|
import os |
|
import json |
|
import numpy as np |
|
from tqdm import tqdm |
|
import torch |
|
import torch.nn.functional as F |
|
from sklearn.metrics import ( |
|
accuracy_score, confusion_matrix, cohen_kappa_score, |
|
roc_auc_score, f1_score, precision_score, recall_score |
|
) |
|
from models.medqwen import MedQwen |
|
|
|
def pad_or_clip_images(images, target_size=(32, 3, 224, 224)): |
|
current_size = images.size() |
|
|
|
if current_size[0] < target_size[0]: |
|
pad_size = target_size[0] - current_size[0] |
|
padded_images = F.pad(images, (0, 0, 0, 0, 0, 0, 0, pad_size)) |
|
elif current_size[0] > target_size[0]: |
|
padded_images = images[:target_size[0]] |
|
else: |
|
padded_images = images |
|
|
|
return padded_images |
|
|
|
def convert_to_binary(value): |
|
"""Convert four-class values to binary (1 if >= 1, 0 if < 1)""" |
|
return 1 if value >= 1 else 0 |
|
|
|
def calculate_metrics_binary(predictions, probabilities, ground_truths): |
|
""" |
|
Calculate comprehensive metrics for binary classification including: |
|
- Overall accuracy |
|
- AUC |
|
- F1 score |
|
- Precision |
|
- Recall |
|
- Confusion matrix |
|
""" |
|
|
|
predictions = np.array(predictions) |
|
ground_truths = np.array(ground_truths) |
|
|
|
|
|
overall_accuracy = accuracy_score(ground_truths, predictions) |
|
|
|
|
|
conf_matrix = confusion_matrix(ground_truths, predictions) |
|
|
|
|
|
try: |
|
auc = float(roc_auc_score(ground_truths, probabilities)) |
|
except ValueError: |
|
auc = 0.0 |
|
|
|
|
|
f1 = f1_score(ground_truths, predictions) |
|
precision = precision_score(ground_truths, predictions) |
|
recall = recall_score(ground_truths, predictions) |
|
|
|
|
|
qwk = cohen_kappa_score(ground_truths, predictions) |
|
|
|
|
|
metrics = { |
|
'overall_accuracy': float(overall_accuracy), |
|
'auc': float(auc), |
|
'f1_score': float(f1), |
|
'precision': float(precision), |
|
'recall': float(recall), |
|
'qwk': float(qwk), |
|
'confusion_matrix': conf_matrix.tolist(), |
|
'positives_count': int(np.sum(ground_truths == 1)), |
|
'negatives_count': int(np.sum(ground_truths == 0)) |
|
} |
|
|
|
return metrics |
|
|
|
def headct_inference(input_jsonl_file, save_json_file, checkpoint_file, img_root_dir, model_id): |
|
torch.manual_seed(42) |
|
torch.cuda.manual_seed_all(42) |
|
torch.backends.cudnn.deterministic = True |
|
torch.backends.cudnn.benchmark = False |
|
|
|
print('Load Model') |
|
model = MedQwen(model_id) |
|
state_dict = torch.load(checkpoint_file, map_location='cpu')['model'] |
|
print('Load Checkpoint') |
|
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) |
|
print('missing_keys', missing_keys) |
|
print('unexpected_keys', unexpected_keys) |
|
|
|
model = model.to("cuda") |
|
model.eval() |
|
save_data_dict = {} |
|
|
|
|
|
all_predictions_original = [] |
|
all_ground_truths_original = [] |
|
all_probabilities_original = [] |
|
|
|
|
|
all_predictions_binary = [] |
|
all_ground_truths_binary = [] |
|
all_probabilities_binary = [] |
|
|
|
with torch.no_grad(): |
|
with open(input_jsonl_file, 'r') as file: |
|
for line in tqdm(file): |
|
data = json.loads(line) |
|
patient_id = data['patient_id'] |
|
study_id = data['study_id'] |
|
time_difference_days = data['time_difference_days'] |
|
calcium_score = data['calcium_score'] |
|
|
|
if patient_id not in save_data_dict: |
|
save_data_dict[patient_id] = {} |
|
|
|
if study_id in save_data_dict[patient_id]: |
|
|
|
study_data = save_data_dict[patient_id][study_id] |
|
|
|
|
|
all_predictions_original.append(study_data['prediction_original']) |
|
all_ground_truths_original.append(study_data['ground_truth_original']) |
|
all_probabilities_original.append(study_data['probabilities_original']) |
|
|
|
|
|
all_predictions_binary.append(study_data['prediction_binary']) |
|
all_ground_truths_binary.append(study_data['ground_truth_binary']) |
|
all_probabilities_binary.append(study_data['probability_positive']) |
|
continue |
|
|
|
original_label = data['calcium_score_label'] |
|
binary_label = convert_to_binary(original_label) |
|
|
|
image_path = img_root_dir + data['image_path_list'][0] |
|
try: |
|
pth_data = torch.load(image_path, weights_only=True) |
|
pth_data = pad_or_clip_images(pth_data) |
