File size: 12,015 Bytes
bba66ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import os
import json
import numpy as np
from tqdm import tqdm
import torch
import torch.nn.functional as F
from sklearn.metrics import (
accuracy_score, confusion_matrix, cohen_kappa_score,
roc_auc_score, f1_score, precision_score, recall_score
)
from sklearn.preprocessing import label_binarize
from models.medqwen import MedQwen
def pad_or_clip_images(images, target_size=(32, 3, 224, 224)):
current_size = images.size()
if current_size[0] < target_size[0]:
pad_size = target_size[0] - current_size[0]
padded_images = F.pad(images, (0, 0, 0, 0, 0, 0, 0, pad_size))
elif current_size[0] > target_size[0]:
padded_images = images[:target_size[0]]
else:
padded_images = images
return padded_images
def prob_to_continuous(probs):
"""Convert probability distribution to continuous value using expected value"""
return sum(i * p for i, p in enumerate(probs))
def calculate_cindex(predictions, ground_truths):
"""Calculate concordance index (C-index) for ordinal predictions"""
n = len(predictions)
concordant = 0
total_pairs = 0
for i in range(n):
for j in range(i + 1, n):
if ground_truths[i] != ground_truths[j]: # Only compare if ground truths are different
total_pairs += 1
if (predictions[i] < predictions[j] and ground_truths[i] < ground_truths[j]) or \
(predictions[i] > predictions[j] and ground_truths[i] > ground_truths[j]):
concordant += 1
return float(concordant / total_pairs) if total_pairs > 0 else 0.0
def calculate_metrics(predictions,all_probabilities, ground_truths):
"""
Calculate comprehensive metrics for 4-class classification including:
- Overall accuracy
- Per-class accuracy
- QWK (Quadratic Weighted Kappa)
- AUC scores (per-class and macro)
- F1 scores (per-class and macro)
- Precision scores (per-class and macro)
- Recall scores (per-class and macro)
"""
# Convert inputs to numpy arrays if they aren't already
predictions = np.array(predictions)
ground_truths = np.array(ground_truths)
all_probabilities = np.array(all_probabilities)
# Calculate overall accuracy
overall_accuracy = accuracy_score(ground_truths, predictions)
# Calculate confusion matrix
conf_matrix = confusion_matrix(ground_truths, predictions)
# Calculate QWK
qwk = cohen_kappa_score(ground_truths, predictions, weights="quadratic")
# Calculate per-class accuracy
per_class_accuracy = {}
for class_idx in range(4):
true_positives = conf_matrix[class_idx, class_idx]
total_samples = sum(conf_matrix[class_idx, :])
if total_samples > 0:
class_accuracy = true_positives / total_samples
else:
class_accuracy = 0.0
per_class_accuracy[f'class_{class_idx}_accuracy'] = float(class_accuracy)
# Calculate AUC scores
# First, binarize the labels and predictions for AUC calculation
y_true_bin = label_binarize(ground_truths, classes=range(4))
# y_pred_bin = label_binarize(predictions, classes=range(4))
auc_scores = {}
for i in range(4):
try:
auc_scores[f'auc_class_{i}'] = float(roc_auc_score(y_true_bin[:, i], all_probabilities[:, i]))
except ValueError:
auc_scores[f'auc_class_{i}'] = 0.0
# Calculate macro-averaged AUC
auc_scores['auc_macro'] = float(sum(auc_scores[f'auc_class_{i}'] for i in range(4)) / 4)
# Calculate F1, Precision, and Recall for each class
f1_per_class = f1_score(ground_truths, predictions, average=None)
precision_per_class = precision_score(ground_truths, predictions, average=None)
recall_per_class = recall_score(ground_truths, predictions, average=None)
# Calculate macro averages
f1_macro = f1_score(ground_truths, predictions, average='macro')
precision_macro = precision_score(ground_truths, predictions, average='macro')
recall_macro = recall_score(ground_truths, predictions, average='macro')
# Compile all metrics
metrics = {
'overall_accuracy': float(overall_accuracy),
'qwk': float(qwk),
**per_class_accuracy,
**auc_scores,
**{f'f1_class_{i}': float(score) for i, score in enumerate(f1_per_class)},
**{f'precision_class_{i}': float(score) for i, score in enumerate(precision_per_class)},
**{f'recall_class_{i}': float(score) for i, score in enumerate(recall_per_class)},
'f1_macro': float(f1_macro),
'precision_macro': float(precision_macro),
'recall_macro': float(recall_macro),
'confusion_matrix': conf_matrix.tolist()
}
# Convert probabilities to continuous predictions
continuous_preds = [prob_to_continuous(probs) for probs in all_probabilities.tolist()]
# Calculate C-index using continuous predictions
metrics['cindex'] = calculate_cindex(continuous_preds, ground_truths)
mae = np.mean(np.abs(np.array(continuous_preds) - np.array(ground_truths)))
mse = np.mean((np.array(continuous_preds) - np.array(ground_truths)) ** 2)
metrics['continuous_mae'] = float(mae)
metrics['continuous_mse'] = float(mse)
return metrics
def headct_inference(input_jsonl_file, save_json_file, checkpoint_file, img_root_dir, model_id):
torch.manual_seed(42)
torch.cuda.manual_seed_all(42)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
print('Load Model')
