Create new file
Browse files- SemEval2016Task5NLTK.py +294 -0
SemEval2016Task5NLTK.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""The Multilingual SemEval2016 Task5 Reviews Corpus"""
|
17 |
+
|
18 |
+
import datasets
|
19 |
+
|
20 |
+
_CITATION = """\
|
21 |
+
@inproceedings{pontiki2016semeval,
|
22 |
+
title={Semeval-2016 task 5: Aspect based sentiment analysis},
|
23 |
+
author={Pontiki, Maria and Galanis, Dimitrios and Papageorgiou, Haris and Androutsopoulos, Ion and Manandhar, Suresh and Al-Smadi, Mohammad and Al-Ayyoub, Mahmoud and Zhao, Yanyan and Qin, Bing and De Clercq, Orph{\'e}e and others},
|
24 |
+
booktitle={International workshop on semantic evaluation},
|
25 |
+
pages={19--30},
|
26 |
+
year={2016}
|
27 |
+
}
|
28 |
+
"""
|
29 |
+
|
30 |
+
_LICENSE = """\
|
31 |
+
Please click on the homepage URL for license details.
|
32 |
+
"""
|
33 |
+
|
34 |
+
_DESCRIPTION = """\
|
35 |
+
A collection of SemEval2016 specifically designed to aid research in multilingual Aspect Based Sentiment Analysis.
|
36 |
+
"""
|
37 |
+
|
38 |
+
_CONFIG = [
|
39 |
+
# restaruants Domain
|
40 |
+
"restaurants_english",
|
41 |
+
"restaurants_french",
|
42 |
+
"restaurants_spanish",
|
43 |
+
"restaurants_russian",
|
44 |
+
"restaurants_dutch",
|
45 |
+
"restaurants_turkish",
|
46 |
+
|
47 |
+
# hotels domain
|
48 |
+
"hotels_arabic",
|
49 |
+
|
50 |
+
# Consumer Electronics Domain
|
51 |
+
"mobilephones_dutch",
|
52 |
+
"mobilephones_chinese",
|
53 |
+
"laptops_english",
|
54 |
+
"digitalcameras_chinese"
|
55 |
+
]
|
56 |
+
|
57 |
+
_VERSION = "0.1.0"
|
58 |
+
|
59 |
+
_HOMEPAGE_URL = "https://alt.qcri.org/semeval2016/task5/index.php?id=data-and-tools/"
|
60 |
+
_DOWNLOAD_URL = "https://raw.githubusercontent.com/YaxinCui/ABSADataset/main/SemEval2016Task5Corrected/{split}/{domain}_{split}_{lang}.xml"
|
61 |
+
|
62 |
+
|
63 |
+
class SemEval2016Task5NLTKConfig(datasets.BuilderConfig):
|
64 |
+
"""BuilderConfig for SemEval2016Config."""
