File size: 12,015 Bytes
bba66ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import os
import json
import numpy as np
from tqdm import tqdm
import torch
import torch.nn.functional as F
from sklearn.metrics import (
    accuracy_score, confusion_matrix, cohen_kappa_score,
    roc_auc_score, f1_score, precision_score, recall_score
)
from sklearn.preprocessing import label_binarize
from models.medqwen import MedQwen

def pad_or_clip_images(images, target_size=(32, 3, 224, 224)):
    current_size = images.size()
    
    if current_size[0] < target_size[0]:
        pad_size = target_size[0] - current_size[0]
        padded_images = F.pad(images, (0, 0, 0, 0, 0, 0, 0, pad_size))
    elif current_size[0] > target_size[0]:
        padded_images = images[:target_size[0]]
    else:
        padded_images = images
    
    return padded_images

def prob_to_continuous(probs):
    """Convert probability distribution to continuous value using expected value"""
    return sum(i * p for i, p in enumerate(probs))

def calculate_cindex(predictions, ground_truths):
    """Calculate concordance index (C-index) for ordinal predictions"""
    n = len(predictions)
    concordant = 0
    total_pairs = 0
    
    for i in range(n):
        for j in range(i + 1, n):
            if ground_truths[i] != ground_truths[j]:  # Only compare if ground truths are different
                total_pairs += 1
                if (predictions[i] < predictions[j] and ground_truths[i] < ground_truths[j]) or \
                   (predictions[i] > predictions[j] and ground_truths[i] > ground_truths[j]):
                    concordant += 1
    
    return float(concordant / total_pairs) if total_pairs > 0 else 0.0

def calculate_metrics(predictions,all_probabilities, ground_truths):
    """
    Calculate comprehensive metrics for 4-class classification including:
    - Overall accuracy
    - Per-class accuracy
    - QWK (Quadratic Weighted Kappa)
    - AUC scores (per-class and macro)
    - F1 scores (per-class and macro)
    - Precision scores (per-class and macro)
    - Recall scores (per-class and macro)
    """
    # Convert inputs to numpy arrays if they aren't already
    predictions = np.array(predictions)
    ground_truths = np.array(ground_truths)
    all_probabilities = np.array(all_probabilities)
    
    # Calculate overall accuracy
    overall_accuracy = accuracy_score(ground_truths, predictions)
    
    # Calculate confusion matrix
    conf_matrix = confusion_matrix(ground_truths, predictions)
    
    # Calculate QWK
    qwk = cohen_kappa_score(ground_truths, predictions, weights="quadratic")
    
    # Calculate per-class accuracy
    per_class_accuracy = {}
    for class_idx in range(4):
        true_positives = conf_matrix[class_idx, class_idx]
        total_samples = sum(conf_matrix[class_idx, :])
        if total_samples > 0:
            class_accuracy = true_positives / total_samples
        else:
            class_accuracy = 0.0
        per_class_accuracy[f'class_{class_idx}_accuracy'] = float(class_accuracy)
    
    # Calculate AUC scores
    # First, binarize the labels and predictions for AUC calculation
    y_true_bin = label_binarize(ground_truths, classes=range(4))
    # y_pred_bin = label_binarize(predictions, classes=range(4))
    
    auc_scores = {}
    for i in range(4):
        try:
            auc_scores[f'auc_class_{i}'] = float(roc_auc_score(y_true_bin[:, i], all_probabilities[:, i]))
        except ValueError:
            auc_scores[f'auc_class_{i}'] = 0.0
    
    # Calculate macro-averaged AUC
    auc_scores['auc_macro'] = float(sum(auc_scores[f'auc_class_{i}'] for i in range(4)) / 4)
    
    # Calculate F1, Precision, and Recall for each class
    f1_per_class = f1_score(ground_truths, predictions, average=None)
    precision_per_class = precision_score(ground_truths, predictions, average=None)
    recall_per_class = recall_score(ground_truths, predictions, average=None)
    
