content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
import json
def get_assay_description(assay_id, summary=True, attempts=10):
""" Get the description of an assay in JSON format.
Parameters
----------
assay_id : int
The id of the bioassay.
summary : bool, optional
If true returns a summary of the description of the assay (default=True).
attempts : int, optional
number of times to try to download the data in case of failure
(default=10).
Returns
--------
dict
A dictionary containing the assay description.
"""
assay_url = base_url + "/assay/aid/{}".format(assay_id)
if summary:
description_url = assay_url + "/summary/JSON"
else:
description_url = assay_url + "/description/JSON"
data = _get_data(description_url, attempts)
return json.loads(data) | 13ff3620a1ef3e7aa1c12bd5a9b5aa88b2fb297f | 3,655,337 |
def acos(expr):
"""
Arc cosine -- output in radians.
It is the same that :code:`arccos` moodle math function.
"""
return Expression('acos({0})'.format(str(expr))) | d064caaa037de619266e322f85ae09c2ba7d9d16 | 3,655,338 |
from datetime import datetime
def annotate_genes(gene_df, annotation_gtf, lookup_df=None):
"""
Add gene and variant annotations (e.g., gene_name, rs_id, etc.) to gene-level output
gene_df: output from map_cis()
annotation_gtf: gene annotation in GTF format
lookup_df: DataFrame with variant annotations, indexed by 'variant_id'
"""
gene_dict = {}
print('['+datetime.now().strftime("%b %d %H:%M:%S")+'] Adding gene and variant annotations', flush=True)
print(' * parsing GTF', flush=True)
with open(annotation_gtf) as gtf:
for row in gtf:
row = row.strip().split('\t')
if row[0][0]=='#' or row[2]!='gene': continue
# get gene_id and gene_name from attributes
attr = dict([i.split() for i in row[8].replace('"','').split(';') if i!=''])
# gene_name, gene_chr, gene_start, gene_end, strand
gene_dict[attr['gene_id']] = [attr['gene_name'], row[0], row[3], row[4], row[6]]
print(' * annotating genes', flush=True)
if 'group_id' in gene_df:
gene_info = pd.DataFrame(data=[gene_dict[i] for i in gene_df['group_id']],
columns=['gene_name', 'gene_chr', 'gene_start', 'gene_end', 'strand'],
index=gene_df.index)
else:
gene_info = pd.DataFrame(data=[gene_dict[i] for i in gene_df.index],
columns=['gene_name', 'gene_chr', 'gene_start', 'gene_end', 'strand'],
index=gene_df.index)
gene_df = pd.concat([gene_info, gene_df], axis=1)
assert np.all(gene_df.index==gene_info.index)
col_order = ['gene_name', 'gene_chr', 'gene_start', 'gene_end', 'strand',
'num_var', 'beta_shape1', 'beta_shape2', 'true_df', 'pval_true_df', 'variant_id', 'tss_distance']
if lookup_df is not None:
print(' * adding variant annotations from lookup table', flush=True)
gene_df = gene_df.join(lookup_df, on='variant_id') # add variant information
col_order += list(lookup_df.columns)
col_order += ['ma_samples', 'ma_count', 'af', 'pval_nominal',
'slope', 'slope_se', 'pval_perm', 'pval_beta']
if 'group_id' in gene_df:
col_order += ['group_id', 'group_size']
col_order += ['qval', 'pval_nominal_threshold']
gene_df = gene_df[col_order]
print('done.', flush=True)
return gene_df | 562ef01380075a3e12eeaecdd6ab1e2285ddbc4f | 3,655,339 |
import torch
def y_gate():
"""
Pauli y
"""
return torch.tensor([[0, -1j], [1j, 0]]) + 0j | c0da0112233773e1c764e103599a591bb7a4a7f5 | 3,655,340 |
import tarfile
def extract_tarball(tarball, install_dir):
"""Extract tarball to a local path"""
if not tarball.path.is_file():
raise IOError(f"<info>{tarball.path}</info> is not a file!")
try:
with tarfile.open(tarball.path, "r:gz") as f_tarball:
extraction_dir = [
obj.name
for obj in f_tarball.getmembers()
if obj.isdir() and "/" not in obj.name
][0]
f_tarball.extractall(install_dir)
except tarfile.ReadError as exc:
raise IOError(f"<info>{tarball.path}</info> is not a valid tarball!") from exc
return install_dir / extraction_dir | da9deeb71da36c7c01611f3be7965a8c4a22dc41 | 3,655,341 |
def compose_matrix(scale=None, shear=None, angles=None, translation=None, perspective=None):
"""Calculates a matrix from the components of scale, shear, euler_angles, translation and perspective.
