fi = open("multinli_1.0_train.txt", "r") output_file = open("multinli_sub.txt", "w") output_index_list = [] count_entailment = 0 count_neutral = 0 count_contradiction = 0 for line_index, line in enumerate(fi): parts = line.strip().split("\t") premise = parts[5] hypothesis = parts[6] label = parts[0] prem_words = [] hyp_words = [] for word in premise.split(): if word not in [".", "?", "!"]: prem_words.append(word.lower()) for word in hypothesis.split(): if word not in [".", "?", "!"]: hyp_words.append(word.lower()) prem_filtered = " ".join(prem_words) hyp_filtered = " ".join(hyp_words) if hyp_filtered in prem_filtered: #print(premise, hypothesis, label, parts[1]) #print(label) if label == "entailment": count_entailment += 1 if label == "neutral": count_neutral += 1 print(premise, hypothesis, label) if label == "contradiction": count_contradiction += 1 print(premise, hypothesis, label) output_index_list.append(line_index) # output_file.write(line) #print(premise, hypothesis, label) # open json file with open('multinli_1.0_train.jsonl', 'r') as f: for line_index, line in enumerate(f): if line_index in output_index_list: output_file.write(line) # load json file # data = json.load(f) print("Entailment:", count_entailment) print("Contradiction:", count_contradiction) print("Neutral:", count_neutral)