import math import torch import torch.nn as nn import torch.nn.functional as F from flow3d.transforms import cont_6d_to_rmat class GaussianParams(nn.Module): def __init__( self, means: torch.Tensor, quats: torch.Tensor, scales: torch.Tensor, colors: torch.Tensor, opacities: torch.Tensor, motion_coefs: torch.Tensor | None = None, scene_center: torch.Tensor | None = None, scene_scale: torch.Tensor | float = 1.0, ): super().__init__() if not check_gaussian_sizes( means, quats, scales, colors, opacities, motion_coefs ): import ipdb ipdb.set_trace() params_dict = { "means": nn.Parameter(means), "quats": nn.Parameter(quats), "scales": nn.Parameter(scales), "colors": nn.Parameter(colors), "opacities": nn.Parameter(opacities), } if motion_coefs is not None: params_dict["motion_coefs"] = nn.Parameter(motion_coefs) self.params = nn.ParameterDict(params_dict) self.quat_activation = lambda x: F.normalize(x, dim=-1, p=2) self.color_activation = torch.sigmoid self.scale_activation = torch.exp self.opacity_activation = torch.sigmoid self.motion_coef_activation = lambda x: F.softmax(x, dim=-1) if scene_center is None: scene_center = torch.zeros(3, device=means.device) self.register_buffer("scene_center", scene_center) self.register_buffer("scene_scale", torch.as_tensor(scene_scale)) @staticmethod def init_from_state_dict(state_dict, prefix="params."): req_keys = ["means", "quats", "scales", "colors", "opacities"] assert all(f"{prefix}{k}" in state_dict for k in req_keys) args = { "motion_coefs": None, "scene_center": torch.zeros(3), "scene_scale": torch.tensor(1.0), } for k in req_keys + list(args.keys()): if f"{prefix}{k}" in state_dict: args[k] = state_dict[f"{prefix}{k}"] return GaussianParams(**args) @property def num_gaussians(self) -> int: return self.params["means"].shape[0] def get_colors(self) -> torch.Tensor: return self.color_activation(self.params["colors"]) def get_scales(self) -> torch.Tensor: return self.scale_activation(self.params["scales"]) def get_opacities(self) -> torch.Tensor: return self.opacity_activation(self.params["opacities"]) def get_quats(self) -> torch.Tensor: return self.quat_activation(self.params["quats"]) def get_coefs(self) -> torch.Tensor: assert "motion_coefs" in self.params return self.motion_coef_activation(self.params["motion_coefs"]) def densify_params(self, should_split, should_dup): """ densify gaussians """ updated_params = {} for name, x in self.params.items(): x_dup = x[should_dup] x_split = x[should_split].repeat([2] + [1] * (x.ndim - 1)) if name == "scales": x_split -= math.log(1.6) x_new = nn.Parameter(torch.cat([x[~should_split], x_dup, x_split], dim=0)) updated_params[name] = x_new self.params[name] = x_new return updated_params def cull_params(self, should_cull): """ cull gaussians """ updated_params = {} for name, x in self.params.items(): x_new = nn.Parameter(x[~should_cull]) updated_params[name] = x_new self.params[name] = x_new return updated_params def reset_opacities(self, new_val): """ reset all opacities to new_val """ self.params["opacities"].data.fill_(new_val) updated_params = {"opacities": self.params["opacities"]} return updated_params class MotionBases(nn.Module): def __init__(self, rots, transls): super().__init__() self.num_frames = rots.shape[1] self.num_bases = rots.shape[0] assert check_bases_sizes(rots, transls) self.params = nn.ParameterDict( { "rots": nn.Parameter(rots), "transls": nn.Parameter(transls), } ) @staticmethod def init_from_state_dict(state_dict, prefix="params."): param_keys = ["rots", "transls"] assert all(f"{prefix}{k}" in state_dict for k in param_keys) args = {k: state_dict[f"{prefix}{k}"] for k in param_keys} return MotionBases(**args) def compute_transforms(self, ts: torch.Tensor, coefs: torch.Tensor) -> torch.Tensor: """ :param ts (B) :param coefs (G, K) returns transforms (G, B, 3, 4) """ transls = self.params["transls"][:, ts] # (K, B, 3) rots = self.params["rots"][:, ts] # (K, B, 6) transls = torch.einsum("pk,kni->pni", coefs, transls) rots = torch.einsum("pk,kni->pni", coefs, rots) # (G, B, 6) rotmats = cont_6d_to_rmat(rots) # (K, B, 3, 3) return torch.cat([rotmats, transls[..., None]], dim=-1) def check_gaussian_sizes( means: torch.Tensor, quats: torch.Tensor, scales: torch.Tensor, colors: torch.Tensor, opacities: torch.Tensor, motion_coefs: torch.Tensor | None = None, ) -> bool: dims = means.shape[:-1] leading_dims_match = ( quats.shape[:-1] == dims and scales.shape[:-1] == dims and colors.shape[:-1] == dims and opacities.shape == dims ) if motion_coefs is not None and motion_coefs.numel() > 0: leading_dims_match &= motion_coefs.shape[:-1] == dims dims_correct = ( means.shape[-1] == 3 and (quats.shape[-1] == 4) and (scales.shape[-1] == 3) and (colors.shape[-1] == 3) ) return leading_dims_match and dims_correct def check_bases_sizes(motion_rots: torch.Tensor, motion_transls: torch.Tensor) -> bool: return ( motion_rots.shape[-1] == 6 and motion_transls.shape[-1] == 3 and motion_rots.shape[:-2] == motion_transls.shape[:-2] )