Parameters
----------
scale : [float, float, float]
The 3 scale factors in x-, y-, and z-direction.
shear : [float, float, float]
The 3 shear factors for x-y, x-z, and y-z axes.
angles : [float, float, float]
The rotation specified through the 3 Euler angles about static x, y, z axes.
translation : [float, float, float]
The 3 values of translation.
perspective : [float, float, float, float]
The 4 perspective entries of the matrix.
Returns
-------
list[list[float]]
The 4x4 matrix that combines the provided transformation components.
Examples
--------
>>> trans1 = [1, 2, 3]
>>> angle1 = [-2.142, 1.141, -0.142]
>>> scale1 = [0.123, 2, 0.5]
>>> M = compose_matrix(scale1, None, angle1, trans1, None)
>>> scale2, shear2, angle2, trans2, persp2 = decompose_matrix(M)
>>> allclose(scale1, scale2)
True
>>> allclose(angle1, angle2)
True
>>> allclose(trans1, trans2)
True
"""
M = [[1. if i == j else 0. for i in range(4)] for j in range(4)]
if perspective is not None:
P = matrix_from_perspective_entries(perspective)
M = multiply_matrices(M, P)
if translation is not None:
T = matrix_from_translation(translation)
M = multiply_matrices(M, T)
if angles is not None:
R = matrix_from_euler_angles(angles, static=True, axes="xyz")
M = multiply_matrices(M, R)
if shear is not None:
H = matrix_from_shear_entries(shear)
M = multiply_matrices(M, H)
if scale is not None:
S = matrix_from_scale_factors(scale)
M = multiply_matrices(M, S)
for i in range(4):
for j in range(4):
M[i][j] /= M[3][3]
return M | a186919f8b6fc47637e7c20db30fbdd8e461e059 | 3,655,342 |
def dict_merge(set1, set2):
"""Joins two dictionaries."""
return dict(list(set1.items()) + list(set2.items())) | d88a68720cb9406c46bdef40f46e461a80e588c0 | 3,655,343 |
def EucDistIntegral(a, b, x):
"""[summary]
Calculate Integrated Euclidean distance.
Args:
a (float): a value
b (float): b value
x (float): x value
Returns:
val: Integration result
"""
asq = a * a
bsq = b * b
xsq = x * x
dn = (6 * (1 + asq)**(3 / 2))
cx = (a * b + x + asq * x) / \
sqrt((bsq + 2 * a * b * x + (1 + asq) * xsq)) / sqrt((1 + asq))
if abs(abs(cx) - 1) <= 1E-9 or np.isnan(cx):
c1 = x * b**2
else:
c1 = b**3 * arctanh(np.float(cx))
c2 = sqrt(bsq + 2 * a * b * x + (1 + asq) * xsq) * \
(2 * b * x + 2 * asq * b * x + a**3 * xsq + a * (bsq + xsq))
if x == 0:
c4 = 0
else:
c3 = abs(x) / (b + a * x + sqrt(xsq + (b + a * x)**2))
if np.isnan(c3) or np.isinf(c3):
if b == 0:
c3 = 1 / (sign(x) * a + sqrt(asq + 1))
else:
c3 = -2 * b / abs(x)
c4 = (1 + asq) * x**3 * log(c3)
return (c1 + sqrt(1 + asq) * (c2 - c4)) / dn | 3da541356636e8be7f9264d9d59a29dd003c082b | 3,655,344 |
def _VarintSize(value):
"""Compute the size of a varint value."""