    # Calculate macro averages
    f1_macro = f1_score(ground_truths, predictions, average='macro')
    precision_macro = precision_score(ground_truths, predictions, average='macro')
    recall_macro = recall_score(ground_truths, predictions, average='macro')
    
    # Compile all metrics
    metrics = {
        'overall_accuracy': float(overall_accuracy),
        'qwk': float(qwk),
        **per_class_accuracy,
        **auc_scores,
        **{f'f1_class_{i}': float(score) for i, score in enumerate(f1_per_class)},
        **{f'precision_class_{i}': float(score) for i, score in enumerate(precision_per_class)},
        **{f'recall_class_{i}': float(score) for i, score in enumerate(recall_per_class)},
        'f1_macro': float(f1_macro),
        'precision_macro': float(precision_macro),
        'recall_macro': float(recall_macro),
        'confusion_matrix': conf_matrix.tolist()
    }

    # Convert probabilities to continuous predictions
    continuous_preds = [prob_to_continuous(probs) for probs in all_probabilities.tolist()]
    
    
    # Calculate C-index using continuous predictions
    metrics['cindex'] = calculate_cindex(continuous_preds, ground_truths)
    
    mae = np.mean(np.abs(np.array(continuous_preds) - np.array(ground_truths)))
    mse = np.mean((np.array(continuous_preds) - np.array(ground_truths)) ** 2)
    metrics['continuous_mae'] = float(mae)
    metrics['continuous_mse'] = float(mse)
    
    return metrics
    
def headct_inference(input_jsonl_file, save_json_file, checkpoint_file, img_root_dir, model_id):
    torch.manual_seed(42)
    torch.cuda.manual_seed_all(42)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    
    
    print('Load Model')
    model = MedQwen(model_id)
    state_dict = torch.load(checkpoint_file, map_location='cpu')['model']
    print('Load Checkpoint')
    missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
    print('missing_keys', missing_keys)
    print('unexpected_keys', unexpected_keys)
    
    model = model.to("cuda")
    model.eval()

    save_data_dict = {}

    # Lists to store predictions and ground truths for metric calculation
    all_predictions = []
    all_ground_truths = []
    all_probabilities = []
    
    with torch.no_grad():
        with open(input_jsonl_file, 'r') as file:
            for line in tqdm(file):
                data = json.loads(line)
                patient_id = data['patient_id']
                study_id = data['study_id']
                time_difference_days = data['time_difference_days']
                calcium_score = data['calcium_score']

                if patient_id not in save_data_dict:
                    save_data_dict[patient_id] = {}
                
                if study_id in save_data_dict[patient_id]:
                    # If study already exists, get its predictions for metrics calculation
                    study_data = save_data_dict[patient_id][study_id]
                    all_predictions.append(study_data['prediction'])
                    all_ground_truths.append(study_data['ground_truth'])
                    all_probabilities.append(study_data['probabilities'])
                    continue

                label = data['calcium_score_label']

                image_path = img_root_dir + data['image_path_list'][0]
                try:
                    pth_data = torch.load(image_path, weights_only=True)
                    pth_data = pad_or_clip_images(pth_data)
                    input_samples = {
                        'input_images': torch.tensor(pth_data).unsqueeze(0).to("cuda"),
                        'modal': 'head CT',
                        'labels': torch.tensor([label], dtype=torch.long).to("cuda"),
                        'task_type': 'agatston'
                    }
                except Exception as e:
                    print(f"Error processing {image_path}: {e}")
                    continue

                output = model(input_samples)
                probabilities = F.softmax(output['logits'], dim=1)
                model_prediction = torch.argmax(probabilities, dim=1).item()
                continuous_pred = prob_to_continuous(probabilities[0].tolist())