|
input_samples = { |
|
'input_images': torch.tensor(pth_data).unsqueeze(0).to("cuda"), |
|
'modal': 'head CT', |
|
'labels': torch.tensor([original_label], dtype=torch.long).to("cuda"), |
|
'task_type': 'agatston' |
|
} |
|
except Exception as e: |
|
print(f"Error processing {image_path}: {e}") |
|
continue |
|
|
|
output = model(input_samples) |
|
original_probabilities = F.softmax(output['logits'], dim=1) |
|
original_prediction = torch.argmax(original_probabilities, dim=1).item() |
|
|
|
|
|
binary_prediction = convert_to_binary(original_prediction) |
|
|
|
|
|
positive_probability = float(sum(original_probabilities[0, 1:].cpu().numpy())) |
|
|
|
|
|
all_predictions_original.append(original_prediction) |
|
all_ground_truths_original.append(original_label) |
|
all_probabilities_original.append(original_probabilities[0].tolist()) |
|
|
|
|
|
all_predictions_binary.append(binary_prediction) |
|
all_ground_truths_binary.append(binary_label) |
|
all_probabilities_binary.append(positive_probability) |
|
|
|
save_data_dict[patient_id][study_id] = { |
|
'prediction_original': original_prediction, |
|
'ground_truth_original': original_label, |
|
'probabilities_original': original_probabilities[0].tolist(), |
|
'prediction_binary': binary_prediction, |
|
'ground_truth_binary': binary_label, |
|
'probability_positive': positive_probability, |
|
'correct_binary': binary_prediction == binary_label, |
|
'calcium_score': calcium_score, |
|
'time_difference_days': time_difference_days |
|
} |
|
|
|
|
|
with open(save_json_file, 'w') as f: |
|
json.dump(save_data_dict, f, indent=2) |
|
|
|
save_metric_data_dict = {} |
|
|
|
|
|
if all_predictions_binary: |
|
binary_metrics = calculate_metrics_binary( |
|
all_predictions_binary, |
|
all_probabilities_binary, |
|
all_ground_truths_binary |
|
) |
|
|
|
save_metric_data_dict['binary_metrics'] = { |
|
**binary_metrics, |
|
'total_samples': len(all_predictions_binary) |
|
} |
|
|
|
|
|
print("\nBinary Classification Results (≥1 vs <1):") |
|
print(f"Total samples: {len(all_predictions_binary)}") |
|
print(f"Positive samples (≥1): {binary_metrics['positives_count']}") |
|
print(f"Negative samples (<1): {binary_metrics['negatives_count']}") |
|
print(f"Accuracy: {binary_metrics['overall_accuracy']:.4f}") |
|
print(f"AUC: {binary_metrics['auc']:.4f}") |
|
print(f"F1 Score: {binary_metrics['f1_score']:.4f}") |
|
print(f"Precision: {binary_metrics['precision']:.4f}") |
|
print(f"Recall: {binary_metrics['recall']:.4f}") |
|
print(f"QWK: {binary_metrics['qwk']:.4f}") |
|
|
|
print("\nConfusion Matrix (Binary):") |
|
print(np.array(binary_metrics['confusion_matrix'])) |
|
|
|
|
|
with open(save_json_file.replace(".json","_metric.json"), 'w') as f: |
|
json.dump(save_metric_data_dict, f, indent=2) |
|
|
|
if __name__ == "__main__": |
|
import argparse |
|
parser = argparse.ArgumentParser(description='get_entities') |
|
parser.add_argument('--input_json_file', type=str, default='/home/xiz569/rajpurkarlab/home/xiz569/code/ongoing/2024_HeadCT/agatston/src_agatston/data/5_fold/test.jsonl') |
|
parser.add_argument('--save_json_file', type=str, default='./output/headct_swin/20241221070/result/epoch_0.json') |
|
parser.add_argument('--checkpoint_file', type=str, default='./output/headct_swin/20241221070/checkpoint_0.pth') |
|
parser.add_argument('--checkpoint_dir', type=str, default='./output/headct_swin/20241221070') |
|
parser.add_argument('--img_root_dir', type=str, default='/home/xiz569/rajpurkarlab/home/xiz569/code/ongoing/2024_GMAI/data/headct/dataset/images_preprocessed') |
|
parser.add_argument('--model_id', type=str, default="swin") |
|
args = parser.parse_args() |
|
|
|
for checkpoint_folder in os.listdir(args.checkpoint_dir): |
|
args.checkpoint_file = os.path.join(args.checkpoint_dir, checkpoint_folder, 'checkpoint_best.pth') |
|
args.save_json_file = os.path.join(args.checkpoint_dir, checkpoint_folder, "result", "best_epoch_binary.json") |
|
if os.path.exists(args.save_json_file): |
|
continue |
|
|
|
|
|
os.makedirs(os.path.dirname(args.save_json_file), exist_ok=True) |
|
|
|
headct_inference(args.input_json_file, args.save_json_file, args.checkpoint_file, args.img_root_dir, args.model_id) |