|
65 |
+
|
66 |
+
def __init__(self, _CONFIG, **kwargs):
|
67 |
+
super(SemEval2016Task5NLTKConfig, self).__init__(version=datasets.Version(_VERSION, ""), **kwargs),
|
68 |
+
self.configs = _CONFIG
|
69 |
+
|
70 |
+
|
71 |
+
class SemEval2016Task5NLTK(datasets.GeneratorBasedBuilder):
|
72 |
+
"""The Multilingual SemEval2016 ABSA Corpus"""
|
73 |
+
|
74 |
+
BUILDER_CONFIGS = [
|
75 |
+
SemEval2016Task5NLTKConfig(
|
76 |
+
name="All",
|
77 |
+
_CONFIG=_CONFIG,
|
78 |
+
description="A collection of SemEval2016 specifically designed to aid research in multilingual Aspect Based Sentiment Analysis.",
|
79 |
+
)
|
80 |
+
] + [
|
81 |
+
SemEval2016Task5NLTKConfig(
|
82 |
+
name=config,
|
83 |
+
_CONFIG=[config],
|
84 |
+
description=f"{config} of SemEval2016 specifically designed to aid research in multilingual Aspect Based Sentiment Analysis",
|
85 |
+
)
|
86 |
+
for config in _CONFIG
|
87 |
+
]
|
88 |
+
|
89 |
+
BUILDER_CONFIG_CLASS = SemEval2016Task5NLTKConfig
|
90 |
+
DEFAULT_CONFIG_NAME = "restaurants_english"
|
91 |
+
|
92 |
+
def _info(self):
|
93 |
+
return datasets.DatasetInfo(
|
94 |
+
description=_DESCRIPTION,
|
95 |
+
features=datasets.Features(
|
96 |
+
{'text': datasets.Value(dtype='string'),
|
97 |
+
'opinions': [
|
98 |
+
{'category': datasets.Value(dtype='string'),
|
99 |
+
'from': datasets.Value(dtype='string'),
|
100 |
+
'polarity': datasets.Value(dtype='string'),
|
101 |
+
'target': datasets.Value(dtype='string'),
|
102 |
+
'to': datasets.Value(dtype='string')}
|
103 |
+
],
|
104 |
+
'tokens': [datasets.Value(dtype='string')],
|
105 |
+
'ATESP_BIEOS_tags': [datasets.Value(dtype='string')],
|
106 |
+
'ATESP_BIO_tags': [datasets.Value(dtype='string')],
|
107 |
+
'ATE_BIEOS_tags': [datasets.Value(dtype='string')],
|
108 |
+
'ATE_BIO_tags': [datasets.Value(dtype='string')],
|
109 |
+
|
110 |
+
'domain': datasets.Value(dtype='string'),
|
111 |
+
'reviewId': datasets.Value(dtype='string'),
|
112 |
+
'sentenceId': datasets.Value(dtype='string')
|
113 |
+
}
|
114 |
+
),
|
115 |
+
supervised_keys=None,
|
116 |
+
license=_LICENSE,
|
117 |
+
homepage=_HOMEPAGE_URL,
|
118 |
+
citation=_CITATION,
|
119 |
+
)
|
120 |
+
|
121 |
+
def _split_generators(self, dl_manager):
|
122 |
+
|
123 |
+
lang_list = []
|
124 |
+
domain_list = []
|
125 |
+
|
126 |
+
for config in self.config.configs:
|
127 |
+
domain_list.append(config.split('_')[0])
|
128 |
+
lang_list.append(config.split('_')[1])
|
129 |
+
|
130 |
+
train_urls = [_DOWNLOAD_URL.format(split="train", domain=config.split('_')[0], lang=config.split('_')[1]) for config in self.config.configs]
|
131 |
+
dev_urls = [_DOWNLOAD_URL.format(split="trial", domain=config.split('_')[0], lang=config.split('_')[1]) for config in self.config.configs]
|
132 |
+
test_urls = [_DOWNLOAD_URL.format(split="test", domain=config.split('_')[0], lang=config.split('_')[1]) for config in self.config.configs]
|
133 |
+
|
134 |
+
train_paths = dl_manager.download_and_extract(train_urls)
|
135 |
+
dev_paths = dl_manager.download_and_extract(dev_urls)
