File size: 12,520 Bytes
bba66ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
"""
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""

import logging
import os
import wandb 

import torch
import torch.distributed as dist
from common.dist_utils import get_rank, get_world_size, is_main_process, is_dist_avail_and_initialized
from common.logger import MetricLogger, SmoothedValue
from common.registry import registry
from datasets.data_utils import prepare_sample
from typing import Optional, Dict, List, Union, Tuple
import torch.nn.functional as F
import ipdb
from sklearn.metrics import cohen_kappa_score, accuracy_score, confusion_matrix
import numpy as np

class BaseTask:
    def __init__(self, **kwargs):
        super().__init__()

        self.inst_id_key = "instance_id"
        self.wandb_initialized = False

    def init_wandb(self, cfg):
        if is_main_process():
            self.wandb_initialized = True

    @classmethod
    def setup_task(cls, **kwargs):
        return cls()

    def build_model(self, cfg):
        model_config = cfg.model_cfg
        model_cls = registry.get_model_class(model_config.arch)
        return model_cls.from_config(model_config)

    def build_datasets(self, cfg):
        """
        Build a dictionary of datasets, keyed by split 'train', 'valid', 'test'.
        Download dataset and annotations automatically if not exist.

        Args:
            cfg (common.config.Config): _description_

        Returns:
            dict: Dictionary of torch.utils.data.Dataset objects by split.
        """

        datasets = dict()

        datasets_config = cfg.datasets_cfg
        # print('datasets_config',datasets_config)
        assert len(datasets_config) > 0, "At least one dataset has to be specified."

        for name in datasets_config:
            dataset_config = datasets_config[name]
            builder = registry.get_builder_class(name)(dataset_config)
            dataset = builder.build_datasets()

            dataset['train'].name = name #?
            if 'sample_ratio' in dataset_config:
                dataset['train'].sample_ratio = dataset_config.sample_ratio
            print(f"Loaded dataset: {name} with {len(dataset['train'])} samples.")
            datasets[name] = dataset

        return datasets

    def train_step(self, model, samples):
        outputs = model(samples)
        loss, modal, task  = outputs['loss'], outputs['modal'], outputs['task_type']
        return loss, modal, task 

    def valid_step(self, model, samples):
        """
        Validation step function to compute predictions and prepare for QWK calculation.
        """
        model.eval()
        
        with torch.no_grad():
            outputs = model(samples)
            loss = outputs['loss']
            logits = outputs.get('logits', None)
            if logits is None:
                # Handle case where model outputs probabilities directly
                probs = outputs.get('probs', None)
                if probs is not None:
                    preds = torch.argmax(probs, dim=1)
            else:
                preds = torch.argmax(logits, dim=1)
                
            labels = samples['labels']
            score_labels = samples.get('score_labels', None)
            
            # print("logits", logits.shape)

            return [{
                'loss': loss.item(),
                'pred': pred.item(),
                'logits': logits,
                'label': label.item(),
                'score_label': score_label.item() if score_label is not None else None,
                'modal': outputs['modal'],
                'task_type': outputs['task_type']
            } for pred, label, score_label in zip(preds, labels, score_labels)]
        # print('NOT YET')
        # raise NotImplementedError
    

    def before_evaluation(self, model, dataset, **kwargs):
        model.before_evaluation(dataset=dataset, task_type=type(self))

    def after_evaluation(self, val_result, **kwargs):
        loss = val_result['loss']
        qwk = val_result['qwk']
        val_log = {
            'agg_metrics': qwk
        }
        return val_log

    def inference_step(self):
        raise NotImplementedError

    def evaluation(self, model, data_loader, cuda_enabled=True):
        metric_logger = MetricLogger(delimiter="  ")
        header = "Evaluation"
        # TODO make it configurable
        print_freq = 10

        results = []

        for samples in metric_logger.log_every(data_loader, print_freq, header):
            samples = prepare_sample(samples, cuda_enabled=cuda_enabled)

            eval_output = self.valid_step(model=model, samples=samples)
            results.extend(eval_output)

        if is_dist_avail_and_initialized():
            dist.barrier()

        return results
    
    

    def train_epoch(
        self,
        epoch,
        model,
        data_loader,
        optimizer,
        lr_scheduler,
        scaler=None,
        cuda_enabled=False,
        log_freq=50,
        accum_grad_iters=1,
    ):  
        return_dict, metric_logger = self._train_inner_loop(
            epoch=epoch,
            iters_per_epoch=lr_scheduler.iters_per_epoch,
            model=model,
            data_loader=data_loader,
            optimizer=optimizer,
            scaler=scaler,
            lr_scheduler=lr_scheduler,
            log_freq=log_freq,
            cuda_enabled=cuda_enabled,
            accum_grad_iters=accum_grad_iters,
        )