if value <= 0x7f: return 1
if value <= 0x3fff: return 2
if value <= 0x1fffff: return 3
if value <= 0xfffffff: return 4
if value <= 0x7ffffffff: return 5
if value <= 0x3ffffffffff: return 6
if value <= 0x1ffffffffffff: return 7
if value <= 0xffffffffffffff: return 8
if value <= 0x7fffffffffffffff: return 9
return 10 | 4bd9b1c8d362f5e72e97f9f2c8e0d5711065291f | 3,655,345 |
import requests
def send_to_hipchat(
message,
token=settings.HIPCHAT_API_TOKEN,
room=settings.HIPCHAT_ROOM_ID,
sender="Trello",
color="yellow",
notify=False): # noqa
"""
Send a message to HipChat.
Returns the status code of the request. Should be 200.
"""
payload = {
'auth_token': token,
'notify': notify,
'color': color,
'from': sender,
'room_id': room,
'message': message
}
return requests.post(HIPCHAT_API_URL, data=payload).status_code | 138abbf59f561a4c5d21aea9976856dbd7a581ca | 3,655,346 |
from cStringIO import StringIO
import cgi
def input(*requireds, **defaults):
"""
Returns a `storage` object with the GET and POST arguments.
See `storify` for how `requireds` and `defaults` work.
"""
def dictify(fs): return dict([(k, fs[k]) for k in fs.keys()])
_method = defaults.pop('_method', 'both')
e = ctx.env.copy()
out = {}
if _method.lower() in ['both', 'post']:
a = {}
if e['REQUEST_METHOD'] == 'POST':
a = cgi.FieldStorage(fp = StringIO(data()), environ=e,
keep_blank_values=1)
a = dictify(a)
out = dictadd(out, a)
if _method.lower() in ['both', 'get']:
e['REQUEST_METHOD'] = 'GET'
a = dictify(cgi.FieldStorage(environ=e, keep_blank_values=1))
out = dictadd(out, a)
try:
return storify(out, *requireds, **defaults)
except KeyError:
badrequest()
raise StopIteration | 0b3fcd9142dbcd3309b80837c6fc53abdf4aaad6 | 3,655,347 |
def nodes_and_edges_valid(dev, num_nodes, node_names, rep):
"""Asserts that nodes in a device ``dev`` are properly initialized, when there
are ``num_nodes`` nodes expected, with names ``node_names``, using representation ``rep``."""
if not set(dev._nodes.keys()) == {"state"}:
return False
if not len(dev._nodes["state"]) == num_nodes:
return False
for idx in range(num_nodes):
if not dev._nodes["state"][idx].name == node_names[idx]:
return False
return edges_valid(dev, num_nodes=num_nodes, rep=rep) | ad6dbfdfd92114c9b041617a91ad30dbe8a8189f | 3,655,348 |
def is_android(builder_cfg):
"""Determine whether the given builder is an Android builder."""
return ('Android' in builder_cfg.get('extra_config', '') or
builder_cfg.get('os') == 'Android') | 74b1620ba2f6fff46495174158f734c5aa8da372 | 3,655,349 |
def twoSum(self, numbers, target): # ! 这个方法可行
"""
:type numbers: List[int]
:type target: int
:rtype: List[int]
"""
numbers_dict = {}
for idn, v in enumerate(numbers):
if target - v in numbers_dict:
return [numbers_dict[target - v] + 1, idn + 1]
numbers_dict[v] = idn | e2b93828b5db7256b9a1e90e7e21adad1ce0b4de | 3,655,350 |
def not_after(cert):
"""
Gets the naive datetime of the certificates 'not_after' field.
This field denotes the last date in time which the given certificate
is valid.
:return: Datetime
"""
return cert.not_valid_after | 4f084146908d70af5c2cdfa5151f0c26533ac7fe | 3,655,351 |
from datetime import datetime
def parse_time_string(time_str: str) -> datetime.time:
"""Parses a string recognizable by TIME_REGEXP into a datetime.time object. If
the string has an invalid format, a ValueError is raised."""
match = TIME_REGEXP.match(time_str)
if match is None:
raise ValueError("time string {} has an invalid format".format(repr(time_str)))
groups = match.groupdict()
return datetime.time(int(groups["h"]), int(groups["m"]), int(groups["s"] or 0)) | 3238abcc6edb5a37c4a3d615b71e9dde6344f0ac | 3,655,352 |
def get_roc_curve(y_true, y_score, title=None, with_plot=True):
"""
Plot the [Receiver Operating Characteristic][roc] curve of the given
true labels and confidence scores.