|
136 |
+
test_paths = dl_manager.download_and_extract(test_urls)
|
137 |
+
|
138 |
+
return [
|
139 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"file_paths": train_paths, "lang_list": lang_list, "domain_list": domain_list}),
|
140 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"file_paths": dev_paths, "lang_list": lang_list, "domain_list": domain_list}),
|
141 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"file_paths": test_paths, "lang_list": lang_list, "domain_list": domain_list}),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, file_paths, lang_list, domain_list):
|
145 |
+
row_count = 0
|
146 |
+
assert len(file_paths)==len(lang_list) and len(lang_list)==len(domain_list)
|
147 |
+
|
148 |
+
for i in range(len(file_paths)):
|
149 |
+
file_path, domain, language = file_paths[i], domain_list[i], lang_list[i]
|
150 |
+
semEvalDataset = SemEvalXMLDataset(file_path, language, domain)
|
151 |
+
|
152 |
+
for example in semEvalDataset.SentenceWithOpinions:
|
153 |
+
|
154 |
+
yield row_count, example
|
155 |
+
row_count += 1
|
156 |
+
|
157 |
+
|
158 |
+
# 输入:xlm文件的文件路径
|
159 |
+
# 输出:一个DataSet,每个样例包含[reviewid, sentenceId, text, UniOpinions]
|
160 |
+
# 每个样例包含的Opinion,是一个列表,包含的是单个Opinion的详情
|
161 |
+
|
162 |
+
from xml.dom.minidom import parse
|
163 |
+
|
164 |
+
class SemEvalXMLDataset():
|
165 |
+
def __init__(self, file_name, language, domain):
|
166 |
+
# 获得SentenceWithOpinions,一个List包含(reviewId, sentenceId, text, Opinions)
|
167 |
+
|
168 |
+
self.SentenceWithOpinions = []
|
169 |
+
self.xml_path = file_name
|
170 |
+
|
171 |
+
self.sentenceXmlList = parse(self.xml_path).getElementsByTagName('sentence')
|
172 |
+
|
173 |
+
for sentenceXml in self.sentenceXmlList:
|
174 |
+
reviewId = sentenceXml.getAttribute("id").split(':')[0]
|
175 |
+
sentenceId = sentenceXml.getAttribute("id")
|
176 |
+
if len(sentenceXml.getElementsByTagName("text")[0].childNodes) < 1:
|
177 |
+
# skip no reviews part
|
178 |
+
continue
|
179 |
+
text = sentenceXml.getElementsByTagName("text")[0].childNodes[0].nodeValue
|
180 |
+
OpinionXmlList = sentenceXml.getElementsByTagName("Opinion")
|
181 |
+
Opinions = []
|
182 |
+
for opinionXml in OpinionXmlList:
|
183 |
+
# some text maybe have no opinion
|
184 |
+
target = opinionXml.getAttribute("target")
|
185 |
+
category = opinionXml.getAttribute("category")
|
186 |
+
polarity = opinionXml.getAttribute("polarity")
|
187 |
+
from_ = opinionXml.getAttribute("from")
|
188 |
+
to = opinionXml.getAttribute("to")
|
189 |
+
|
190 |
+
opinionDict = {
|
191 |
+
"target": target,
|
192 |
+
"category": category,
|
193 |
+
"polarity": polarity,
|
194 |
+
"from": from_,
|
195 |
+
"to": to
|
196 |
+
}
|
197 |
+
Opinions.append(opinionDict)
|
198 |
+
|
199 |
+
Opinions.sort(key=lambda x: x["from"])
|
200 |
+
# 从小到大排序
|
201 |
+
example = {
|
202 |
+
"text": text,
|
203 |
+
"opinions": Opinions,
|
204 |
+
"domain": domain,
|
205 |
+
"reviewId": reviewId,
|
206 |
+
"sentenceId": sentenceId
|
207 |
+
}
|
208 |
+