model = MedQwen(model_id)
state_dict = torch.load(checkpoint_file, map_location='cpu')['model']
print('Load Checkpoint')
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
print('missing_keys', missing_keys)
print('unexpected_keys', unexpected_keys)
model = model.to("cuda")
model.eval()
save_data_dict = {}
# Lists to store predictions and ground truths for metric calculation
all_predictions = []
all_ground_truths = []
all_probabilities = []
with torch.no_grad():
with open(input_jsonl_file, 'r') as file:
for line in tqdm(file):
data = json.loads(line)
patient_id = data['patient_id']
study_id = data['study_id']
time_difference_days = data['time_difference_days']
calcium_score = data['calcium_score']
if patient_id not in save_data_dict:
save_data_dict[patient_id] = {}
if study_id in save_data_dict[patient_id]:
# If study already exists, get its predictions for metrics calculation
study_data = save_data_dict[patient_id][study_id]
all_predictions.append(study_data['prediction'])
all_ground_truths.append(study_data['ground_truth'])
all_probabilities.append(study_data['probabilities'])
continue
label = data['calcium_score_label']
image_path = img_root_dir + data['image_path_list'][0]
try:
pth_data = torch.load(image_path, weights_only=True)
pth_data = pad_or_clip_images(pth_data)
input_samples = {
'input_images': torch.tensor(pth_data).unsqueeze(0).to("cuda"),
'modal': 'head CT',
'labels': torch.tensor([label], dtype=torch.long).to("cuda"),
'task_type': 'agatston'
}
except Exception as e:
print(f"Error processing {image_path}: {e}")
continue
output = model(input_samples)
probabilities = F.softmax(output['logits'], dim=1)
model_prediction = torch.argmax(probabilities, dim=1).item()
continuous_pred = prob_to_continuous(probabilities[0].tolist())
# Store predictions and ground truth
all_predictions.append(model_prediction)
all_ground_truths.append(label)
all_probabilities.append(probabilities[0].tolist())
save_data_dict[patient_id][study_id] = {
'prediction': model_prediction,
'ground_truth': label,
'probabilities': probabilities[0].tolist(),
'continuous_prediction': continuous_pred,
'calcium_score': calcium_score,
'correct': model_prediction == label,
'time_difference_days': time_difference_days
}
# Save detailed results
with open(save_json_file, 'w') as f:
json.dump(save_data_dict, f, indent=2)
save_metric_data_dict = {}
# Calculate metrics after processing all samples
if all_predictions:
metrics = calculate_metrics(all_predictions, all_probabilities, all_ground_truths)
save_metric_data_dict['metrics'] = {
**metrics,
'total_samples': len(all_predictions)
}
# Print comprehensive metrics
print("\nEvaluation Results:")
print(f"Total samples: {len(all_predictions)}")
print(f"\nOverall Metrics:")
print(f"Accuracy: {metrics['overall_accuracy']:.4f}")
print(f"QWK Score: {metrics['qwk']:.4f}")
print(f"C-Index: {metrics['cindex']:.4f}")
print(f"Macro F1: {metrics['f1_macro']:.4f}")
print(f"Macro Precision: {metrics['precision_macro']:.4f}")
print(f"Macro Recall: {metrics['recall_macro']:.4f}")
print(f"Macro AUC: {metrics['auc_macro']:.4f}")
print(f"Continuous MAE: {metrics['continuous_mae']:.4f}")
print(f"Continuous MSE: {metrics['continuous_mse']:.4f}")
print("\nPer-class metrics:")
for i in range(4):
print(f"\nClass {i}:")
print(f"Accuracy: {metrics[f'class_{i}_accuracy']:.4f}")
print(f"F1: {metrics[f'f1_class_{i}']:.4f}")
print(f"Precision: {metrics[f'precision_class_{i}']:.4f}")
print(f"Recall: {metrics[f'recall_class_{i}']:.4f}")
print(f"AUC: {metrics[f'auc_class_{i}']:.4f}")
print("\nConfusion Matrix:")
print(np.array(metrics['confusion_matrix']))
# Save metrics
with open(save_json_file.replace(".json","_metric.json"), 'w') as f:
json.dump(save_metric_data_dict, f, indent=2)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='get_entities')
parser.add_argument('--input_json_file', type=str, default='/home/xiz569/rajpurkarlab/home/xiz569/code/ongoing/2024_HeadCT/agatston/src_agatston/data/5_fold/test.jsonl')
parser.add_argument('--save_json_file', type=str, default='./output/headct_swin/20241221070/result/epoch_0.json')
parser.add_argument('--checkpoint_file', type=str, default='./output/headct_swin/20241221070/checkpoint_0.pth')
parser.add_argument('--checkpoint_dir', type=str, default='./output/headct_swin/20241221070')
parser.add_argument('--img_root_dir', type=str, default='/home/xiz569/rajpurkarlab/home/xiz569/code/ongoing/2024_GMAI/data/headct/dataset/images_preprocessed')
parser.add_argument('--model_id', type=str, default="swin")
args = parser.parse_args()
for checkpoint_folder in os.listdir(args.checkpoint_dir):
args.checkpoint_file = os.path.join(args.checkpoint_dir, checkpoint_folder, 'checkpoint_best.pth')
args.save_json_file = os.path.join(args.checkpoint_dir,checkpoint_folder, "result", "best_epoch.json")
if os.path.exists(args.save_json_file):
continue
headct_inference(args.input_json_file, args.save_json_file, args.checkpoint_file, args.img_root_dir, args.model_id) |