[roc]: http://en.wikipedia.org/wiki/Receiver_operating_characteristic
"""
fpr, tpr, thresholds = sklearn.metrics.roc_curve(y_true, y_score)
auc = np.trapz(tpr, fpr)
fig = None
if with_plot:
fig = vislab.results_viz.plot_curve_with_area(
fpr, tpr, auc, 'False Positive Rate', 'True Positive Rate', 'AUC')
ax = fig.get_axes()[0]
ax.plot([0, 1], [0, 1], 'k--')
if title is not None:
ax.set_title(title)
return fig, fpr, tpr, auc | 7635af1705c6bdaccce1e1c5e99719645026d436 | 3,655,354 |
from datetime import datetime
def read_err_songs():
""" read song data from xml file to a list of dictionaries """
songfile = open('/home/gabe/python/selfishmusic/errors.xml')
soup = BS.BeautifulSoup(songfile.read())
songsxml = soup.findAll('song')
songs = []
for song in songsxml:
sd = {}
sd['songnum'] = int(get_text(song.songnum))
sd['title'] = get_text(song.title)
sd['artist'] = get_text(song.artist)
date = get_text(song.date)
date = [x.strip(' ,') for x in date.split(' ')]
sd['date'] = datetime.date(month=MONTHS.index(date[0]) + 1,
day=int(date[1]),
year=int(date[2]))
sd['lyrics'] = get_text(song.lyrics)
sd['found_title'] = get_text(song.found_title)
sd['found_artist'] = get_text(song.found_artist)
songs.append(sd)
songfile.close()
return songs | 287c205c054045b3a88b74cf008e5a21037f9727 | 3,655,355 |
def word_value(word: str) -> int:
"""Returns the sum of the alphabetical positions of each letter in word."""
return (0 if word == '' else
word_value(word[:-1]) + alpha.letter_index_upper(word[-1])) | b964faa5a5792e003fb0859c1ffb0b25e63f6a75 | 3,655,356 |
def status():
"""
Returns json response of api status
Returns:
JSON: json object
"""
status = {
"status": "OK"
}
return jsonify(status) | d515e0628bb4c77ad83b0a26b758a3686663d329 | 3,655,357 |
def celcius_to_farenheit(x):
"""calculate celcius to farenheit"""
farenheit = (9*x/5) + 32
return farenheit | fa0041451c82b20283e4f20b501a6042ab19ec95 | 3,655,358 |
def CheckFlags(node_name, report_per_node, warnings, errors,
flags, warning_helper, error_helper):
"""Check the status flags in each node and bookkeep the results.
Args:
node_name: Short name of the node.
report_per_node: Structure to record warning/error messages per node.
Its type should be collections.defaultdict(list).
warnings: Structure to record nodes that raise each warning type.
Its type should be collections.defaultdict(list).
errors: Structure to record nodes that raise each error type.
Its type should be collections.defaultdict(list).
flags: The status flags to check against.
warning_helper: The EnumHelper for warnings.
error_helper: The EnumHelper for errors.
Returns:
True if there are any warnings/errors.
"""
any_warning_or_error = False
if warning_helper:
for warning_value in warning_helper.Values():
warning_name = warning_helper.ShortName(warning_value)
if avionics_util.CheckWarning(flags, warning_value):
report_per_node[node_name].append(('WARNING', warning_name))
warnings[warning_name].append(node_name)
any_warning_or_error = True
if error_helper:
for error_value in error_helper.Values():
error_name = error_helper.ShortName(error_value)
if avionics_util.CheckError(flags, error_value):
report_per_node[node_name].append(('ERROR', error_name))
errors[error_name].append(node_name)
any_warning_or_error = True
return any_warning_or_error | 63bac7bfa4e3fa9c3cc462f5400d68116dfb898d | 3,655,359 |
def EnrollmentTransaction():
"""
:return:
"""
return b'\x20' | 05adff34b6cf100d95e16ab837b38b26b6315b6a | 3,655,360 |
def sentinel_id(vocabulary, return_value=None):
"""Token ID to use as a sentinel.
