642
+
643
+ @exit_button.on_click
644
+ def _(_) -> None:
645
+ modal.close()
646
+
647
+ loop = server.gui.add_checkbox(
648
+ "Loop", False, hint="Add a segment between the first and last keyframes."
649
+ )
650
+
651
+ @loop.on_update
652
+ def _(_) -> None:
653
+ camera_path.loop = loop.value
654
+ duration_number.value = camera_path.compute_duration()
655
+
656
+ tension_slider = server.gui.add_slider(
657
+ "Spline tension",
658
+ min=0.0,
659
+ max=1.0,
660
+ initial_value=0.0,
661
+ step=0.01,
662
+ hint="Tension parameter for adjusting smoothness of spline interpolation.",
663
+ )
664
+
665
+ @tension_slider.on_update
666
+ def _(_) -> None:
667
+ camera_path.tension = tension_slider.value
668
+ camera_path.update_spline()
669
+
670
+ move_checkbox = server.gui.add_checkbox(
671
+ "Move keyframes",
672
+ initial_value=False,
673
+ hint="Toggle move handles for keyframes in the scene.",
674
+ )
675
+
676
+ transform_controls: List[viser.SceneNodeHandle] = []
677
+
678
+ @move_checkbox.on_update
679
+ def _(event: viser.GuiEvent) -> None:
680
+ # Clear move handles when toggled off.
681
+ if move_checkbox.value is False:
682
+ for t in transform_controls:
683
+ t.remove()
684
+ transform_controls.clear()
685
+ return
686
+
687
+ def _make_transform_controls_callback(
688
+ keyframe: Tuple[Keyframe, viser.SceneNodeHandle],
689
+ controls: viser.TransformControlsHandle,
690
+ ) -> None:
691
+ @controls.on_update
692
+ def _(_) -> None:
693
+ keyframe[0].wxyz = controls.wxyz
694
+ keyframe[0].position = controls.position
695
+
696
+ keyframe[1].wxyz = controls.wxyz
697
+ keyframe[1].position = controls.position
698
+
699
+ camera_path.update_spline()
700
+
701
+ # Show move handles.
702
+ assert event.client is not None
703
+ for keyframe_index, keyframe in camera_path._keyframes.items():
704
+ controls = event.client.scene.add_transform_controls(
705
+ f"/keyframe_move/{keyframe_index}",
706
+ scale=0.4,
707
+ wxyz=keyframe[0].wxyz,
708
+ position=keyframe[0].position,
709
+ )
710
+ transform_controls.append(controls)
711
+ _make_transform_controls_callback(keyframe, controls)
712
+
713
+ show_keyframe_checkbox = server.gui.add_checkbox(
714
+ "Show keyframes",
715
+ initial_value=True,
716
+ hint="Show keyframes in the scene.",
717
+ )
718
+
719
+ @show_keyframe_checkbox.on_update
720
+ def _(_: viser.GuiEvent) -> None:
721
+ camera_path.set_keyframes_visible(show_keyframe_checkbox.value)
722
+
723
+ show_spline_checkbox = server.gui.add_checkbox(
724
+ "Show spline",
725
+ initial_value=True,
726
+ hint="Show camera path spline in the scene.",
727
+ )
728
+
729
+ @show_spline_checkbox.on_update
730
+ def _(_) -> None:
731
+ camera_path.show_spline = show_spline_checkbox.value
732
+ camera_path.update_spline()
733
+
734
+ playback_folder = server.gui.add_folder("Playback")
735
+ with playback_folder:
736
+ play_button = server.gui.add_button("Play", icon=viser.Icon.PLAYER_PLAY)
737
+ pause_button = server.gui.add_button(
738
+ "Pause", icon=viser.Icon.PLAYER_PAUSE, visible=False
739
+ )
740
+ preview_render_button = server.gui.add_button(
741
+ "Preview Render", hint="Show a preview of the render in the viewport."
742
+ )
743
+ preview_render_stop_button = server.gui.add_button(
744
+ "Exit Render Preview", color="red", visible=False
745
+ )
746
+
747
+ transition_sec_number = server.gui.add_number(
748
+ "Transition (sec)",
749
+ min=0.001,
750
+ max=30.0,
751
+ step=0.001,
752
+ initial_value=2.0,
753
+ hint="Time in seconds between each keyframe, which can also be overridden on a per-transition basis.",
754
+ )
755
+ framerate_number = server.gui.add_number(
756
+ "FPS", min=0.1, max=240.0, step=1e-2, initial_value=30.0
757
+ )
758
+ framerate_buttons = server.gui.add_button_group("", ("24", "30", "60"))
759
+ duration_number = server.gui.add_number(
760
+ "Duration (sec)",
761
+ min=0.0,
762
+ max=1e8,
763
+ step=0.001,
764
+ initial_value=0.0,
765
+ disabled=True,
766
+ )
767
+
768
+ @framerate_buttons.on_click
769
+ def _(_) -> None:
770
+ framerate_number.value = float(framerate_buttons.value)
771
+
772
+ @transition_sec_number.on_update
773
+ def _(_) -> None:
774
+ camera_path.default_transition_sec = transition_sec_number.value
775
+ duration_number.value = camera_path.compute_duration()
776
+
777
+ def get_max_frame_index() -> int:
778
+ return max(1, int(framerate_number.value * duration_number.value) - 1)
779
+
780
+ preview_camera_handle: Optional[viser.SceneNodeHandle] = None
781
+
782
+ def remove_preview_camera() -> None:
783
+ nonlocal preview_camera_handle
784
+ if preview_camera_handle is not None:
785
+ preview_camera_handle.remove()
786
+ preview_camera_handle = None
787
+
788
+ def compute_and_update_preview_camera_state() -> (
789
+ Optional[Tuple[tf.SE3, float, float]]
790
+ ):
791
+ """Update the render tab state with the current preview camera pose.
792
+ Returns current camera pose + FOV if available."""
793
+
794
+ if preview_frame_slider is None:
795
+ return
796
+ maybe_pose_and_fov_rad_and_time = camera_path.interpolate_pose_and_fov_rad(
797
+ preview_frame_slider.value / get_max_frame_index()
798
+ )
799
+ if maybe_pose_and_fov_rad_and_time is None:
800
+ remove_preview_camera()
801
+ return
802
+ pose, fov_rad, time = maybe_pose_and_fov_rad_and_time
803
+ render_tab_state.preview_fov = fov_rad
804
+ render_tab_state.preview_aspect = camera_path.get_aspect()
805
+ render_tab_state.preview_camera_type = camera_type.value
806
+ if gui_timestep_handle is not None:
807
+ gui_timestep_handle.value = int(time)
808
+ return pose, fov_rad, time
809
+
810
+ def add_preview_frame_slider() -> Optional[viser.GuiInputHandle[int]]:
811
+ """Helper for creating the current frame # slider. This is removed and
812
+ re-added anytime the `max` value changes."""
813
+
814
+ with playback_folder:
815
+ preview_frame_slider = server.gui.add_slider(
816
+ "Preview frame",
817
+ min=0,
818
+ max=get_max_frame_index(),
819
+ step=1,
820
+ initial_value=0,
821
+ # Place right after the pause button.
822
+ order=preview_render_stop_button.order + 0.01,
823
+ disabled=get_max_frame_index() == 1,
824
+ )
825
+ play_button.disabled = preview_frame_slider.disabled
826
+ preview_render_button.disabled = preview_frame_slider.disabled
827
+
828
+ @preview_frame_slider.on_update
829
+ def _(_) -> None:
830
+ nonlocal preview_camera_handle
831
+ maybe_pose_and_fov_rad_and_time = compute_and_update_preview_camera_state()
832
+ if maybe_pose_and_fov_rad_and_time is None:
833
+ return
834
+ pose, fov_rad, time = maybe_pose_and_fov_rad_and_time
835
+
836
+ preview_camera_handle = server.scene.add_camera_frustum(
837
+ "/preview_camera",
838
+ fov=fov_rad,
839
+ aspect=resolution.value[0] / resolution.value[1],
840
+ scale=0.35,
841
+ wxyz=pose.rotation().wxyz,
842
+ position=pose.translation(),
843
+ color=(10, 200, 30),
844
+ )
845
+ if render_tab_state.preview_render:
846
+ for client in server.get_clients().values():
847
+ client.camera.wxyz = pose.rotation().wxyz
848
+ client.camera.position = pose.translation()
849
+ if gui_timestep_handle is not None:
850
+ gui_timestep_handle.value = int(time)
851
+
852
+ return preview_frame_slider
853
+
854
+ # We back up the camera poses before and after we start previewing renders.