                # Store predictions and ground truth
                all_predictions.append(model_prediction)
                all_ground_truths.append(label)
                all_probabilities.append(probabilities[0].tolist())



                save_data_dict[patient_id][study_id] = {
                    'prediction': model_prediction,
                    'ground_truth': label,
                    'probabilities': probabilities[0].tolist(),
                    'continuous_prediction': continuous_pred,
                    'calcium_score': calcium_score,
                    'correct': model_prediction == label,
                    'time_difference_days': time_difference_days
                }

    # Save detailed results
    with open(save_json_file, 'w') as f:
        json.dump(save_data_dict, f, indent=2)
    
    save_metric_data_dict = {}
    # Calculate metrics after processing all samples
    if all_predictions:
        metrics = calculate_metrics(all_predictions, all_probabilities, all_ground_truths)
        save_metric_data_dict['metrics'] = {
            **metrics,
            'total_samples': len(all_predictions)
        }
        
        # Print comprehensive metrics
        print("\nEvaluation Results:")
        print(f"Total samples: {len(all_predictions)}")
        print(f"\nOverall Metrics:")
        print(f"Accuracy: {metrics['overall_accuracy']:.4f}")
        print(f"QWK Score: {metrics['qwk']:.4f}")
        print(f"C-Index: {metrics['cindex']:.4f}")
        print(f"Macro F1: {metrics['f1_macro']:.4f}")
        print(f"Macro Precision: {metrics['precision_macro']:.4f}")
        print(f"Macro Recall: {metrics['recall_macro']:.4f}")
        print(f"Macro AUC: {metrics['auc_macro']:.4f}")
        print(f"Continuous MAE: {metrics['continuous_mae']:.4f}")
        print(f"Continuous MSE: {metrics['continuous_mse']:.4f}")
        
        print("\nPer-class metrics:")
        for i in range(4):
            print(f"\nClass {i}:")
            print(f"Accuracy: {metrics[f'class_{i}_accuracy']:.4f}")
            print(f"F1: {metrics[f'f1_class_{i}']:.4f}")
            print(f"Precision: {metrics[f'precision_class_{i}']:.4f}")
            print(f"Recall: {metrics[f'recall_class_{i}']:.4f}")
            print(f"AUC: {metrics[f'auc_class_{i}']:.4f}")
        
        print("\nConfusion Matrix:")
        print(np.array(metrics['confusion_matrix']))

    # Save metrics
    with open(save_json_file.replace(".json","_metric.json"), 'w') as f:
        json.dump(save_metric_data_dict, f, indent=2)
            
if __name__ == "__main__":
    import argparse
    parser = argparse.ArgumentParser(description='get_entities')
    parser.add_argument('--input_json_file', type=str, default='/home/xiz569/rajpurkarlab/home/xiz569/code/ongoing/2024_HeadCT/agatston/src_agatston/data/5_fold/test.jsonl')
    parser.add_argument('--save_json_file', type=str, default='./output/headct_swin/20241221070/result/epoch_0.json')
    parser.add_argument('--checkpoint_file', type=str, default='./output/headct_swin/20241221070/checkpoint_0.pth')
    parser.add_argument('--checkpoint_dir', type=str, default='./output/headct_swin/20241221070')
    parser.add_argument('--img_root_dir', type=str, default='/home/xiz569/rajpurkarlab/home/xiz569/code/ongoing/2024_GMAI/data/headct/dataset/images_preprocessed')
    parser.add_argument('--model_id', type=str, default="swin")
    args = parser.parse_args()

    for checkpoint_folder in os.listdir(args.checkpoint_dir):
        args.checkpoint_file = os.path.join(args.checkpoint_dir, checkpoint_folder, 'checkpoint_best.pth')
        args.save_json_file = os.path.join(args.checkpoint_dir,checkpoint_folder, "result", "best_epoch.json")
        if os.path.exists(args.save_json_file):
            continue
        headct_inference(args.input_json_file, args.save_json_file, args.checkpoint_file, args.img_root_dir, args.model_id)