By default, we use the last token in the vocabulary.
Args:
vocabulary: a t5.data.vocabularies.Vocabulary
return_value: an optional integer
Returns:
an integer
"""
if return_value is not None:
return return_value
return vocabulary.vocab_size - 1 | 08ad1116b7f41ba7070359675a0133f14b9917bd | 3,655,361 |
from datetime import datetime
import urllib
import hmac
import hashlib
import base64
def create_signature(api_key, method, host, path, secret_key, get_params=None):
"""
创建签名
:param get_params: dict 使用GET方法时附带的额外参数(urlparams)
:return:
"""
sorted_params = [
("AccessKeyId", api_key),
("SignatureMethod", "HmacSHA256"),
("SignatureVersion", "2"),
("Timestamp", datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%S"))
]
if get_params:
sorted_params.extend(list(get_params.items()))
sorted_params = list(sorted(sorted_params))
encode_params = urllib.parse.urlencode(sorted_params)
payload = [method, host, path, encode_params]
payload = "\n".join(payload)
payload = payload.encode(encoding="UTF8")
secret_key = secret_key.encode(encoding="UTF8")
digest = hmac.new(secret_key, payload, digestmod=hashlib.sha256).digest()
signature = base64.b64encode(digest)
params = dict(sorted_params)
params["Signature"] = signature.decode("UTF8")
return params | 3e38bc883da9f5ebb311e1498f8cc73d1754c38b | 3,655,362 |
def measure_fwhm(image, plot=True, printout=True):
"""
Find the 2D FWHM of a background/continuum subtracted cutout image of a target.
The target should be centered and cropped in the cutout.
Use lcbg.utils.cutout for cropping targets.
FWHM is estimated using the sigmas from a 2D gaussian fit of the target's flux.
The FWHM is returned as a tuple of the FWHM in the x and y directions.
Parameters
----------
image : array like
Input background/continuum subtracted cutout image.
printout : bool
Print out info.
plot : bool
To plot fit or not.
Returns
-------
tuple : array of floats
FWHM in x and y directions.
"""
# Find FWHM
# ----------
fitted_line = fit_gaussian2d(image)
# Find fitted center
x_mean, y_mean = [i.value for i in [fitted_line.x_mean, fitted_line.y_mean]]
# Estimate FWHM using gaussian_sigma_to_fwhm
x_fwhm = fitted_line.x_stddev * gaussian_sigma_to_fwhm
y_fwhm = fitted_line.y_stddev * gaussian_sigma_to_fwhm
# Find half max
hm = fitted_line(x_mean, y_mean) / 2.