855
+ camera_pose_backup_from_id: Dict[int, tuple] = {}
856
+
857
+ @preview_render_button.on_click
858
+ def _(_) -> None:
859
+ render_tab_state.preview_render = True
860
+ preview_render_button.visible = False
861
+ preview_render_stop_button.visible = True
862
+
863
+ maybe_pose_and_fov_rad_and_time = compute_and_update_preview_camera_state()
864
+ if maybe_pose_and_fov_rad_and_time is None:
865
+ remove_preview_camera()
866
+ return
867
+ pose, fov, time = maybe_pose_and_fov_rad_and_time
868
+ del fov
869
+
870
+ # Hide all scene nodes when we're previewing the render.
871
+ server.scene.set_global_visibility(True)
872
+
873
+ # Back up and then set camera poses.
874
+ for client in server.get_clients().values():
875
+ camera_pose_backup_from_id[client.client_id] = (
876
+ client.camera.position,
877
+ client.camera.look_at,
878
+ client.camera.up_direction,
879
+ )
880
+ client.camera.wxyz = pose.rotation().wxyz
881
+ client.camera.position = pose.translation()
882
+ if gui_timestep_handle is not None:
883
+ gui_timestep_handle.value = int(time)
884
+
885
+ @preview_render_stop_button.on_click
886
+ def _(_) -> None:
887
+ render_tab_state.preview_render = False
888
+ preview_render_button.visible = True
889
+ preview_render_stop_button.visible = False
890
+
891
+ # Revert camera poses.
892
+ for client in server.get_clients().values():
893
+ if client.client_id not in camera_pose_backup_from_id:
894
+ continue
895
+ cam_position, cam_look_at, cam_up = camera_pose_backup_from_id.pop(
896
+ client.client_id
897
+ )
898
+ client.camera.position = cam_position
899
+ client.camera.look_at = cam_look_at
900
+ client.camera.up_direction = cam_up
901
+ client.flush()
902
+
903
+ # Un-hide scene nodes.
904
+ server.scene.set_global_visibility(True)
905
+
906
+ preview_frame_slider = add_preview_frame_slider()
907
+
908
+ # Update the # of frames.
909
+ @duration_number.on_update
910
+ @framerate_number.on_update
911
+ def _(_) -> None:
912
+ remove_preview_camera() # Will be re-added when slider is updated.
913
+
914
+ nonlocal preview_frame_slider
915
+ old = preview_frame_slider
916
+ assert old is not None
917
+
918
+ preview_frame_slider = add_preview_frame_slider()
919
+ if preview_frame_slider is not None:
920
+ old.remove()
921
+ else:
922
+ preview_frame_slider = old
923
+
924
+ camera_path.framerate = framerate_number.value
925
+ camera_path.update_spline()
926
+
927
+ # Play the camera trajectory when the play button is pressed.
928
+ @play_button.on_click
929
+ def _(_) -> None:
930
+ play_button.visible = False
931
+ pause_button.visible = True
932
+
933
+ def play() -> None:
934
+ while not play_button.visible:
935
+ max_frame = int(framerate_number.value * duration_number.value)
936
+ if max_frame > 0:
937
+ assert preview_frame_slider is not None
938
+ preview_frame_slider.value = (
939
+ preview_frame_slider.value + 1
940
+ ) % max_frame
941
+ time.sleep(1.0 / framerate_number.value)
942
+
943
+ threading.Thread(target=play).start()
944
+
945
+ # Play the camera trajectory when the play button is pressed.
946
+ @pause_button.on_click
947
+ def _(_) -> None:
948
+ play_button.visible = True
949
+ pause_button.visible = False
950
+
951
+ # add button for loading existing path
952
+ load_camera_path_button = server.gui.add_button(
953
+ "Load Path", icon=viser.Icon.FOLDER_OPEN, hint="Load an existing camera path."
954
+ )
955
+
956
+ @load_camera_path_button.on_click
957
+ def _(event: viser.GuiEvent) -> None:
958
+ assert event.client is not None
959
+ camera_path_dir = datapath.parent
960
+ camera_path_dir.mkdir(parents=True, exist_ok=True)
961
+ preexisting_camera_paths = list(camera_path_dir.glob("*.json"))
962
+ preexisting_camera_filenames = [p.name for p in preexisting_camera_paths]
963
+
964
+ with event.client.gui.add_modal("Load Path") as modal:
965
+ if len(preexisting_camera_filenames) == 0:
966
+ event.client.gui.add_markdown("No existing paths found")
967
+ else:
968
+ event.client.gui.add_markdown("Select existing camera path:")
969
+ camera_path_dropdown = event.client.gui.add_dropdown(
970
+ label="Camera Path",
971
+ options=[str(p) for p in preexisting_camera_filenames],
972
+ initial_value=str(preexisting_camera_filenames[0]),
973
+ )
974
+ load_button = event.client.gui.add_button("Load")
975
+
976
+ @load_button.on_click
977
+ def _(_) -> None:
978
+ # load the json file
979
+ json_path = datapath / camera_path_dropdown.value
980
+ with open(json_path, "r") as f:
981
+ json_data = json.load(f)
982
+
983
+ keyframes = json_data["keyframes"]
984
+ camera_path.reset()
985
+ for i in range(len(keyframes)):
986
+ frame = keyframes[i]
987
+ pose = tf.SE3.from_matrix(
988
+ np.array(frame["matrix"]).reshape(4, 4)
989
+ )
990
+ # apply the x rotation by 180 deg
991
+ pose = tf.SE3.from_rotation_and_translation(
992
+ pose.rotation() @ tf.SO3.from_x_radians(np.pi),
993
+ pose.translation(),
994
+ )
995
+
996
+ camera_path.add_camera(
997
+ Keyframe(
998
+ frame["time"],
999
+ position=pose.translation(),
1000
+ wxyz=pose.rotation().wxyz,
1001
+ # There are some floating point conversions between degrees and radians, so the fov and
1002
+ # default_Fov values will not be exactly matched.
1003
+ override_fov_enabled=abs(
1004
+ frame["fov"] - json_data.get("default_fov", 0.0)
1005
+ )
1006
+ > 1e-3,
1007
+ override_fov_rad=frame["fov"] / 180.0 * np.pi,
1008
+ aspect=frame["aspect"],
1009
+ override_transition_enabled=frame.get(
1010
+ "override_transition_enabled", None
1011
+ ),
1012
+ override_transition_sec=frame.get(
1013
+ "override_transition_sec", None
1014
+ ),
1015
+ )
1016
+ )
1017
+
1018
+ transition_sec_number.value = json_data.get(
1019
+ "default_transition_sec", 0.5
1020
+ )
1021
+
1022
+ # update the render name
1023
+ camera_path_name.value = json_path.stem
1024
+ camera_path.update_spline()
1025
+ modal.close()
1026
+
1027
+ cancel_button = event.client.gui.add_button("Cancel")
1028
+
1029
+ @cancel_button.on_click
1030
+ def _(_) -> None:
1031
+ modal.close()
1032
+
1033
+ # set the initial value to the current date-time string
1034
+ now = datetime.datetime.now()
1035
+ camera_path_name = server.gui.add_text(
1036
+ "Camera path name",
1037
+ initial_value=now.strftime("%Y-%m-%d %H:%M:%S"),
1038
+ hint="Name of the render",
1039
+ )
1040
+
1041
+ save_path_button = server.gui.add_button(
1042
+ "Save Camera Path",
1043
+ color="green",
1044
+ icon=viser.Icon.FILE_EXPORT,
1045
+ hint="Save the camera path to json.",
1046
+ )
1047
+
1048
+ reset_up_button = server.gui.add_button(
1049
+ "Reset Up Direction",
1050
+ icon=viser.Icon.ARROW_BIG_UP_LINES,
1051
+ color="gray",
1052
+ hint="Set the up direction of the camera orbit controls to the camera's current up direction.",
1053
+ )
1054
+
1055
+ @reset_up_button.on_click
1056
+ def _(event: viser.GuiEvent) -> None:
1057
+ assert event.client is not None
1058
+ event.client.camera.up_direction = tf.SO3(event.client.camera.wxyz) @ np.array(
1059
+ [0.0, -1.0, 0.0]
1060
+ )
1061
+
1062
+ @save_path_button.on_click
1063
+ def _(event: viser.GuiEvent) -> None:
1064
+ assert event.client is not None
1065
+ num_frames = int(framerate_number.value * duration_number.value)
1066
+ json_data = {}
1067
+ # json data has the properties:
1068
+ # keyframes: list of keyframes with
1069
+ # matrix : flattened 4x4 matrix
1070
+ # fov: float in degrees
1071
+ # aspect: float
1072
+ # camera_type: string of camera type
1073
+ # render_height: int
1074
+ # render_width: int
1075
+ # fps: int
1076
+ # seconds: float
1077
+ # is_cycle: bool
1078
+ # smoothness_value: float
1079
+ # camera_path: list of frames with properties
1080
+ # camera_to_world: flattened 4x4 matrix
1081
+ # fov: float in degrees
1082
+ # aspect: float
1083
+ # first populate the keyframes:
1084
+ keyframes = []
1085
+ for keyframe, dummy in camera_path._keyframes.values():
1086
+ pose = tf.SE3.from_rotation_and_translation(
1087
+ tf.SO3(keyframe.wxyz), keyframe.position
1088
+ )
1089
+ keyframes.append(
1090
+ {
1091
+ "matrix": pose.as_matrix().flatten().tolist(),
1092
+ "fov": (
1093
+ np.rad2deg(keyframe.override_fov_rad)
1094
+ if keyframe.override_fov_enabled
1095
+ else fov_degrees.value
1096
+ ),
1097
+ "aspect": keyframe.aspect,
1098
+ "override_transition_enabled": keyframe.override_transition_enabled,
1099
+ "override_transition_sec": keyframe.override_transition_sec,
1100
+ }
1101
+ )
1102
+ json_data["default_fov"] = fov_degrees.value
1103
+ json_data["default_transition_sec"] = transition_sec_number.value
1104
+ json_data["keyframes"] = keyframes
1105
+ json_data["camera_type"] = camera_type.value.lower()
1106
+ json_data["render_height"] = resolution.value[1]
1107
+ json_data["render_width"] = resolution.value[0]
1108
+ json_data["fps"] = framerate_number.value
1109
+ json_data["seconds"] = duration_number.value
1110
+ json_data["is_cycle"] = loop.value
1111
+ json_data["smoothness_value"] = tension_slider.value
1112
+
1113
+ def get_intrinsics(W, H, fov):
1114
+ focal = 0.5 * H / np.tan(0.5 * fov)
1115
+ return np.array(
1116
+ [[focal, 0.0, 0.5 * W], [0.0, focal, 0.5 * H], [0.0, 0.0, 1.0]]
1117
+ )
1118
+
1119
+ # now populate the camera path:
1120
+ camera_path_list = []
1121
+ for i in range(num_frames):
1122
+ maybe_pose_and_fov_and_time = camera_path.interpolate_pose_and_fov_rad(
1123
+ i / num_frames
1124
+ )
1125
+ if maybe_pose_and_fov_and_time is None:
1126
+ return
1127
+ pose, fov, time = maybe_pose_and_fov_and_time
1128
+ H = resolution.value[1]
1129
+ W = resolution.value[0]
1130
+ K = get_intrinsics(W, H, fov)
1131
+ # rotate the axis of the camera 180 about x axis
1132
+ w2c = pose.inverse().as_matrix()
1133
+ camera_path_list.append(
1134
+ {
1135
+ "time": time,
1136
+ "w2c": w2c.flatten().tolist(),
1137
+ "K": K.flatten().tolist(),
1138
+ "img_wh": (W, H),
1139
+ }
1140
+ )
1141
+ json_data["camera_path"] = camera_path_list
1142
+
1143
+ # now write the json file
1144
+ out_name = camera_path_name.value
1145
+ json_outfile = datapath / f"{out_name}.json"
1146
+ datapath.mkdir(parents=True, exist_ok=True)
1147
+ print(f"writing to {json_outfile}")
1148
+ with open(json_outfile.absolute(), "w") as outfile:
1149
+ json.dump(json_data, outfile)
1150
+
1151
+ camera_path = CameraPath(server, duration_number)
1152
+ camera_path.default_fov = fov_degrees.value / 180.0 * np.pi
1153
+ camera_path.default_transition_sec = transition_sec_number.value
1154
+
1155
+ return render_tab_state
1156
+
1157
+
1158
+ if __name__ == "__main__":
1159
+ populate_render_tab(
1160
+ server=viser.ViserServer(),
1161
+ datapath=Path("."),
1162
+ gui_timestep_handle=None,
1163
+ )
1164
+ while True:
1165
+ time.sleep(10.0)
Davis_out/hike/code/2024-10-27-121029/flow3d/vis/utils.py ADDED
@@ -0,0 +1,544 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import colorsys
2
+ from typing import cast
3
+
4
+ import cv2
5
+ import numpy as np
6
+
7
+ # import nvdiffrast.torch as dr
8
+ import torch
9
+ import torch.nn.functional as F
10
+ from matplotlib import colormaps
11
+ from viser import ViserServer
12
+
13
+
14
+ class Singleton(type):
15
+ _instances = {}
16
+
17
+ def __call__(cls, *args, **kwargs):
18
+ if cls not in cls._instances:
19
+ cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs)
20
+ return cls._instances[cls]
21
+
22
+
23
+ class VisManager(metaclass=Singleton):
24
+ _servers = {}
25
+
26
+
27
+ def get_server(port: int | None = None) -> ViserServer:
28
+ manager = VisManager()
29
+ if port is None:
30
+ avail_ports = list(manager._servers.keys())
31
+ port = avail_ports[0] if len(avail_ports) > 0 else 8890
32
+ if port not in manager._servers:
33
+ manager._servers[port] = ViserServer(port=port, verbose=False)
34
+ return manager._servers[port]
35
+
36
+
37
+ def project_2d_tracks(tracks_3d_w, Ks, T_cw, return_depth=False):
38
+ """
39
+ :param tracks_3d_w (torch.Tensor): (T, N, 3)
40
+ :param Ks (torch.Tensor): (T, 3, 3)
41
+ :param T_cw (torch.Tensor): (T, 4, 4)
42
+ :returns tracks_2d (torch.Tensor): (T, N, 2)
43
+ """
44
+ tracks_3d_c = torch.einsum(
45
+ "tij,tnj->tni", T_cw, F.pad(tracks_3d_w, (0, 1), value=1)
46
+ )[..., :3]
47
+ tracks_3d_v = torch.einsum("tij,tnj->tni", Ks, tracks_3d_c)
48
+ if return_depth:
49
+ return (
50
+ tracks_3d_v[..., :2] / torch.clamp(tracks_3d_v[..., 2:], min=1e-5),
51
+ tracks_3d_v[..., 2],
52
+ )
53
+ return tracks_3d_v[..., :2] / torch.clamp(tracks_3d_v[..., 2:], min=1e-5)
54
+
55
+
56
+ def draw_keypoints_video(
57
+ imgs, kps, colors=None, occs=None, cmap: str = "gist_rainbow", radius: int = 3
58
+ ):
59
+ """
60
+ :param imgs (np.ndarray): (T, H, W, 3) uint8 [0, 255]
61
+ :param kps (np.ndarray): (N, T, 2)
62
+ :param colors (np.ndarray): (N, 3) float [0, 1]
63
+ :param occ (np.ndarray): (N, T) bool
64
+ return out_frames (T, H, W, 3)
65
+ """
66
+ if colors is None:
67
+ label = np.linspace(0, 1, kps.shape[0])
68
+ colors = np.asarray(colormaps.get_cmap(cmap)(label))[..., :3]
69
+ out_frames = []
70
+ for t in range(len(imgs)):
71
+ occ = occs[:, t] if occs is not None else None
72
+ vis = draw_keypoints_cv2(imgs[t], kps[:, t], colors, occ, radius=radius)
73
+ out_frames.append(vis)
74
+ return out_frames
75
+
76
+
77
+ def draw_keypoints_cv2(img, kps, colors=None, occs=None, radius=3):
78
+ """
79
+ :param img (H, W, 3)
80
+ :param kps (N, 2)
81
+ :param occs (N)
82
+ :param colors (N, 3) from 0 to 1
83
+ """
84
+ out_img = img.copy()
85
+ kps = kps.round().astype("int").tolist()
86
+ if colors is not None:
87
+ colors = (255 * colors).astype("int").tolist()
88
+ for n in range(len(kps)):
89
+ kp = kps[n]
90
+ color = colors[n] if colors is not None else (255, 0, 0)
91
+ thickness = -1 if occs is None or occs[n] == 0 else 1
92
+ out_img = cv2.circle(out_img, kp, radius, color, thickness, cv2.LINE_AA)
93
+ return out_img
94
+
95
+
96
+ def draw_tracks_2d(
97
+ img: torch.Tensor,
98
+ tracks_2d: torch.Tensor,
99
+ track_point_size: int = 2,
100
+ track_line_width: int = 1,
101
+ cmap_name: str = "gist_rainbow",
102
+ ):
103
+ cmap = colormaps.get_cmap(cmap_name)
104
+ # (H, W, 3).
105
+ img_np = (img.cpu().numpy() * 255.0).astype(np.uint8)
106
+ # (P, N, 2).
