File size: 7,180 Bytes
0cb959e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57bac50
0cb959e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""The lingual SemEval2014 Task5 Reviews Corpus"""

import datasets

_CITATION = """\
@article{2014SemEval,
  title={SemEval-2014 Task 4: Aspect Based Sentiment Analysis},
  author={ Pontiki, M.  and D Galanis and  Pavlopoulos, J.  and  Papageorgiou, H.  and  Manandhar, S. },
  journal={Proceedings of International Workshop on Semantic Evaluation at},
  year={2014},
}
"""

_LICENSE = """\
    Please click on the homepage URL for license details.
"""

_DESCRIPTION = """\
A collection of SemEval2014 specifically designed to aid research in Aspect Based Sentiment Analysis.
"""

_CONFIG = [
    
    # restaurants domain
    "restaurants",
    # laptops domain
    "laptops",
]

_VERSION = "0.0.1"

_HOMEPAGE_URL = "https://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools"
_DOWNLOAD_URL = "https://raw.githubusercontent.com/YaxinCui/ABSADataset/main/SemEval2014Task4/{split}/{domain}_{split}.xml"


class SemEval2014Task4RawConfig(datasets.BuilderConfig):
    """BuilderConfig for SemEval2014Config."""

    def __init__(self, _CONFIG, **kwargs):
        super(SemEval2014Task4RawConfig, self).__init__(version=datasets.Version(_VERSION, ""), **kwargs),
        self.configs = _CONFIG


class SemEval2014Task4Raw(datasets.GeneratorBasedBuilder):
    """The lingual Amazon Reviews Corpus"""

    BUILDER_CONFIGS = [
        SemEval2014Task4RawConfig(
            name="All",
            _CONFIG=_CONFIG,
            description="A collection of SemEval2014 specifically designed to aid research in lingual Aspect Based Sentiment Analysis.",
        )
    ] + [
        SemEval2014Task4RawConfig(
            name=config,
            _CONFIG=[config],
            description=f"{config} of SemEval2014 specifically designed to aid research in Aspect Based Sentiment Analysis",
        )
        for config in _CONFIG
    ]
    
    BUILDER_CONFIG_CLASS = SemEval2014Task4RawConfig
    DEFAULT_CONFIG_NAME = "All"

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {'text': datasets.Value(dtype='string'),
                'aspectTerms': [
                    {'from': datasets.Value(dtype='string'),
                    'polarity': datasets.Value(dtype='string'),
                    'term': datasets.Value(dtype='string'),
                    'to': datasets.Value(dtype='string')}
                ],
                'aspectCategories': [
                    {'category': datasets.Value(dtype='string'),
                    'polarity': datasets.Value(dtype='string')}
                ],
                'domain': datasets.Value(dtype='string'),
                'sentenceId': datasets.Value(dtype='string')
            }
            ),
            supervised_keys=None,
            license=_LICENSE,
            homepage=_HOMEPAGE_URL,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):

        train_urls = [_DOWNLOAD_URL.format(split="train", domain=config) for config in self.config.configs]
        dev_urls = [_DOWNLOAD_URL.format(split="trial", domain=config) for config in self.config.configs]
        test_urls = [_DOWNLOAD_URL.format(split="test", domain=config) for config in self.config.configs]

        train_paths = dl_manager.download_and_extract(train_urls)
        dev_paths = dl_manager.download_and_extract(dev_urls)
        test_paths = dl_manager.download_and_extract(test_urls)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"file_paths": train_paths, "domain_list": self.config.configs}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"file_paths": dev_paths, "domain_list": self.config.configs}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"file_paths": test_paths, "domain_list": self.config.configs}),
        ]

    def _generate_examples(self, file_paths, domain_list):
        row_count = 0
        assert len(file_paths)==len(domain_list)

        for i in range(len(file_paths)):
            file_path, domain = file_paths[i], domain_list[i]
            semEvalDataset = SemEvalXMLDataset(file_path, domain)

            for example in semEvalDataset.SentenceWithOpinions:
                yield row_count, example
                row_count += 1

from xml.dom.minidom import parse

class SemEvalXMLDataset():
    def __init__(self, file_name, domain):
        # 获得SentenceWithOpinions,一个List包含(reviewId, sentenceId, text, Opinions)

        self.SentenceWithOpinions = []
        self.xml_path = file_name

        self.sentenceXmlList = parse(open(self.xml_path)).getElementsByTagName('sentence')

        for sentenceXml in self.sentenceXmlList:
            
            sentenceId = sentenceXml.getAttribute("id")
            if len(sentenceXml.getElementsByTagName("text")[0].childNodes) < 1:
                # skip no reviews part
                continue
            text = sentenceXml.getElementsByTagName("text")[0].childNodes[0].nodeValue

            aspectTermsXLMList = sentenceXml.getElementsByTagName("aspectTerm")
            aspectTerms = []
            for opinionXml in aspectTermsXLMList:
                # some text maybe have no opinion
                term = opinionXml.getAttribute("term")
                polarity = opinionXml.getAttribute("polarity")
                from_ = opinionXml.getAttribute("from")
                to = opinionXml.getAttribute("to")
                aspectTermDict = {
                    "term": term,
                    "polarity": polarity,
                    "from": from_,
                    "to": to
                }
                aspectTerms.append(aspectTermDict)


            aspectCategoriesXmlList = sentenceXml.getElementsByTagName("aspectCategory")
            aspectCategories = []
            for aspectCategoryXml in aspectCategoriesXmlList:
                category = aspectCategoryXml.getAttribute("category")
                polarity = aspectCategoryXml.getAttribute("polarity")
                aspectCategoryDict = {
                    "category": category,
                    "polarity": polarity
                }
                aspectCategories.append(aspectCategoryDict)

            self.SentenceWithOpinions.append({
                    "text": text, 
                    "aspectTerms": aspectTerms,
                    "aspectCategories": aspectCategories,
                    "domain": domain, 
                    "sentenceId": sentenceId
                    }
                )