File size: 3,203 Bytes
bba66ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
"""
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""

import argparse
import os
import random

import numpy as np
import torch
import torch.backends.cudnn as cudnn
import ipdb
import wandb

import tasks as tasks
from common.config import Config
from common.dist_utils import get_rank, init_distributed_mode
from common.logger import setup_logger
from common.optims import (
    LinearWarmupCosineLRScheduler,
    LinearWarmupStepLRScheduler,
)
from common.registry import registry
from common.utils import now

# imports modules for registration
from datasets.builders import *
from models import *
from runners import *
from tasks import *
from copy import deepcopy

def parse_args():
    parser = argparse.ArgumentParser(description="Training")

    parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
    parser.add_argument(
        "--options",
        nargs="+",
        help="override some settings in the used config, the key-value pair "
        "in xxx=yyy format will be merged into config file (deprecate), "
        "change to --cfg-options instead.",
    )

    args = parser.parse_args()
    
    # if 'LOCAL_RANK' not in os.environ:
    #     os.environ['LOCAL_RANK'] = str(args.local_rank)
    # if 'LOCAL_RANK' in os.environ:
    #     os.environ['LOCAL_RANK'] = str(os.environ['LOCAL_RANK'])
    
    return args


def setup_seeds(config):
    seed = config.run_cfg.seed + get_rank()

    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)

    # cudnn.enabled = True
    # cudnn.benchmark = True
    # cudnn.deterministic = True


def get_runner_class(cfg):
    """
    Get runner class from config. Default to epoch-based runner.
    """
    runner_cls = registry.get_runner_class(cfg.run_cfg.get("runner", "runner_base"))

    return runner_cls


def main():
    # allow auto-dl completes on main process without timeout when using NCCL backend.
    os.environ["NCCL_BLOCKING_WAIT"] = "1"

    # set before init_distributed_mode() to ensure the same job_id shared across all ranks.
    job_id = now()

    cfg = Config(parse_args())

    init_distributed_mode(cfg.run_cfg)

    setup_seeds(cfg)

    # set after init_distributed_mode() to only log on master.
    setup_logger()

    cfg.pretty_print()
    
    # Initialize wandb
    if get_rank() == 0:  # Only initialize wandb on the master process
        wandb.init(
            project=cfg.run_cfg.output_dir.split("/")[-1],
            config=cfg.to_dict(),  # Log your config to wandb
            name=job_id,  # Use job_id as the run name
            job_type="training",
        )
        
    task = tasks.setup_task(cfg)
    task.init_wandb(cfg)
    datasets = task.build_datasets(cfg)
    model = task.build_model(cfg)
    
    runner = get_runner_class(cfg)(
        cfg=cfg, job_id=job_id, task=task, model=model, datasets=datasets
    )
    runner.train()

    if get_rank() == 0:
        wandb.finish()

if __name__ == "__main__":
    # torch.autograd.set_detect_anomaly(True)
    main()