107
+ tracks_2d_np = tracks_2d.cpu().numpy()
108
+
109
+ num_tracks, num_frames = tracks_2d_np.shape[:2]
110
+
111
+ canvas = img_np.copy()
112
+ for i in range(num_frames - 1):
113
+ alpha = max(1 - 0.9 * ((num_frames - 1 - i) / (num_frames * 0.99)), 0.1)
114
+ img_curr = canvas.copy()
115
+ for j in range(num_tracks):
116
+ color = tuple(np.array(cmap(j / max(1, float(num_tracks - 1)))[:3]) * 255)
117
+ color_alpha = 1
118
+ hsv = colorsys.rgb_to_hsv(color[0], color[1], color[2])
119
+ color = colorsys.hsv_to_rgb(hsv[0], hsv[1] * color_alpha, hsv[2])
120
+ pt1 = tracks_2d_np[j, i]
121
+ pt2 = tracks_2d_np[j, i + 1]
122
+ p1 = (int(round(pt1[0])), int(round(pt1[1])))
123
+ p2 = (int(round(pt2[0])), int(round(pt2[1])))
124
+ img_curr = cv2.line(
125
+ img_curr,
126
+ p1,
127
+ p2,
128
+ color,
129
+ thickness=track_line_width,
130
+ lineType=cv2.LINE_AA,
131
+ )
132
+ canvas = cv2.addWeighted(img_curr, alpha, canvas, 1 - alpha, 0)
133
+
134
+ for j in range(num_tracks):
135
+ color = tuple(np.array(cmap(j / max(1, float(num_tracks - 1)))[:3]) * 255)
136
+ pt = tracks_2d_np[j, -1]
137
+ pt = (int(round(pt[0])), int(round(pt[1])))
138
+ canvas = cv2.circle(
139
+ canvas,
140
+ pt,
141
+ track_point_size,
142
+ color,
143
+ thickness=-1,
144
+ lineType=cv2.LINE_AA,
145
+ )
146
+
147
+ return canvas
148
+
149
+
150
+ def generate_line_verts_faces(starts, ends, line_width):
151
+ """
152
+ Args:
153
+ starts: (P, N, 2).
154
+ ends: (P, N, 2).
155
+ line_width: int.
156
+
157
+ Returns:
158
+ verts: (P * N * 4, 2).
159
+ faces: (P * N * 2, 3).
160
+ """
161
+ P, N, _ = starts.shape
162
+
163
+ directions = F.normalize(ends - starts, dim=-1)
164
+ deltas = (
165
+ torch.cat([-directions[..., 1:], directions[..., :1]], dim=-1)
166
+ * line_width
167
+ / 2.0
168
+ )
169
+ v0 = starts + deltas
170
+ v1 = starts - deltas
171
+ v2 = ends + deltas
172
+ v3 = ends - deltas
173
+ verts = torch.stack([v0, v1, v2, v3], dim=-2)
174
+ verts = verts.reshape(-1, 2)
175
+
176
+ faces = []
177
+ for p in range(P):
178
+ for n in range(N):
179
+ base_index = p * N * 4 + n * 4
180
+ # Two triangles per rectangle: (0, 1, 2) and (2, 1, 3)
181
+ faces.append([base_index, base_index + 1, base_index + 2])
182
+ faces.append([base_index + 2, base_index + 1, base_index + 3])
183
+ faces = torch.as_tensor(faces, device=starts.device)
184
+
185
+ return verts, faces
186
+
187
+
188
+ def generate_point_verts_faces(points, point_size, num_segments=10):
189
+ """
190
+ Args:
191
+ points: (P, 2).
192
+ point_size: int.
193
+ num_segments: int.
194
+
195
+ Returns:
196
+ verts: (P * (num_segments + 1), 2).
197
+ faces: (P * num_segments, 3).
198
+ """
199
+ P, _ = points.shape
200
+
201
+ angles = torch.linspace(0, 2 * torch.pi, num_segments + 1, device=points.device)[
202
+ ..., :-1
203
+ ]
204
+ unit_circle = torch.stack([torch.cos(angles), torch.sin(angles)], dim=1)
205
+ scaled_circles = (point_size / 2.0) * unit_circle
206
+ scaled_circles = scaled_circles[None].repeat(P, 1, 1)
207
+ verts = points[:, None] + scaled_circles
208
+ verts = torch.cat([verts, points[:, None]], dim=1)
209
+ verts = verts.reshape(-1, 2)
210
+
211
+ faces = F.pad(
212
+ torch.as_tensor(
213
+ [[i, (i + 1) % num_segments] for i in range(num_segments)],
214
+ device=points.device,
215
+ ),
216
+ (0, 1),
217
+ value=num_segments,
218
+ )
219
+ faces = faces[None, :] + torch.arange(P, device=points.device)[:, None, None] * (
220
+ num_segments + 1
221
+ )
222
+ faces = faces.reshape(-1, 3)
223
+
224
+ return verts, faces
225
+
226
+
227
+ def pixel_to_verts_clip(pixels, img_wh, z: float | torch.Tensor = 0.0, w=1.0):
228
+ verts_clip = pixels / pixels.new_tensor(img_wh) * 2.0 - 1.0
229
+ w = torch.full_like(verts_clip[..., :1], w)
230
+ verts_clip = torch.cat([verts_clip, z * w, w], dim=-1)
231
+ return verts_clip
232
+
233
+
234
+ def draw_tracks_2d_th(
235
+ img: torch.Tensor,
236
+ tracks_2d: torch.Tensor,
237
+ track_point_size: int = 5,
238
+ track_point_segments: int = 16,
239
+ track_line_width: int = 2,
240
+ cmap_name: str = "gist_rainbow",
241
+ ):
242
+ cmap = colormaps.get_cmap(cmap_name)
243
+ CTX = dr.RasterizeCudaContext()
244
+
245
+ W, H = img.shape[1], img.shape[0]
246
+ if W % 8 != 0 or H % 8 != 0:
247
+ # Make sure img is divisible by 8.
248
+ img = F.pad(
249
+ img,
250
+ (
251
+ 0,
252
+ 0,
253
+ 0,
254
+ 8 - W % 8 if W % 8 != 0 else 0,
255
+ 0,
256
+ 8 - H % 8 if H % 8 != 0 else 0,
257
+ ),
258
+ value=0.0,
259
+ )
260
+ num_tracks, num_frames = tracks_2d.shape[:2]
261
+
262
+ track_colors = torch.tensor(
263
+ [cmap(j / max(1, float(num_tracks - 1)))[:3] for j in range(num_tracks)],
264
+ device=img.device,
265
+ ).float()
266
+
267
+ # Generate line verts.
268
+ verts_l, faces_l = generate_line_verts_faces(
269
+ tracks_2d[:, :-1], tracks_2d[:, 1:], track_line_width
270
+ )
271
+ # Generate point verts.
272
+ verts_p, faces_p = generate_point_verts_faces(
273
+ tracks_2d[:, -1], track_point_size, track_point_segments
274
+ )
275
+
276
+ verts = torch.cat([verts_l, verts_p], dim=0)
277
+ faces = torch.cat([faces_l, faces_p + len(verts_l)], dim=0)
278
+ vert_colors = torch.cat(
279
+ [
280
+ (
281
+ track_colors[:, None]
282
+ .repeat_interleave(4 * (num_frames - 1), dim=1)
283
+ .reshape(-1, 3)
284
+ ),
285
+ (
286
+ track_colors[:, None]
287
+ .repeat_interleave(track_point_segments + 1, dim=1)
288
+ .reshape(-1, 3)
289
+ ),
290
+ ],
291
+ dim=0,
292
+ )
293
+ track_zs = torch.linspace(0.0, 1.0, num_tracks, device=img.device)[:, None]
294
+ vert_zs = torch.cat(
295
+ [
296
+ (
297
+ track_zs[:, None]
298
+ .repeat_interleave(4 * (num_frames - 1), dim=1)
299
+ .reshape(-1, 1)
300
+ ),
301
+ (
302
+ track_zs[:, None]
303
+ .repeat_interleave(track_point_segments + 1, dim=1)
304
+ .reshape(-1, 1)
305
+ ),
306
+ ],
307
+ dim=0,
308
+ )
309
+ track_alphas = torch.linspace(
310
+ max(0.1, 1.0 - (num_frames - 1) * 0.1), 1.0, num_frames, device=img.device
311
+ )
312
+ vert_alphas = torch.cat(
313
+ [
314
+ (
315
+ track_alphas[None, :-1, None]
316
+ .repeat_interleave(num_tracks, dim=0)
317
+ .repeat_interleave(4, dim=-2)
318
+ .reshape(-1, 1)
319
+ ),
320
+ (
321
+ track_alphas[None, -1:, None]
322
+ .repeat_interleave(num_tracks, dim=0)
323
+ .repeat_interleave(track_point_segments + 1, dim=-2)
324
+ .reshape(-1, 1)
325
+ ),
326
+ ],
327
+ dim=0,
328
+ )
329
+
330
+ # Small trick to always render one track in front of the other.
