HeadCT-FM / src /agatston /tasks /report_generation.py
XiaomanZhang's picture
Upload folder using huggingface_hub
bba66ea verified
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import time
import wandb
import torch
import logging
from common.registry import registry
from tasks.base_task import BaseTask
from common.logger import MetricLogger, SmoothedValue
from datasets.data_utils import prepare_sample
from datasets.datasets.dataloader_utils import MultiIterLoader
import torch.distributed as dist
from common.dist_utils import get_rank, get_world_size, is_main_process, is_dist_avail_and_initialized
from sklearn.metrics import cohen_kappa_score, accuracy_score, confusion_matrix
from sklearn.metrics import roc_auc_score, f1_score, precision_score, recall_score
from sklearn.preprocessing import label_binarize
import numpy as np
def prob_to_continuous(probs):
"""Convert probability distribution to continuous value using expected value"""
return sum(i * p for i, p in enumerate(probs))
@registry.register_task("report_generation")
class ReportGenerationTask(BaseTask):
def __init__(self):
super().__init__()
def calculate_cindex(self, predictions, ground_truths):
"""Calculate concordance index (C-index) for ordinal predictions"""
# print("predictions", predictions.shape)
# print("ground_truths", ground_truths)
predictions = [prob_to_continuous(probs) for probs in predictions.tolist()]
# ground_truths = [prob_to_continuous(probs) for probs in ground_truths.tolist()]
n = len(predictions)
concordant = 0
total_pairs = 0
for i in range(n):
for j in range(i + 1, n):
if ground_truths[i] != ground_truths[j]: # Only compare if ground truths are different
total_pairs += 1
if (predictions[i] < predictions[j] and ground_truths[i] < ground_truths[j]) or \
(predictions[i] > predictions[j] and ground_truths[i] > ground_truths[j]):
concordant += 1
return float(concordant / total_pairs) if total_pairs > 0 else 0.0
def evaluation_backup(self, model, data_loader, cuda_enabled=True):
if not hasattr(data_loader, "__next__"):
# convert to iterator if not already
data_loader = iter(data_loader)
metric_logger = MetricLogger(delimiter=" ")
header = "Evaluation"
# TODO make it configurable
print_freq = 10
results = []
for samples in metric_logger.log_every(data_loader, print_freq, header):
samples = prepare_sample(samples, cuda_enabled=cuda_enabled)
eval_output = self.valid_step(model=model, samples=samples)
results.extend(eval_output)
if is_dist_avail_and_initialized():
dist.barrier()
return results
def after_evaluation(self, val_result, **kwargs):
loss = val_result['loss']
cindex = val_result['cindex']
val_log = {
'agg_metrics': cindex
}
return val_log
def evaluation(self, model, data_loader, cuda_enabled=True):
metric_logger = MetricLogger(delimiter=" ")
header = "Evaluation"
print_freq = 10
results = []
# For MultiIterLoader, get total batches from first loader
if isinstance(data_loader, MultiIterLoader):
# Assuming all loaders have same length, use first one
total_batches = len(next(iter(data_loader.loaders)))
else:
total_batches = len(data_loader)
for i in range(total_batches):
try:
samples = next(data_loader)
batch_results = self.valid_step(model=model, samples=samples)
results.extend(batch_results)
except StopIteration:
print("StopIteration at batch", i)
break
if is_dist_avail_and_initialized():
# Gather results from all processes
gathered_results = [None for _ in range(get_world_size())]
dist.all_gather_object(gathered_results, results)
results = [item for sublist in gathered_results for item in sublist]
dist.barrier()
# Calculate metrics
all_logits = [r['logits'] for r in results]
all_preds = [r['pred'] for r in results]