# Find the mean of the x and y direction
mean_fwhm = np.mean([x_fwhm, y_fwhm])
mean_fwhm = int(np.round(mean_fwhm))
# Print info about fit and FWHM
# ------------------------------
if printout:
print("Image Max: {}".format(image.max()))
print("Amplitude: {}".format(fitted_line.amplitude.value))
print("Center: ({}, {})".format(x_mean, y_mean))
print("Sigma = ({}, {})".format(fitted_line.x_stddev.value,
fitted_line.y_stddev.value, ))
print("Mean FWHM: {} Pix ".format(mean_fwhm))
print("FWHM: (x={}, y={}) Pix ".format(x_fwhm, y_fwhm))
if plot:
fig, [ax0, ax1, ax2, ax3] = plot_fit(image, fitted_line)
# Make x and y grid to plot to
y_arange, x_arange = np.mgrid[:image.shape[0], :image.shape[1]]
# Plot input image with FWHM and center
# -------------------------------------
ax0.imshow(image, cmap='gray_r')
ax0.axvline(x_mean - x_fwhm / 2, c='c', linestyle="--", label="X FWHM")
ax0.axvline(x_mean + x_fwhm / 2, c='c', linestyle="--")
ax0.axhline(y_mean - y_fwhm / 2, c='g', linestyle="--", label="Y FWHM")
ax0.axhline(y_mean + y_fwhm / 2, c='g', linestyle="--")
ax0.set_title("Center and FWHM Plot")
ax0.legend()
# Plot X fit
# ----------
ax2.axvline(x_mean, linestyle="-", label="Center")
ax2.axvline(x_mean - x_fwhm / 2, c='c', linestyle="--", label="X FWHM")
ax2.axvline(x_mean + x_fwhm / 2, c='c', linestyle="--")
ax2.axhline(hm, c="black", linestyle="--", label="Half Max")
ax2.legend()
# Plot Y fit
# ----------
ax3.axvline(y_mean, linestyle="-", label="Center")
ax3.axvline(y_mean - y_fwhm / 2, c='g', linestyle="--", label="Y FWHM")
ax3.axvline(y_mean + y_fwhm / 2, c='g', linestyle="--")
ax3.axhline(hm, c="black", linestyle="--", label="Half Max")
ax3.legend()
plt.show()
return np.array([x_fwhm, y_fwhm]) | c2fdb3a10ffa575ffe6fdeb9e86a47ffaefea5c2 | 3,655,363 |
from .mappia_publisher import MappiaPublisherPlugin
def classFactory(iface): # pylint: disable=invalid-name
"""Load MappiaPublisher class from file MappiaPublisher.
:param iface: A QGIS interface instance.
:type iface: QgsInterface
"""
#
return MappiaPublisherPlugin() | 1802094cb49c01b0c9c5ed8b45d3c77bcd9b746a | 3,655,364 |
def mongo_insert_canary(mongo, db_name, coll_name, doc):
""" Inserts a canary document with 'j' True. Returns 0 if successful. """
LOGGER.info("Inserting canary document %s to DB %s Collection %s", doc, db_name, coll_name)
coll = mongo[db_name][coll_name].with_options(
write_concern=pymongo.write_concern.WriteConcern(j=True))
res = coll.insert_one(doc)
return 0 if res.inserted_id else 1 | d82fe021db76972be19394688a07e9426bff82b7 | 3,655,365 |
from typing import Type
def is_dict_specifier(value):
# type: (object) -> bool
""" Check if value is a supported dictionary.
Check if a parameter of the task decorator is a dictionary that specifies
at least Type (and therefore can include things like Prefix, see binary
decorator test for some examples).
:param value: Decorator value to check.
:return: True if value is a dictionary that specifies at least the Type of
the key.
"""
return isinstance(value, dict) and Type in value | e18ad83a1b79a8150dfda1c65f4ab7e72cc8c8c8 | 3,655,366 |
def parse_star_count(stars_str):
"""Parse strings like 40.3k and get the no. of stars as a number"""
stars_str = stars_str.strip()
return int(float(stars_str[:-1]) * 1000) if stars_str[-1] == 'k' else int(stars_str) | d47177f26656e6dc33d708a0c4824ff677f3387a | 3,655,367 |
import shutil
def is_libreoffice_sdk_available() -> bool:
""" do we have idlc somewhere (we suppose it is made available in current path var.) ? """
return shutil.which("idlc") is not None | 83f8b158bcf97aa875280b20e177895432116d21 | 3,655,368 |
def set_metrics_file(filenames, metric_type):
"""Create metrics from data read from a file.
Args:
filenames (list of str):
Paths to files containing one json string per line (potentially base64
encoded)
metric_type (ts_mon.Metric): any class deriving from ts_mon.Metric.
For ex. ts_mon.GaugeMetric.
Returns:
metric (list of metric_type): the metric instances, filled.
"""
if not filenames:
return []
metrics = []
for filename in filenames:
with open(filename, 'r') as f:
lines = f.read()
# Skip blank lines because it helps humans.
lines = [line for line in lines.splitlines() if line.strip()]
metrics.extend(set_metrics(lines, metric_type))
return metrics | 372ec1fcb4b50711b35e40936e63839d75689dee | 3,655,369 |
def sortino_ratio_nb(returns, ann_factor, required_return_arr):
"""2-dim version of `sortino_ratio_1d_nb`.