331
+ verts_clip = pixel_to_verts_clip(verts, (img.shape[1], img.shape[0]), vert_zs)
332
+ faces_int32 = faces.to(torch.int32)
333
+
334
+ rast, _ = cast(
335
+ tuple,
336
+ dr.rasterize(CTX, verts_clip[None], faces_int32, (img.shape[0], img.shape[1])),
337
+ )
338
+ rgba = cast(
339
+ torch.Tensor,
340
+ dr.interpolate(
341
+ torch.cat([vert_colors, vert_alphas], dim=-1).contiguous(),
342
+ rast,
343
+ faces_int32,
344
+ ),
345
+ )[0]
346
+ rgba = cast(torch.Tensor, dr.antialias(rgba, rast, verts_clip, faces_int32))[
347
+ 0
348
+ ].clamp(0, 1)
349
+ # Compose.
350
+ color = rgba[..., :-1] * rgba[..., -1:] + (1.0 - rgba[..., -1:]) * img
351
+
352
+ # Unpad.
353
+ color = color[:H, :W]
354
+
355
+ return (color.cpu().numpy() * 255.0).astype(np.uint8)
356
+
357
+
358
+ def make_video_divisble(
359
+ video: torch.Tensor | np.ndarray, block_size=16
360
+ ) -> torch.Tensor | np.ndarray:
361
+ H, W = video.shape[1:3]
362
+ H_new = H - H % block_size
363
+ W_new = W - W % block_size
364
+ return video[:, :H_new, :W_new]
365
+
366
+
367
+ def apply_float_colormap(img: torch.Tensor, colormap: str = "turbo") -> torch.Tensor:
368
+ """Convert single channel to a color img.
369
+
370
+ Args:
371
+ img (torch.Tensor): (..., 1) float32 single channel image.
372
+ colormap (str): Colormap for img.
373
+
374
+ Returns:
375
+ (..., 3) colored img with colors in [0, 1].
376
+ """
377
+ img = torch.nan_to_num(img, 0)
378
+ if colormap == "gray":
379
+ return img.repeat(1, 1, 3)
380
+ img_long = (img * 255).long()
381
+ img_long_min = torch.min(img_long)
382
+ img_long_max = torch.max(img_long)
383
+ assert img_long_min >= 0, f"the min value is {img_long_min}"
384
+ assert img_long_max <= 255, f"the max value is {img_long_max}"
385
+ return torch.tensor(
386
+ colormaps[colormap].colors, # type: ignore
387
+ device=img.device,
388
+ )[img_long[..., 0]]
389
+
390
+
391
+ def apply_depth_colormap(
392
+ depth: torch.Tensor,
393
+ acc: torch.Tensor | None = None,
394
+ near_plane: float | None = None,
395
+ far_plane: float | None = None,
396
+ ) -> torch.Tensor:
397
+ """Converts a depth image to color for easier analysis.
398
+
399
+ Args:
400
+ depth (torch.Tensor): (..., 1) float32 depth.
401
+ acc (torch.Tensor | None): (..., 1) optional accumulation mask.
402
+ near_plane: Closest depth to consider. If None, use min image value.
403
+ far_plane: Furthest depth to consider. If None, use max image value.
404
+
405
+ Returns:
406
+ (..., 3) colored depth image with colors in [0, 1].
407
+ """
408
+ near_plane = near_plane or float(torch.min(depth))
409
+ far_plane = far_plane or float(torch.max(depth))
410
+ depth = (depth - near_plane) / (far_plane - near_plane + 1e-10)
411
+ depth = torch.clip(depth, 0.0, 1.0)
412
+ img = apply_float_colormap(depth, colormap="turbo")
413
+ if acc is not None:
414
+ img = img * acc + (1.0 - acc)
415
+ return img
416
+
417
+
418
+ def float2uint8(x):
419
+ return (255.0 * x).astype(np.uint8)
420
+
421
+
422
+ def uint82float(img):
423
+ return np.ascontiguousarray(img) / 255.0
424
+
425
+
426
+ def drawMatches(
427
+ img1,
428
+ img2,
429
+ kp1,
430
+ kp2,
431
+ num_vis=200,
432
+ center=None,
433
+ idx_vis=None,
434
+ radius=2,
435
+ seed=1234,
436
+ mask=None,
437
+ ):
438
+ num_pts = len(kp1)
439
+ if idx_vis is None:
440
+ if num_vis < num_pts:
441
+ rng = np.random.RandomState(seed)
442
+ idx_vis = rng.choice(num_pts, num_vis, replace=False)
443
+ else:
444
+ idx_vis = np.arange(num_pts)
445
+
446
+ kp1_vis = kp1[idx_vis]
447
+ kp2_vis = kp2[idx_vis]
448
+
449
+ h1, w1 = img1.shape[:2]
450
+ h2, w2 = img2.shape[:2]
451
+
452
+ kp1_vis[:, 0] = np.clip(kp1_vis[:, 0], a_min=0, a_max=w1 - 1)
453
+ kp1_vis[:, 1] = np.clip(kp1_vis[:, 1], a_min=0, a_max=h1 - 1)
454
+
455
+ kp2_vis[:, 0] = np.clip(kp2_vis[:, 0], a_min=0, a_max=w2 - 1)
456
+ kp2_vis[:, 1] = np.clip(kp2_vis[:, 1], a_min=0, a_max=h2 - 1)
457
+
458
+ img1 = float2uint8(img1)
459
+ img2 = float2uint8(img2)
460
+
461
+ if center is None:
462
+ center = np.median(kp1, axis=0)
463
+
464
+ set_max = range(128)
465
+ colors = {m: i for i, m in enumerate(set_max)}
466
+ hsv = colormaps.get_cmap("hsv")
467
+ colors = {
468
+ m: (255 * np.array(hsv(i / float(len(colors))))[:3][::-1]).astype(np.int32)
469
+ for m, i in colors.items()
470
+ }
471
+
472
+ if mask is not None:
473
+ ind = np.argsort(mask)[::-1]
474
+ kp1_vis = kp1_vis[ind]
475
+ kp2_vis = kp2_vis[ind]
476
+ mask = mask[ind]
477
+
478
+ for i, (pt1, pt2) in enumerate(zip(kp1_vis, kp2_vis)):
479
+ # random_color = tuple(np.random.randint(low=0, high=255, size=(3,)).tolist())
480
+ coord_angle = np.arctan2(pt1[1] - center[1], pt1[0] - center[0])
481
+ corr_color = np.int32(64 * coord_angle / np.pi) % 128
482
+ color = tuple(colors[corr_color].tolist())
483
+
484
+ if (
485
+ (pt1[0] <= w1 - 1)
486
+ and (pt1[0] >= 0)
487
+ and (pt1[1] <= h1 - 1)
488
+ and (pt1[1] >= 0)
489
+ ):
490
+ img1 = cv2.circle(
491
+ img1, (int(pt1[0]), int(pt1[1])), radius, color, -1, cv2.LINE_AA
492
+ )
493
+ if (
494
+ (pt2[0] <= w2 - 1)
495
+ and (pt2[0] >= 0)
496
+ and (pt2[1] <= h2 - 1)
497
+ and (pt2[1] >= 0)
498
+ ):
499
+ if mask is not None and mask[i]:
500
+ continue
501
+ # img2 = cv2.drawMarker(img2, (int(pt2[0]), int(pt2[1])), color, markerType=cv2.MARKER_CROSS,
502
+ # markerSize=int(5*radius), thickness=int(radius/2), line_type=cv2.LINE_AA)
503
+ else:
504
+ img2 = cv2.circle(
505
+ img2, (int(pt2[0]), int(pt2[1])), radius, color, -1, cv2.LINE_AA
506
+ )
507
+
508
+ out = np.concatenate([img1, img2], axis=1)
509
+ return out
510
+
511
+
512
+ def plot_correspondences(
513
+ rgbs, kpts, query_id=0, masks=None, num_vis=1000000, radius=3, seed=1234
514
+ ):
515
+ num_rgbs = len(rgbs)
516
+ rng = np.random.RandomState(seed)
517
+ permutation = rng.permutation(kpts.shape[1])
518
+ kpts = kpts[:, permutation, :][:, :num_vis]
519
+ if masks is not None:
520
+ masks = masks[:, permutation][:, :num_vis]
521
+
522
+ rgbq = rgbs[query_id] # [h, w, 3]
523
+ kptsq = kpts[query_id] # [n, 2]
524
+
525
+ frames = []
526
+ for i in range(num_rgbs):
527
+ rgbi = rgbs[i]
528
+ kptsi = kpts[i]
529
+ if masks is not None:
530
+ maski = masks[i]
531
+ else:
532
+ maski = None
533
+ frame = drawMatches(
534
+ rgbq,
535
+ rgbi,
536
+ kptsq,
537
+ kptsi,
538
+ mask=maski,
539
+ num_vis=num_vis,
540
+ radius=radius,
541
+ seed=seed,
542
+ )
543
+ frames.append(frame)
544
+ return frames
Davis_out/hike/code/2024-10-27-121029/flow3d/vis/viewer.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ from typing import Callable, Literal, Optional, Tuple, Union
3
+
4
+ import numpy as np
5
+ from jaxtyping import Float32, UInt8
6
+ from nerfview import CameraState, Viewer
7
+ from viser import Icon, ViserServer
8
+
9
+ from flow3d.vis.playback_panel import add_gui_playback_group
10
+ from flow3d.vis.render_panel import populate_render_tab
11
+
12
+
13
+ class DynamicViewer(Viewer):
14
+ def __init__(
15
+ self,
16
+ server: ViserServer,
17
+ render_fn: Callable[
18
+ [CameraState, Tuple[int, int]],
19
+ Union[
20
+ UInt8[np.ndarray, "H W 3"],
21
+ Tuple[UInt8[np.ndarray, "H W 3"], Optional[Float32[np.ndarray, "H W"]]],
22
+ ],
23
+ ],
24
+ num_frames: int,
25
+ work_dir: str,
26
+ mode: Literal["rendering", "training"] = "rendering",
27
+ ):
28
+ self.num_frames = num_frames
29
+ self.work_dir = Path(work_dir)
30
+ super().__init__(server, render_fn, mode)
31
+
32
+ def _define_guis(self):
33
