""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import argparse import os import random import numpy as np import torch import torch.backends.cudnn as cudnn import ipdb import wandb import tasks as tasks from common.config import Config from common.dist_utils import get_rank, init_distributed_mode from common.logger import setup_logger from common.optims import ( LinearWarmupCosineLRScheduler, LinearWarmupStepLRScheduler, ) from common.registry import registry from common.utils import now # imports modules for registration from datasets.builders import * from models import * from runners import * from tasks import * from copy import deepcopy def parse_args(): parser = argparse.ArgumentParser(description="Training") parser.add_argument("--cfg-path", required=True, help="path to configuration file.") parser.add_argument( "--options", nargs="+", help="override some settings in the used config, the key-value pair " "in xxx=yyy format will be merged into config file (deprecate), " "change to --cfg-options instead.", ) args = parser.parse_args() # if 'LOCAL_RANK' not in os.environ: # os.environ['LOCAL_RANK'] = str(args.local_rank) # if 'LOCAL_RANK' in os.environ: # os.environ['LOCAL_RANK'] = str(os.environ['LOCAL_RANK']) return args def setup_seeds(config): seed = config.run_cfg.seed + get_rank() random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) # cudnn.enabled = True # cudnn.benchmark = True # cudnn.deterministic = True def get_runner_class(cfg): """ Get runner class from config. Default to epoch-based runner. """ runner_cls = registry.get_runner_class(cfg.run_cfg.get("runner", "runner_base")) return runner_cls def main(): # allow auto-dl completes on main process without timeout when using NCCL backend. os.environ["NCCL_BLOCKING_WAIT"] = "1" # set before init_distributed_mode() to ensure the same job_id shared across all ranks. job_id = now() cfg = Config(parse_args()) init_distributed_mode(cfg.run_cfg) setup_seeds(cfg) # set after init_distributed_mode() to only log on master. setup_logger() cfg.pretty_print() # Initialize wandb if get_rank() == 0: # Only initialize wandb on the master process wandb.init( project=cfg.run_cfg.output_dir.split("/")[-1], config=cfg.to_dict(), # Log your config to wandb name=job_id, # Use job_id as the run name job_type="training", ) task = tasks.setup_task(cfg) task.init_wandb(cfg) datasets = task.build_datasets(cfg) model = task.build_model(cfg) runner = get_runner_class(cfg)( cfg=cfg, job_id=job_id, task=task, model=model, datasets=datasets ) runner.train() if get_rank() == 0: wandb.finish() if __name__ == "__main__": # torch.autograd.set_detect_anomaly(True) main()