from typing import Literal import numpy as np import torch import torch.nn.functional as F from torchmetrics.functional.image.lpips import _NoTrainLpips from torchmetrics.image import PeakSignalNoiseRatio, StructuralSimilarityIndexMeasure from torchmetrics.metric import Metric from torchmetrics.utilities import dim_zero_cat from torchmetrics.utilities.imports import _TORCHVISION_AVAILABLE def compute_psnr( preds: torch.Tensor, targets: torch.Tensor, masks: torch.Tensor | None = None, ) -> float: """ Args: preds (torch.Tensor): (..., 3) predicted images in [0, 1]. targets (torch.Tensor): (..., 3) target images in [0, 1]. masks (torch.Tensor | None): (...,) optional binary masks where the 1-regions will be taken into account. Returns: psnr (float): Peak signal-to-noise ratio. """ if masks is None: masks = torch.ones_like(preds[..., 0]) return ( -10.0 * torch.log( F.mse_loss( preds * masks[..., None], targets * masks[..., None], reduction="sum", ) / masks.sum().clamp(min=1.0) / 3.0 ) / np.log(10.0) ).item() def compute_pose_errors( preds: torch.Tensor, targets: torch.Tensor ) -> tuple[float, float, float]: """ Args: preds: (N, 4, 4) predicted camera poses. targets: (N, 4, 4) target camera poses. Returns: ate (float): Absolute trajectory error. rpe_t (float): Relative pose error in translation. rpe_r (float): Relative pose error in rotation (degree). """ # Compute ATE. ate = torch.linalg.norm(preds[:, :3, -1] - targets[:, :3, -1], dim=-1).mean().item() # Compute RPE_t and RPE_r. # NOTE(hangg): It's important to use numpy here for the accuracy of RPE_r. # torch has numerical issues for acos when the value is close to 1.0, i.e. # RPE_r is supposed to be very small, and will result in artificially large # error. preds = preds.detach().cpu().numpy() targets = targets.detach().cpu().numpy() pred_rels = np.linalg.inv(preds[:-1]) @ preds[1:] pred_rels = np.linalg.inv(preds[:-1]) @ preds[1:] target_rels = np.linalg.inv(targets[:-1]) @ targets[1:] error_rels = np.linalg.inv(target_rels) @ pred_rels traces = error_rels[:, :3, :3].trace(axis1=-2, axis2=-1) rpe_t = np.linalg.norm(error_rels[:, :3, -1], axis=-1).mean().item() rpe_r = ( np.arccos(np.clip((traces - 1.0) / 2.0, -1.0, 1.0)).mean().item() / np.pi * 180.0 ) return ate, rpe_t, rpe_r class mPSNR(PeakSignalNoiseRatio): sum_squared_error: list[torch.Tensor] total: list[torch.Tensor] def __init__(self, **kwargs) -> None: super().__init__( data_range=1.0, base=10.0, dim=None, reduction="elementwise_mean", **kwargs, ) self.add_state("sum_squared_error", default=[], dist_reduce_fx="cat") self.add_state("total", default=[], dist_reduce_fx="cat") def __len__(self) -> int: return len(self.total) def update( self, preds: torch.Tensor, targets: torch.Tensor, masks: torch.Tensor | None = None, ): """Update state with predictions and targets. Args: preds (torch.Tensor): (..., 3) float32 predicted images. targets (torch.Tensor): (..., 3) float32 target images. masks (torch.Tensor | None): (...,) optional binary masks where the 1-regions will be taken into account. """ if masks is None: masks = torch.ones_like(preds[..., 0]) self.sum_squared_error.append( torch.sum(torch.pow((preds - targets) * masks[..., None], 2)) ) self.total.append(masks.sum().to(torch.int64) * 3) def compute(self) -> torch.Tensor: """Compute peak signal-to-noise ratio over state.""" sum_squared_error = dim_zero_cat(self.sum_squared_error) total = dim_zero_cat(self.total) return -10.0 * torch.log(sum_squared_error / total).mean() / np.log(10.0) class mSSIM(StructuralSimilarityIndexMeasure): similarity: list def __init__(self, **kwargs) -> None: super().__init__( reduction=None, data_range=1.0, return_full_image=False, **kwargs, ) assert isinstance(self.sigma, float) def __len__(self) -> int: return sum([s.shape[0] for s in self.similarity]) def update( self, preds: torch.Tensor, targets: torch.Tensor, masks: torch.Tensor | None = None, ): """Update state with predictions and targets. Args: preds (torch.Tensor): (B, H, W, 3) float32 predicted images. targets (torch.Tensor): (B, H, W, 3) float32 target images. masks (torch.Tensor | None): (B, H, W) optional binary masks where the 1-regions will be taken into account. """ if masks is None: masks = torch.ones_like(preds[..., 0]) # Construct a 1D Gaussian blur filter. assert isinstance(self.kernel_size, int) hw = self.kernel_size // 2 shift = (2 * hw - self.kernel_size + 1) / 2 assert isinstance(self.sigma, float) f_i = ( (torch.arange(self.kernel_size, device=preds.device) - hw + shift) / self.sigma ) ** 2 filt = torch.exp(-0.5 * f_i) filt /= torch.sum(filt) # Blur in x and y (faster than the 2D convolution). def convolve2d(z, m, f): # z: (B, H, W, C), m: (B, H, W), f: (Hf, Wf). z = z.permute(0, 3, 1, 2) m = m[:, None] f = f[None, None].expand(z.shape[1], -1, -1, -1) z_ = torch.nn.functional.conv2d( z * m, f, padding="valid", groups=z.shape[1] ) m_ = torch.nn.functional.conv2d(m, torch.ones_like(f[:1]), padding="valid") return torch.where( m_ != 0, z_ * torch.ones_like(f).sum() / (m_ * z.shape[1]), 0 ).permute(0, 2, 3, 1), (m_ != 0)[:, 0].to(z.dtype) filt_fn1 = lambda z, m: convolve2d(z, m, filt[:, None]) filt_fn2 = lambda z, m: convolve2d(z, m, filt[None, :]) filt_fn = lambda z, m: filt_fn1(*filt_fn2(z, m)) mu0 = filt_fn(preds, masks)[0] mu1 = filt_fn(targets, masks)[0] mu00 = mu0 * mu0 mu11 = mu1 * mu1 mu01 = mu0 * mu1 sigma00 = filt_fn(preds**2, masks)[0] - mu00 sigma11 = filt_fn(targets**2, masks)[0] - mu11 sigma01 = filt_fn(preds * targets, masks)[0] - mu01 # Clip the variances and covariances to valid values. # Variance must be non-negative: sigma00 = sigma00.clamp(min=0.0) sigma11 = sigma11.clamp(min=0.0) sigma01 = torch.sign(sigma01) * torch.minimum( torch.sqrt(sigma00 * sigma11), torch.abs(sigma01) ) assert isinstance(self.data_range, float) c1 = (self.k1 * self.data_range) ** 2 c2 = (self.k2 * self.data_range) ** 2 numer = (2 * mu01 + c1) * (2 * sigma01 + c2) denom = (mu00 + mu11 + c1) * (sigma00 + sigma11 + c2) ssim_map = numer / denom self.similarity.append(ssim_map.mean(dim=(1, 2, 3))) def compute(self) -> torch.Tensor: """Compute final SSIM metric.""" return torch.cat(self.similarity).mean() class mLPIPS(Metric): sum_scores: list[torch.Tensor] total: list[torch.Tensor] def __init__( self, net_type: Literal["vgg", "alex", "squeeze"] = "alex", **kwargs, ): super().__init__(**kwargs) if not _TORCHVISION_AVAILABLE: raise ModuleNotFoundError( "LPIPS metric requires that torchvision is installed." " Either install as `pip install torchmetrics[image]` or `pip install torchvision`." ) valid_net_type = ("vgg", "alex", "squeeze") if net_type not in valid_net_type: raise ValueError( f"Argument `net_type` must be one of {valid_net_type}, but got {net_type}." ) self.net = _NoTrainLpips(net=net_type, spatial=True) self.add_state("sum_scores", [], dist_reduce_fx="cat") self.add_state("total", [], dist_reduce_fx="cat") def __len__(self) -> int: return len(self.total) def update( self, preds: torch.Tensor, targets: torch.Tensor, masks: torch.Tensor | None = None, ): """Update internal states with lpips scores. Args: preds (torch.Tensor): (B, H, W, 3) float32 predicted images. targets (torch.Tensor): (B, H, W, 3) float32 target images. masks (torch.Tensor | None): (B, H, W) optional float32 binary masks where the 1-regions will be taken into account. """ if masks is None: masks = torch.ones_like(preds[..., 0]) scores = self.net( (preds * masks[..., None]).permute(0, 3, 1, 2), (targets * masks[..., None]).permute(0, 3, 1, 2), normalize=True, ) self.sum_scores.append((scores * masks[:, None]).sum()) self.total.append(masks.sum().to(torch.int64)) def compute(self) -> torch.Tensor: """Compute final perceptual similarity metric.""" return ( torch.tensor(self.sum_scores, device=self.device) / torch.tensor(self.total, device=self.device) ).mean() class PCK(Metric): correct: list[torch.Tensor] total: list[int] def __init__(self, **kwargs): super().__init__(**kwargs) self.add_state("correct", default=[], dist_reduce_fx="cat") self.add_state("total", default=[], dist_reduce_fx="cat") def __len__(self) -> int: return len(self.total) def update(self, preds: torch.Tensor, targets: torch.Tensor, threshold: float): """Update internal states with PCK scores. Args: preds (torch.Tensor): (N, 2) predicted 2D keypoints. targets (torch.Tensor): (N, 2) targets 2D keypoints. threshold (float): PCK threshold. """ self.correct.append( (torch.linalg.norm(preds - targets, dim=-1) < threshold).sum() ) self.total.append(preds.shape[0]) def compute(self) -> torch.Tensor: """Compute PCK over state.""" return ( torch.tensor(self.correct, device=self.device) / torch.clamp(torch.tensor(self.total, device=self.device), min=1e-8) ).mean()