all_labels = [r['label'] for r in results]
all_losses = [r['loss'] for r in results]
if hasattr(model, 'loss_type') and model.loss_type == 'mse':
all_score_labels = [r['score_label'] for r in results]
def convert_to_class(value):
if value < 10:
return 0
elif value < 100:
return 1
elif value < 400:
return 2
else:
return 3
all_logits = torch.cat(all_logits, dim=0).cpu().numpy()
y_true = np.array(all_labels)
y_pred = np.array(all_preds)
# Calculate existing metrics
qwk = cohen_kappa_score(y_true, y_pred, weights="quadratic")
cindex = self.calculate_cindex(all_logits, y_true)
accuracy = accuracy_score(y_true, y_pred)
conf_matrix = confusion_matrix(y_true, y_pred)
# Calculate new metrics
# For AUC, we need to binarize the labels (one-vs-rest)
y_true_bin = label_binarize(y_true, classes=range(4))
y_pred_bin = label_binarize(y_pred, classes=range(4))
# Calculate AUC for each class
auc_scores = {}
for i in range(4):
try:
auc_scores[f'auc_class_{i}'] = roc_auc_score(y_true_bin[:, i], y_pred_bin[:, i])
except ValueError: # In case a class is missing in predictions
auc_scores[f'auc_class_{i}'] = 0.0
# Calculate macro-averaged AUC
auc_scores['auc_macro'] = sum(auc_scores.values()) / 4
# Calculate F1, Precision, and Recall for each class
f1_per_class = f1_score(y_true, y_pred, average=None)
precision_per_class = precision_score(y_true, y_pred, average=None)
recall_per_class = recall_score(y_true, y_pred, average=None)
# Calculate macro averages
f1_macro = f1_score(y_true, y_pred, average='macro')
precision_macro = precision_score(y_true, y_pred, average='macro')
recall_macro = recall_score(y_true, y_pred, average='macro')
metrics = {
'loss': np.mean(all_losses),
'qwk': qwk,
'cindex': cindex,
'accuracy': accuracy,
'conf_matrix': conf_matrix,
'agg_metrics': cindex,
# Add AUC scores
**auc_scores,
# Add per-class metrics
**{f'f1_class_{i}': score for i, score in enumerate(f1_per_class)},
**{f'precision_class_{i}': score for i, score in enumerate(precision_per_class)},
**{f'recall_class_{i}': score for i, score in enumerate(recall_per_class)},
# Add macro averages
'f1_macro': f1_macro,
'precision_macro': precision_macro,
'recall_macro': recall_macro
}
# Update logging
if is_main_process():
logging.info("Evaluation Results:")
logging.info(f"Loss: {metrics['loss']:.4f}")
logging.info(f"QWK Score: {qwk:.4f}")
logging.info(f"C-Index: {cindex:.4f}")
logging.info(f"Accuracy: {accuracy:.4f}")
logging.info(f"Macro F1: {f1_macro:.4f}")
logging.info(f"Macro Precision: {precision_macro:.4f}")
logging.info(f"Macro Recall: {recall_macro:.4f}")
logging.info(f"Macro AUC: {auc_scores['auc_macro']:.4f}")
logging.info("\nPer-class metrics:")
for i in range(4):
logging.info(f"\nClass {i}:")
logging.info(f"F1: {f1_per_class[i]:.4f}")
logging.info(f"Precision: {precision_per_class[i]:.4f}")
logging.info(f"Recall: {recall_per_class[i]:.4f}")
logging.info(f"AUC: {auc_scores[f'auc_class_{i}']:.4f}")
logging.info("\nConfusion Matrix:")
logging.info(conf_matrix)
if self.wandb_initialized:
wandb_log = {
'val/qwk': qwk,
'val/cindex': cindex,
'val/accuracy': accuracy,
'val/f1_macro': f1_macro,
'val/precision_macro': precision_macro,
'val/recall_macro': recall_macro,
'val/auc_macro': auc_scores['auc_macro'],
**{f'val/f1_class_{i}': score for i, score in enumerate(f1_per_class)},
**{f'val/precision_class_{i}': score for i, score in enumerate(precision_per_class)},
**{f'val/recall_class_{i}': score for i, score in enumerate(recall_per_class)},
**{f'val/auc_class_{i}': auc_scores[f'auc_class_{i}'] for i in range(4)},
'val/confusion_matrix': wandb.plot.confusion_matrix(
probs=None,
y_true=y_true,
preds=y_pred,
class_names=[str(i) for i in range(4)]
)
}
wandb.log(wandb_log)
return metrics