+ super()._define_guis()
34
+ server = self.server
35
+ self._time_folder = server.gui.add_folder("Time")
36
+ with self._time_folder:
37
+ self._playback_guis = add_gui_playback_group(
38
+ server,
39
+ num_frames=self.num_frames,
40
+ initial_fps=15.0,
41
+ )
42
+ self._playback_guis[0].on_update(self.rerender)
43
+ self._canonical_checkbox = server.gui.add_checkbox("Canonical", False)
44
+ self._canonical_checkbox.on_update(self.rerender)
45
+
46
+ _cached_playback_disabled = []
47
+
48
+ def _toggle_gui_playing(event):
49
+ if event.target.value:
50
+ nonlocal _cached_playback_disabled
51
+ _cached_playback_disabled = [
52
+ gui.disabled for gui in self._playback_guis
53
+ ]
54
+ target_disabled = [True] * len(self._playback_guis)
55
+ else:
56
+ target_disabled = _cached_playback_disabled
57
+ for gui, disabled in zip(self._playback_guis, target_disabled):
58
+ gui.disabled = disabled
59
+
60
+ self._canonical_checkbox.on_update(_toggle_gui_playing)
61
+
62
+ self._render_track_checkbox = server.gui.add_checkbox("Render tracks", False)
63
+ self._render_track_checkbox.on_update(self.rerender)
64
+
65
+ tabs = server.gui.add_tab_group()
66
+ with tabs.add_tab("Render", Icon.CAMERA):
67
+ self.render_tab_state = populate_render_tab(
68
+ server, Path(self.work_dir) / "camera_paths", self._playback_guis[0]
69
+ )
Davis_out/hike/code/2024-10-27-121029/scripts/batch_eval_ours_iphone_gcp.sh ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ EXPNAME=$1
4
+
5
+ seq_names=("apple" "backpack" "block" "creeper" "handwavy" "haru-sit" "mochi-high-five" "paper-windmill" "pillow" "spin" "sriracha-tree" "teddy")
6
+ out_dir="/mnt/out/$EXPNAME"
7
+ for seq_name in "${seq_names[@]}"; do
8
+ seq_dir="$out_dir/$seq_name"
9
+ mkdir -p $seq_dir
10
+ gsutil -mq cp -r "gs://xcloud-shared/qianqianwang/flow3d/ours/iphone/$EXPNAME/${seq_name}/results" $seq_dir
11
+ done
12
+
13
+ python scripts/evaluate_iphone.py --data_dir /home/qianqianwang_google_com/datasets/iphone/dycheck --result_dir /mnt/out/$EXPNAME
Davis_out/hike/code/2024-10-27-121029/scripts/evaluate_iphone.py ADDED
@@ -0,0 +1,447 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import json
3
+ import os.path as osp
4
+ from glob import glob
5
+ from itertools import product
6
+
7
+ import cv2
8
+ import imageio.v3 as iio
9
+ import numpy as np
10
+ import roma
11
+ import torch
12
+ from tqdm import tqdm
13
+
14
+ from flow3d.data.colmap import get_colmap_camera_params
15
+ from flow3d.metrics import mLPIPS, mPSNR, mSSIM
16
+ from flow3d.transforms import rt_to_mat4, solve_procrustes
17
+
18
+ parser = argparse.ArgumentParser()
19
+ parser.add_argument(
20
+ "--data_dir",
21
+ type=str,
22
+ help="Path to the data directory that contains all the sequences.",
23
+ )
24
+ parser.add_argument(
25
+ "--result_dir",
26
+ type=str,
27
+ help="Path to the result directory that contains the results."
28
+ "for batch evaluation, result_dir should contain subdirectories for each sequence. (result_dir/seq_name/results)"
29
+ "for single sequence evaluation, result_dir should contain results directly (result_dir/results)",
30
+ )
31
+ parser.add_argument(
32
+ "--seq_names",
33
+ type=str,
34
+ nargs="+",
35
+ default=[
36
+ "apple",
37
+ "backpack",
38
+ "block",
39
+ "creeper",
40
+ "handwavy",
41
+ "haru-sit",
42
+ "mochi-high-five",
43
+ "paper-windmill",
44
+ "pillow",
45
+ "spin",
46
+ "sriracha-tree",
47
+ "teddy",
48
+ ],
49
+ help="Sequence names to evaluate.",
50
+ )
51
+ args = parser.parse_args()
52
+
53
+
54
+ def load_data_dict(data_dir, train_names, val_names):
55
+ val_imgs = np.array(
56
+ [iio.imread(osp.join(data_dir, "rgb/1x", f"{name}.png")) for name in val_names]
57
+ )
58
+ val_covisibles = np.array(
59
+ [
60
+ iio.imread(
61
+ osp.join(
62
+ data_dir, "flow3d_preprocessed/covisible/1x/val/", f"{name}.png"
63
+ )
64
+ )
65
+ for name in tqdm(val_names, desc="Loading val covisibles")
66
+ ]
67
+ )
68
+ train_depths = np.array(
69
+ [
70
+ np.load(osp.join(data_dir, "depth/1x", f"{name}.npy"))[..., 0]
71
+ for name in train_names
72
+ ]
73
+ )
74
+ train_Ks, train_w2cs = get_colmap_camera_params(
75
+ osp.join(data_dir, "flow3d_preprocessed/colmap/sparse/"),
76
+ [name + ".png" for name in train_names],
77
+ )
78
+ train_Ks = train_Ks[:, :3, :3]
79
+ scale = np.load(osp.join(data_dir, "flow3d_preprocessed/colmap/scale.npy")).item()
80
+ train_c2ws = np.linalg.inv(train_w2cs)
81
+ train_c2ws[:, :3, -1] *= scale
82
+ train_w2cs = np.linalg.inv(train_c2ws)
83
+ keypoint_paths = sorted(glob(osp.join(data_dir, "keypoint/2x/train/0_*.json")))
84
+ keypoints_2d = []
85
+ for keypoint_path in keypoint_paths:
86
+ with open(keypoint_path) as f:
87
+ keypoints_2d.append(json.load(f))
88
+ keypoints_2d = np.array(keypoints_2d)
89
+ keypoints_2d[..., :2] *= 2.0
90
+ time_ids = np.array(
91
+ [int(osp.basename(p).split("_")[1].split(".")[0]) for p in keypoint_paths]
92
+ )
93
+ time_pairs = np.array(list(product(time_ids, repeat=2)))
94
+ index_pairs = np.array(list(product(range(len(time_ids)), repeat=2)))
95
+ keypoints_3d = []
96
+ for i, kps_2d in zip(time_ids, keypoints_2d):
97
+ K = train_Ks[i]
98
+ w2c = train_w2cs[i]
99
+ depth = train_depths[i]
100
+ is_kp_visible = kps_2d[:, 2] == 1
101
+ is_depth_valid = (
102
+ cv2.remap(
103
+ (depth != 0).astype(np.float32),
104
+ kps_2d[None, :, :2].astype(np.float32),
105
+ None, # type: ignore
106
+ cv2.INTER_LINEAR,
107
+ borderMode=cv2.BORDER_CONSTANT,
108
+ )[0]
109
+ == 1
110
+ )
111
+ kp_depths = cv2.remap(
112
+ depth, # type: ignore
113
+ kps_2d[None, :, :2].astype(np.float32),
114
+ None, # type: ignore
115
+ cv2.INTER_LINEAR,
116
+ borderMode=cv2.BORDER_CONSTANT,
117
+ )[0]
118
+ kps_3d = (
119
+ np.einsum(
120
+ "ij,pj->pi",
121
+ np.linalg.inv(K),
122
+ np.pad(kps_2d[:, :2], ((0, 0), (0, 1)), constant_values=1),
123
+ )
124
+ * kp_depths[:, None]
125
+ )
126
+ kps_3d = np.einsum(
127
+ "ij,pj->pi",
128
+ np.linalg.inv(w2c)[:3],
129
+ np.pad(kps_3d, ((0, 0), (0, 1)), constant_values=1),
130
+ )
131
+ kps_3d = np.concatenate(
132
+ [kps_3d, (is_kp_visible & is_depth_valid)[:, None]], axis=1
133
+ )
134
+ kps_3d[kps_3d[:, -1] != 1] = 0.0
135
+ keypoints_3d.append(kps_3d)
136
+ keypoints_3d = np.array(keypoints_3d)
137
+ return {
138
+ "val_imgs": val_imgs,
139
+ "val_covisibles": val_covisibles,
140
+ "train_depths": train_depths,
141
+ "train_Ks": train_Ks,
142
+ "train_w2cs": train_w2cs,
143
+ "keypoints_2d": keypoints_2d,
144
+ "keypoints_3d": keypoints_3d,
145
+ "time_ids": time_ids,
146
+ "time_pairs": time_pairs,
147
+ "index_pairs": index_pairs,
148
+ }
149
+
150
+
151
+ def load_result_dict(result_dir, val_names):
152
+ try:
153
+ pred_val_imgs = np.array(
154
+ [
155
+ iio.imread(osp.join(result_dir, "rgb", f"{name}.png"))
156
+ for name in val_names
157
+ ]
158
+ )
159
+ except:
160
+ pred_val_imgs = None
161
+ try:
162
+ keypoints_dict = np.load(
163
+ osp.join(result_dir, "keypoints.npz"), allow_pickle=True
164
+ )
165
+ if len(keypoints_dict) == 1 and "arr_0" in keypoints_dict:
166
+ keypoints_dict = keypoints_dict["arr_0"].item()
167
+ pred_keypoint_Ks = keypoints_dict["Ks"]
168
+ pred_keypoint_w2cs = keypoints_dict["w2cs"]
169
+ pred_keypoints_3d = keypoints_dict["pred_keypoints_3d"]
170
+ pred_train_depths = keypoints_dict["pred_train_depths"]
171
+ except:
172
+ print(
173
+ "No keypoints.npz found, make sure that it's the method itself cannot produce keypoints."