        # Log metrics to wandb
        if is_main_process() and self.wandb_initialized:
            wandb.log({
                "epoch": epoch,
                "train/loss": float(return_dict["loss"]),
                "train/lr": float(return_dict["lr"]),
                "train/modal": return_dict["modal"],
                "train/task": return_dict["task"],
            })

        return return_dict, metric_logger

    def train_iters(
        self,
        epoch,
        start_iters,
        iters_per_inner_epoch,
        model,
        data_loader,
        optimizer,
        lr_scheduler,
        scaler=None,
        cuda_enabled=False,
        log_freq=50,
        accum_grad_iters=1,
    ):
        return self._train_inner_loop(
            epoch=epoch,
            start_iters=start_iters,
            iters_per_epoch=iters_per_inner_epoch,
            model=model,
            data_loader=data_loader,
            optimizer=optimizer,
            scaler=scaler,
            lr_scheduler=lr_scheduler,
            log_freq=log_freq,
            cuda_enabled=cuda_enabled,
            accum_grad_iters=accum_grad_iters,
        )

    def _train_inner_loop(
        self,
        epoch,
        iters_per_epoch,
        model,
        data_loader,
        optimizer,
        lr_scheduler,
        scaler=None,
        start_iters=None,
        log_freq=50,
        cuda_enabled=False,
        accum_grad_iters=1,
    ):
        """
        An inner training loop compatible with both epoch-based and iter-based training.

        When using epoch-based, training stops after one epoch; when using iter-based,
        training stops after #iters_per_epoch iterations.
        """
        use_amp = scaler is not None

        if not hasattr(data_loader, "__next__"):
            # convert to iterator if not already
            data_loader = iter(data_loader)

        metric_logger = MetricLogger(delimiter="  ")
        metric_logger.add_meter("lr", SmoothedValue(window_size=1, fmt="{global_avg:.8e}"))
        metric_logger.add_meter("loss", SmoothedValue(window_size=1, fmt="{global_avg:.3f}"))

        # if iter-based runner, schedule lr based on inner epoch.
        logging.info(
            "Start training epoch {}, {} iters per inner epoch.".format(
                epoch, iters_per_epoch
            )
        )
        header = "Epoch: [{}]".format(epoch)
        if start_iters is None:
            # epoch-based runner
            inner_epoch = epoch
        else:
            # In iter-based runner, we schedule the learning rate based on iterations.
            inner_epoch = start_iters // iters_per_epoch
            header = header + "; inner epoch [{}]".format(inner_epoch)

        for i in metric_logger.log_every(range(iters_per_epoch), log_freq, header):
            # if using iter-based runner, we stop after iters_per_epoch iterations.
            if i >= iters_per_epoch:
                break

            samples = next(data_loader)

            samples = prepare_sample(samples, cuda_enabled=cuda_enabled)
            samples.update(
                {
                    "epoch": inner_epoch,
                    "num_iters_per_epoch": iters_per_epoch,
                    "iters": i,
                }
            )


            lr_scheduler.step(cur_epoch=inner_epoch, cur_step=i)
            torch.autograd.set_detect_anomaly(True)
            
            with torch.cuda.amp.autocast(enabled=use_amp):
                loss, modal, task = self.train_step(model=model, samples=samples)
            
            with torch.autograd.detect_anomaly():
                if use_amp:
                    scaler.scale(loss).backward()
                else:
                    loss.backward()

            # scaler.unscale_(optimizer)
            torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
            
            # update gradients every accum_grad_iters iterations
            if (i + 1) % accum_grad_iters == 0:
                if use_amp:
                    scaler.unscale_(optimizer)  
                    scaler.step(optimizer)
                    scaler.update()                     
                else:    
                    optimizer.step()
                optimizer.zero_grad()


            metric_logger.update(loss=loss.item())
            metric_logger.update(lr=optimizer.param_groups[0]["lr"])
            metric_logger.update(modal=modal)
            metric_logger.update(task=task)
            
            if is_main_process() and self.wandb_initialized:
                wandb.log({
                    "train/step": i + epoch * iters_per_epoch,
                    "train/loss_step": loss.item(),
                    "train/lr_step": optimizer.param_groups[0]["lr"],
                    "train/modal_step": modal,
                    "train/task_step": task,
                })

        # after train_epoch()
        # gather the stats from all processes
        metric_logger.synchronize_between_processes()
        logging.info("Averaged stats: " + str(metric_logger.global_avg()))
        return_dict = {}
        for k, meter in metric_logger.meters.items():
            if not isinstance(meter, str):
                return_dict.update({k: "{:.3f}".format(meter.global_avg)})
        # return_dict = {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
        return_dict.update({'modal': modal, 'task': task})
        return return_dict, metric_logger

    @staticmethod
    def save_result(result, result_dir, filename, remove_duplicate=""):
        import json

        result_file = os.path.join(
            result_dir, "%s_rank%d.json" % (filename, get_rank())
        )
        final_result_file = os.path.join(result_dir, "%s.json" % filename)

        json.dump(result, open(result_file, "w"))

        if is_dist_avail_and_initialized():
            dist.barrier()

        if is_main_process():
            logging.warning("rank %d starts merging results." % get_rank())
            # combine results from all processes
            result = []

            for rank in range(get_world_size()):
                result_file = os.path.join(
                    result_dir, "%s_rank%d.json" % (filename, rank)
                )
                res = json.load(open(result_file, "r"))
                result += res

            if remove_duplicate:
                result_new = []
                id_list = []
                for res in result:
                    if res[remove_duplicate] not in id_list:
                        id_list.append(res[remove_duplicate])
                        result_new.append(res)
                result = result_new

            json.dump(result, open(final_result_file, "w"))
            print("result file saved to %s" % final_result_file)
            
            if wandb.run is not None:
                wandb.log({"final_results": result})

        return final_result_file