`required_return_arr` should be an array of shape `returns.shape[1]`."""
result = np.empty(returns.shape[1], dtype=np.float_)
for col in range(returns.shape[1]):
result[col] = sortino_ratio_1d_nb(returns[:, col], ann_factor, required_return=required_return_arr[col])
return result | 2dfd6be1b7d3747c87484b22eb0cc0b0271c93a6 | 3,655,370 |
import re
def format_env_var(name: str, value: str) -> str:
"""
Formats environment variable value.
Formatter is chosen according to the kind of variable.
:param name: name of environment variable
:param value: value of environment variable
:return: string representation of value in appropriate format
"""
formatter = get_formatter(name)
new = str(value)
new = formatter(new)
new = escape(new)
new = re.sub("\n", "<br>", new)
return new | 030b16b897f2222d8465143b462f99ba344ba1eb | 3,655,371 |
from typing import Counter
def evenly_divisible(n):
""" Idea:
- Find factors of numbers 1 to n. Use DP to cache results bottom up.
- Amongst all factors, we have to include max counts of prime factors.
- For example, in in 1 .. 10, 2 has to be included 3 times since 8 = 2 ^ 3
"""
max_counts = Counter()
for n in range(n, 1, -1):
factors = prime_factorize(n)
# Update max counts
for k, v in factors.iteritems():
max_counts[k] = max(max_counts[k], v)
res = 1
for k, v in max_counts.iteritems():
res *= k ** v
return res | 68301a33751c2f3863092450235ca5c24b28379e | 3,655,372 |
def do_open(user_input):
"""identical to io.open in PY3"""
try:
with open(user_input) as f:
return f.read()
except Exception:
return None | 72037207adecb2758c844c2f0c7233d834060111 | 3,655,374 |
def likely_solution(players):
""" Return tuples of cards with the
number of players who don't have them
"""
likely = likely_solution_nums(players)
return sorted([(ALLCARDS[n], ct) for n, ct in likely],
key=lambda tp: tp[1], reverse=True) | f0531f3188a38ec1b70ca48f95c9cfdc71d723b5 | 3,655,375 |
def cns_extended_inp(mtf_infile, pdb_outfile):
"""
Create CNS iput script (.inp) to create extended PDB file
from molecular topology file (.mtf)
Parameters
----------
mtf_infile : str
Path to .mtf topology file
pdb_outfile : str
Path where extended .pdb file will be stored
Returns
-------
str:
Input script
"""
return _cns_render_template(
"generate_extended",
{
"mtf_infile": mtf_infile,
"pdb_outfile": pdb_outfile,
}
) | c850137db9a22fd48559228e3032bcd510c9d69b | 3,655,376 |
def index(request, response_format='html'):
"""Sales index page"""
query = Q(status__hidden=False)
if request.GET:
if 'status' in request.GET and request.GET['status']:
query = _get_filter_query(request.GET)
else:
query = query & _get_filter_query(request.GET)
orders = Object.filter_by_request(
request, SaleOrder.objects.filter(query), mode="r")
filters = OrderFilterForm(request.user.profile, '', request.GET)
statuses = Object.filter_by_request(request, SaleStatus.objects, mode="r")
massform = MassActionForm(request.user.profile)
return render_to_response('sales/index',
{'orders': orders,
'filters': filters,
'statuses': statuses,
'massform': massform
},
context_instance=RequestContext(request), response_format=response_format) | afb47a5c9094c9ff125c05c3588712d1875c69f3 | 3,655,377 |
def team_points_leaders(num_results=None, round_name=None):
"""Returns the team points leaders across all groups, as a dictionary profile__team__name
and points.
