|
|
|
|
|
fi = open("multinli_1.0_train.txt", "r") |
|
output_file = open("multinli_const.txt", "w") |
|
output_index_list = [] |
|
count_entailment = 0 |
|
count_neutral = 0 |
|
count_contradiction = 0 |
|
|
|
def parse_phrase_list(parse, phrases): |
|
|
|
|
|
if parse == "": |
|
return phrases |
|
|
|
phrase_list = phrases |
|
|
|
|
|
|
|
words = parse.split() |
|
this_phrase = [] |
|
next_level_parse = [] |
|
for index, word in enumerate(words): |
|
if word == "(": |
|
next_level_parse += this_phrase |
|
this_phrase = ["("] |
|
|
|
elif word == ")" and len(this_phrase) > 0 and this_phrase[0] == "(": |
|
phrase_list.append(" ".join(this_phrase[1:])) |
|
next_level_parse += this_phrase[1:] |
|
this_phrase = [] |
|
elif word == ")": |
|
next_level_parse += this_phrase |
|
next_level_parse.append(")") |
|
this_phrase = [] |
|
else: |
|
this_phrase.append(word) |
|
|
|
|
|
|
|
|
|
|
|
return parse_phrase_list(" ".join(next_level_parse), phrase_list) |
|
|
|
first = True |
|
|
|
counter = 0 |
|
for line_index, line in enumerate(fi): |
|
|
|
|
|
counter += 1 |
|
|
|
if first: |
|
first = False |
|
continue |
|
|
|
|
|
parts = line.strip().split("\t") |
|
|
|
premise = parts[5] |
|
hypothesis = parts[6] |
|
label = parts[0] |
|
parse = parts[1] |
|
|
|
parse_new = [] |
|
for word in parse.split(): |
|
if word not in [".", "?", "!"]: |
|
parse_new.append(word.lower()) |
|
|
|
all_phrases = parse_phrase_list(" ".join(parse_new), []) |
|
|
|
prem_words = [] |
|
hyp_words = [] |
|
|
|
for word in premise.split(): |
|
if word not in [".", "?", "!"]: |
|
prem_words.append(word.lower().replace(".", "").replace("?", "").replace("!", "")) |
|
|
|
for word in hypothesis.split(): |
|
if word not in [".", "?", "!"]: |
|
hyp_words.append(word.lower().replace(".", "").replace("?", "").replace("!", "")) |
|
|
|
prem_filtered = " ".join(prem_words) |
|
hyp_filtered = " ".join(hyp_words) |
|
|
|
|
|
if hyp_filtered in all_phrases: |
|
|
|
|
|
if label == "entailment": |
|
count_entailment += 1 |
|
if label == "neutral": |
|
count_neutral += 1 |
|
print(premise, hypothesis, label) |
|
if label == "contradiction": |
|
count_contradiction += 1 |
|
print(premise, hypothesis, label) |
|
|
|
output_index_list.append(line_index) |
|
|
|
|
|
|
|
|
|
|
|
with open('multinli_1.0_train.jsonl', 'r') as f: |
|
for line_index, line in enumerate(f): |
|
if line_index in output_index_list: |
|
output_file.write(line) |
|
|
|
print("Entailment:", count_entailment) |
|
print("Contradiction:", count_contradiction) |
|
print("Neutral:", count_neutral) |
|
|