174
+ )
175
+ keypoints_dict = {}
176
+ pred_keypoint_Ks = None
177
+ pred_keypoint_w2cs = None
178
+ pred_keypoints_3d = None
179
+ pred_train_depths = None
180
+
181
+ if "visibilities" in list(keypoints_dict.keys()):
182
+ pred_visibilities = keypoints_dict["visibilities"]
183
+ else:
184
+ pred_visibilities = None
185
+
186
+ return {
187
+ "pred_val_imgs": pred_val_imgs,
188
+ "pred_train_depths": pred_train_depths,
189
+ "pred_keypoint_Ks": pred_keypoint_Ks,
190
+ "pred_keypoint_w2cs": pred_keypoint_w2cs,
191
+ "pred_keypoints_3d": pred_keypoints_3d,
192
+ "pred_visibilities": pred_visibilities,
193
+ }
194
+
195
+
196
+ def evaluate_3d_tracking(data_dict, result_dict):
197
+ train_Ks = data_dict["train_Ks"]
198
+ train_w2cs = data_dict["train_w2cs"]
199
+ keypoints_3d = data_dict["keypoints_3d"]
200
+ time_ids = data_dict["time_ids"]
201
+ time_pairs = data_dict["time_pairs"]
202
+ index_pairs = data_dict["index_pairs"]
203
+ pred_keypoint_Ks = result_dict["pred_keypoint_Ks"]
204
+ pred_keypoint_w2cs = result_dict["pred_keypoint_w2cs"]
205
+ pred_keypoints_3d = result_dict["pred_keypoints_3d"]
206
+ if not np.allclose(train_Ks[time_ids], pred_keypoint_Ks):
207
+ print("Inconsistent camera intrinsics.")
208
+ print(train_Ks[time_ids][0], pred_keypoint_Ks[0])
209
+ keypoint_w2cs = train_w2cs[time_ids]
210
+ q, t, s = solve_procrustes(
211
+ torch.from_numpy(np.linalg.inv(pred_keypoint_w2cs)[:, :3, -1]).to(
212
+ torch.float32
213
+ ),
214
+ torch.from_numpy(np.linalg.inv(keypoint_w2cs)[:, :3, -1]).to(torch.float32),
215
+ )[0]
216
+ R = roma.unitquat_to_rotmat(q.roll(-1, dims=-1))
217
+ pred_keypoints_3d = np.einsum(
218
+ "ij,...j->...i",
219
+ rt_to_mat4(R, t, s).numpy().astype(np.float64),
220
+ np.pad(pred_keypoints_3d, ((0, 0), (0, 0), (0, 1)), constant_values=1),
221
+ )
222
+ pred_keypoints_3d = pred_keypoints_3d[..., :3] / pred_keypoints_3d[..., 3:]
223
+ # Compute 3D tracking metrics.
224
+ pair_keypoints_3d = keypoints_3d[index_pairs]
225
+ is_covisible = (pair_keypoints_3d[:, :, :, -1] == 1).all(axis=1)
226
+ target_keypoints_3d = pair_keypoints_3d[:, 1, :, :3]
227
+ epes = []
228
+ for i in range(len(time_pairs)):
229
+ epes.append(
230
+ np.linalg.norm(
231
+ target_keypoints_3d[i][is_covisible[i]]
232
+ - pred_keypoints_3d[i][is_covisible[i]],
233
+ axis=-1,
234
+ )
235
+ )
236
+ epe = np.mean(
237
+ [frame_epes.mean() for frame_epes in epes if len(frame_epes) > 0]
238
+ ).item()
239
+ pck_3d_10cm = np.mean(
240
+ [(frame_epes < 0.1).mean() for frame_epes in epes if len(frame_epes) > 0]
241
+ ).item()
242
+ pck_3d_5cm = np.mean(
243
+ [(frame_epes < 0.05).mean() for frame_epes in epes if len(frame_epes) > 0]
244
+ ).item()
245
+ print(f"3D tracking EPE: {epe:.4f}")
246
+ print(f"3D tracking PCK (10cm): {pck_3d_10cm:.4f}")
247
+ print(f"3D tracking PCK (5cm): {pck_3d_5cm:.4f}")
248
+ print("-----------------------------")
249
+ return epe, pck_3d_10cm, pck_3d_5cm
250
+
251
+
252
+ def project(Ks, w2cs, pts):
253
+ """
254
+ Args:
255
+ Ks: (N, 3, 3) camera intrinsics.
256
+ w2cs: (N, 4, 4) camera extrinsics.
257
+ pts: (N, N, M, 3) 3D points.