example = addTokenAndLabel(example)
|
209 |
+
self.SentenceWithOpinions.append(example)
|
210 |
+
|
211 |
+
import nltk
|
212 |
+
|
213 |
+
def clearOpinion(example):
|
214 |
+
opinions = example['opinions']
|
215 |
+
skipNullOpinions = []
|
216 |
+
# 去掉NULL的opinion
|
217 |
+
for opinion in opinions:
|
218 |
+
targetKey = 'target'
|
219 |
+
target = opinion[targetKey]
|
220 |
+
from_ = opinion['from']
|
221 |
+
to = opinion['to']
|
222 |
+
# skill NULL
|
223 |
+
if target.lower() == 'null' or target == '' or from_ == to:
|
224 |
+
continue
|
225 |
+
skipNullOpinions.append(opinion)
|
226 |
+
|
227 |
+
# delete repeate Opinions
|
228 |
+
skipNullOpinions.sort(key=lambda x: int(x['from'])) # 从小到大排序
|
229 |
+
UniOpinions = []
|
230 |
+
for opinion in skipNullOpinions:
|
231 |
+
if len(UniOpinions) < 1:
|
232 |
+
UniOpinions.append(opinion)
|
233 |
+
else:
|
234 |
+
if opinion['from'] != UniOpinions[-1]['from'] and opinion['to'] != UniOpinions[-1]['to']:
|
235 |
+
UniOpinions.append(opinion)
|
236 |
+
return UniOpinions
|
237 |
+
|
238 |
+
|
239 |
+
def addTokenAndLabel(example):
|
240 |
+
tokens = []
|
241 |
+
labels = []
|
242 |
+
|
243 |
+
text = example['text']
|
244 |
+
UniOpinions = clearOpinion(example)
|
245 |
+
text_begin = 0
|
246 |
+
|
247 |
+
for aspect in UniOpinions:
|
248 |
+
polarity = aspect['polarity'][:3].upper()
|
249 |
+
pre_O_tokens = nltk.word_tokenize(text[text_begin: int(aspect['from'])])
|
250 |
+
tokens.extend(pre_O_tokens)
|
251 |
+
labels.extend(['O']*len(pre_O_tokens))
|
252 |
+
|
253 |
+
BIES_tokens = nltk.word_tokenize(text[int(aspect['from']): int(aspect['to'])])
|
254 |
+
tokens.extend(BIES_tokens)
|
255 |
+
|
256 |
+
assert len(BIES_tokens) > 0, print('error in BIES_tokens length')
|
257 |
+
|
258 |
+
if len(BIES_tokens)==1:
|
259 |
+
labels.append('S-'+polarity)
|
260 |
+
elif len(BIES_tokens)==2:
|
261 |
+
labels.append('B-'+polarity)
|
262 |
+
labels.append('E-'+polarity)
|
263 |
+
else:
|
264 |
+
labels.append('B-'+polarity)
|
265 |
+
labels.extend(['I-'+polarity]*(len(BIES_tokens)-2))
|
266 |
+
labels.append('E-'+polarity)
|
267 |
+
|
268 |
+
text_begin = int(aspect['to'])
|
269 |
+
|
270 |
+
|
271 |
+
pre_O_tokens = nltk.word_tokenize(text[text_begin: ])
|
272 |
+
labels.extend(['O']*len(pre_O_tokens))
|
273 |
+
tokens.extend(pre_O_tokens)
|
274 |
+
|
275 |
+
example['tokens'] = tokens
|
276 |
+
example['ATESP_BIEOS_tags'] = labels
|
277 |
+
|
278 |
+
ATESP_BIO_labels = []
|
279 |
+
for label in labels:
|
280 |
+
ATESP_BIO_labels.append(label.replace('E-', 'I-').replace('S-', 'B-'))
|
281 |
+
example['ATESP_BIO_tags'] = ATESP_BIO_labels
|
282 |
+
|
283 |
+
|
284 |
+
ATE_BIEOS_labels = []
|
285 |
+
for label in labels:
|
286 |
+
ATE_BIEOS_labels.append(label[0])
|
287 |
+
example['ATE_BIEOS_tags'] = ATE_BIEOS_labels
|
288 |
+
|
289 |
+
ATE_BIO_labels = []
|
290 |
+
for label in ATESP_BIO_labels:
|
291 |
+
ATE_BIO_labels.append(label[0])
|
292 |
+
example['ATE_BIO_tags'] = ATE_BIO_labels
|
293 |
+
|
294 |
+
return example
|