258
+ """
259
+ N = Ks.shape[0]
260
+ pts = pts.swapaxes(0, 1).reshape(N, -1, 3)
261
+
262
+ pts_homogeneous = np.concatenate([pts, np.ones_like(pts[..., -1:])], axis=-1)
263
+
264
+ # Apply world-to-camera transformation
265
+ pts_homogeneous = np.matmul(w2cs[:, :3], pts_homogeneous.swapaxes(1, 2)).swapaxes(
266
+ 1, 2
267
+ )
268
+ # Project to image plane using intrinsic parameters
269
+ projected_pts = np.matmul(Ks, pts_homogeneous.swapaxes(1, 2)).swapaxes(1, 2)
270
+
271
+ depths = projected_pts[..., 2:3]
272
+ # Normalize homogeneous coordinates
273
+ projected_pts = projected_pts[..., :2] / np.clip(depths, a_min=1e-6, a_max=None)
274
+ projected_pts = projected_pts.reshape(N, N, -1, 2).swapaxes(0, 1)
275
+ depths = depths.reshape(N, N, -1).swapaxes(0, 1)
276
+ return projected_pts, depths
277
+
278
+
279
+ def evaluate_2d_tracking(data_dict, result_dict):
280
+ train_w2cs = data_dict["train_w2cs"]
281
+ keypoints_2d = data_dict["keypoints_2d"]
282
+ visibilities = keypoints_2d[..., -1].astype(np.bool_)
283
+ time_ids = data_dict["time_ids"]
284
+ num_frames = len(time_ids)
285
+ num_pts = keypoints_2d.shape[1]
286
+ pred_train_depths = result_dict["pred_train_depths"]
287
+ pred_keypoint_Ks = result_dict["pred_keypoint_Ks"]
288
+ pred_keypoint_w2cs = result_dict["pred_keypoint_w2cs"]
289
+ pred_keypoints_3d = result_dict["pred_keypoints_3d"].reshape(
290
+ num_frames, -1, num_pts, 3
291
+ )
292
+ keypoint_w2cs = train_w2cs[time_ids]
293
+ s = solve_procrustes(
294
+ torch.from_numpy(np.linalg.inv(pred_keypoint_w2cs)[:, :3, -1]).to(
295
+ torch.float32
296
+ ),
297
+ torch.from_numpy(np.linalg.inv(keypoint_w2cs)[:, :3, -1]).to(torch.float32),
298
+ )[0][-1].item()
299
+
300
+ target_points = keypoints_2d[None].repeat(num_frames, axis=0)[..., :2]
301
+ target_visibilities = visibilities[None].repeat(num_frames, axis=0)
302
+
303
+ pred_points, pred_depths = project(
304
+ pred_keypoint_Ks, pred_keypoint_w2cs, pred_keypoints_3d
305
+ )
306
+ if result_dict["pred_visibilities"] is not None:
307
+ pred_visibilities = result_dict["pred_visibilities"].reshape(
308
+ num_frames, -1, num_pts
309
+ )
310
+ else:
311
+ rendered_depths = []
312
+ for i, points in zip(
313
+ data_dict["index_pairs"][:, -1],
314
+ pred_points.reshape(-1, pred_points.shape[2], 2),
315
+ ):
316
+ rendered_depths.append(
317
+ cv2.remap(
318
+ pred_train_depths[i].astype(np.float32),
319
+ points[None].astype(np.float32), # type: ignore
320
+ None, # type: ignore
321
+ cv2.INTER_LINEAR,
322
+ borderMode=cv2.BORDER_CONSTANT,
323
+ )[0]
324
+ )
325
+ rendered_depths = np.array(rendered_depths).reshape(num_frames, -1, num_pts)
326
+ pred_visibilities = (np.abs(rendered_depths - pred_depths) * s) < 0.05
327
+
328
+ one_hot_eye = np.eye(target_points.shape[0])[..., None].repeat(num_pts, axis=-1)
329
+ evaluation_points = one_hot_eye == 0
330
+ for i in range(num_frames):
331
+ evaluation_points[i, :, ~visibilities[i]] = False
332
+ occ_acc = np.sum(
333
+ np.equal(pred_visibilities, target_visibilities) & evaluation_points
334
+ ) / np.sum(evaluation_points)
335
+ all_frac_within = []
336
+ all_jaccard = []
337
+
338
+ for thresh in [4, 8, 16, 32, 64]:
339
+ within_dist = np.sum(
340
+ np.square(pred_points - target_points),
341
+ axis=-1,
342
+ ) < np.square(thresh)
343
+ is_correct = np.logical_and(within_dist, target_visibilities)
344
+ count_correct = np.sum(is_correct & evaluation_points)
345
+ count_visible_points = np.sum(target_visibilities & evaluation_points)
346
+ frac_correct = count_correct / count_visible_points
347
+ all_frac_within.append(frac_correct)
348
+
349
+ true_positives = np.sum(is_correct & pred_visibilities & evaluation_points)
350
+ gt_positives = np.sum(target_visibilities & evaluation_points)
351
+ false_positives = (~target_visibilities) & pred_visibilities
352
+ false_positives = false_positives | ((~within_dist) & pred_visibilities)
353
+ false_positives = np.sum(false_positives & evaluation_points)
354
+ jaccard = true_positives / (gt_positives + false_positives)
355
+ all_jaccard.append(jaccard)
356
+ AJ = np.mean(all_jaccard)
357
+ APCK = np.mean(all_frac_within)
358
+
359
+ print(f"2D tracking AJ: {AJ:.4f}")
360
+ print(f"2D tracking avg PCK: {APCK:.4f}")
361
+ print(f"2D tracking occlusion accuracy: {occ_acc:.4f}")
362
+ print("-----------------------------")
363
+ return AJ, APCK, occ_acc
364
+
365
+
366
+ def evaluate_nv(data_dict, result_dict):
367
+ device = "cuda"
368
+ psnr_metric = mPSNR().to(device)
369
+ ssim_metric = mSSIM().to(device)
370
+ lpips_metric = mLPIPS().to(device)
371
+
372
+ val_imgs = torch.from_numpy(data_dict["val_imgs"])[..., :3].to(device)
373
+ val_covisibles = torch.from_numpy(data_dict["val_covisibles"]).to(device)
374
+ pred_val_imgs = torch.from_numpy(result_dict["pred_val_imgs"]).to(device)
375
+
376
+ for i in range(len(val_imgs)):
377
+ val_img = val_imgs[i] / 255.0
378
+ pred_val_img = pred_val_imgs[i] / 255.0
379
+ val_covisible = val_covisibles[i] / 255.0
380
+ psnr_metric.update(val_img, pred_val_img, val_covisible)
381
+ ssim_metric.update(val_img[None], pred_val_img[None], val_covisible[None])
382
+ lpips_metric.update(val_img[None], pred_val_img[None], val_covisible[None])
383
+ mpsnr = psnr_metric.compute().item()
384
+ mssim = ssim_metric.compute().item()
385
+ mlpips = lpips_metric.compute().item()
386
+ print(f"NV mPSNR: {mpsnr:.4f}")
387
+ print(f"NV mSSIM: {mssim:.4f}")
388
+ print(f"NV mLPIPS: {mlpips:.4f}")
389
+ return mpsnr, mssim, mlpips
390
+
391
+
392
+ if __name__ == "__main__":
393
+ seq_names = args.seq_names
394
+
395
+ epe_all, pck_3d_10cm_all, pck_3d_5cm_all = [], [], []
396
+ AJ_all, APCK_all, occ_acc_all = [], [], []
397
+ mpsnr_all, mssim_all, mlpips_all = [], [], []
398
+
399
+ for seq_name in seq_names:
400
+ print("=========================================")
401
+ print(f"Evaluating {seq_name}")
402
+ print("=========================================")
403
+ data_dir = osp.join(args.data_dir, seq_name)
404
+ if not osp.exists(data_dir):
405
+ data_dir = args.data_dir
406
+ if not osp.exists(data_dir):
407
+ raise ValueError(f"Data directory {data_dir} not found.")
408
+ result_dir = osp.join(args.result_dir, seq_name, "results/")
409
+ if not osp.exists(result_dir):
410
+ result_dir = osp.join(args.result_dir, "results/")
411
+ if not osp.exists(result_dir):
412
+ raise ValueError(f"Result directory {result_dir} not found.")
413
+
414
+ with open(osp.join(data_dir, "splits/train.json")) as f:
415
+ train_names = json.load(f)["frame_names"]
416
+ with open(osp.join(data_dir, "splits/val.json")) as f:
417
+ val_names = json.load(f)["frame_names"]
418
+
419
+ data_dict = load_data_dict(data_dir, train_names, val_names)
420
+ result_dict = load_result_dict(result_dir, val_names)
421
+ if result_dict["pred_keypoints_3d"] is not None:
422
+ epe, pck_3d_10cm, pck_3d_5cm = evaluate_3d_tracking(data_dict, result_dict)
423
+ AJ, APCK, occ_acc = evaluate_2d_tracking(data_dict, result_dict)
424
+ epe_all.append(epe)
425
+ pck_3d_10cm_all.append(pck_3d_10cm)
426
+ pck_3d_5cm_all.append(pck_3d_5cm)
427
+ AJ_all.append(AJ)
428
+ APCK_all.append(APCK)
429
+ occ_acc_all.append(occ_acc)
430
+ if len(data_dict["val_imgs"]) > 0:
431
+ if result_dict["pred_val_imgs"] is None:
432
+ print("No NV results found.")
433
+ continue
434
+ mpsnr, mssim, mlpips = evaluate_nv(data_dict, result_dict)
435
+ mpsnr_all.append(mpsnr)
436
+ mssim_all.append(mssim)
437
+ mlpips_all.append(mlpips)
438
+
439
+ print(f"mean 3D tracking EPE: {np.mean(epe_all):.4f}")
440
+ print(f"mean 3D tracking PCK (10cm): {np.mean(pck_3d_10cm_all):.4f}")
441
+ print(f"mean 3D tracking PCK (5cm): {np.mean(pck_3d_5cm_all):.4f}")
442
+ print(f"mean 2D tracking AJ: {np.mean(AJ_all):.4f}")
443
+ print(f"mean 2D tracking avg PCK: {np.mean(APCK_all):.4f}")
444
+ print(f"mean 2D tracking occlusion accuracy: {np.mean(occ_acc_all):.4f}")
445
+ print(f"mean NV mPSNR: {np.mean(mpsnr_all):.4f}")
446
+ print(f"mean NV mSSIM: {np.mean(mssim_all):.4f}")
447
+ print(f"mean NV mLPIPS: {np.mean(mlpips_all):.4f}")