"""
size = team_normalize_size()
if size:
entries = score_mgr.team_points_leaders(round_name=round_name)
else:
entries = score_mgr.team_points_leaders(num_results=num_results, round_name=round_name)
if entries:
if size:
for entry in entries:
team = Team.objects.get(name=entry["profile__team__name"])
if team.size:
entry["points"] = int(entry["points"] * float(size / team.size))
# resort the entries after the normalization
entries = sorted(entries, key=lambda e: e["points"], reverse=True)
return entries[:num_results]
else:
return entries
else:
results = Team.objects.all().extra(
select={'profile__team__name': 'name', 'points': 0}).values(
'profile__team__name', 'points')
if num_results:
results = results[:num_results]
return results | 56b72b28f74f94e428b668b785b3dbd5b0c7c378 | 3,655,379 |
def with_color(text, color, bold=False):
"""
Return a ZSH color-formatted string.
Arguments
---------
text: str
text to be colored
color: str
ZSH color code
bold: bool
whether or not to make the text bold
Returns
-------
str
string with ZSH color-coded text
"""
color_fmt = '$fg_bold[{:s}]' if bold else '$fg[{:s}]'
return '%{{{:s}%}}{:s}%{{$reset_color%}}'.format(
color_fmt.format(color), text) | 40c194d9de76ab504a25592cfb13407cb089da0a | 3,655,380 |
def sample_test():
"""Return sample test json."""
return get_sample_json("test.json") | 9d135d4fd2f7eb52d16ff96332811e4141139a12 | 3,655,381 |
import warnings
from io import StringIO
def dataframe_from_inp(inp_path, section, additional_cols=None, quote_replace=' ', **kwargs):
"""
create a dataframe from a section of an INP file
:param inp_path:
:param section:
:param additional_cols:
:param skip_headers:
:param quote_replace:
:return:
"""
# format the section header for look up in headers OrderedDict
sect = remove_braces(section).upper()
# get list of all section headers in inp to use as section ending flags
headers = get_inp_sections_details(inp_path, include_brackets=False)
if sect not in headers:
warnings.warn(f'{sect} section not found in {inp_path}')
return pd.DataFrame()
# extract the string and read into a dataframe
start_string = format_inp_section_header(section)
end_strings = [format_inp_section_header(h) for h in headers.keys()]
s = extract_section_of_file(inp_path, start_string, end_strings, **kwargs)
# replace occurrences of double quotes ""
s = s.replace('""', quote_replace)
# and get the list of columns to use for parsing this section
# add any additional columns needed for special cases (build instructions)
additional_cols = [] if additional_cols is None else additional_cols
cols = headers[sect]['columns'] + additional_cols
if headers[sect]['columns'][0] == 'blob':
# return the whole row, without specific col headers
return pd.read_csv(StringIO(s), delim_whitespace=False)
else:
try:
df = pd.read_csv(StringIO(s), header=None, delim_whitespace=True,
skiprows=[0], index_col=0, names=cols)
except IndexError:
print(f'failed to parse {section} with cols: {cols}. head:\n{s[:500]}')
raise
return df | 8eaefdc08c7de3991f5a85cfe5001a6dcd0aaf7b | 3,655,382 |
def compositional_stratified_splitting(dataset, perc_train):
"""Given the dataset and the percentage of data you want to extract from it, method will
apply stratified sampling where X is the dataset and Y is are the category values for each datapoint.
In the case each structure contains 2 types of atoms, the category will
be constructed as such: number of atoms of type 1 + number of atoms of type 2 * 100.
Parameters
----------
dataset: [Data]
A list of Data objects representing a structure that has atoms.
subsample_percentage: float
Percentage of the dataset.
Returns
----------
[Data]
Subsample of the original dataset constructed using stratified sampling.
"""
dataset_categories = create_dataset_categories(dataset)
dataset, dataset_categories = duplicate_unique_data_samples(
dataset, dataset_categories
)
sss_train = sklearn.model_selection.StratifiedShuffleSplit(
n_splits=1, train_size=perc_train, random_state=0
)
trainset, val_test_set = generate_partition(sss_train, dataset, dataset_categories)
val_test_dataset_categories = create_dataset_categories(val_test_set)
val_test_set, val_test_dataset_categories = duplicate_unique_data_samples(
val_test_set, val_test_dataset_categories
)
sss_valtest = sklearn.model_selection.StratifiedShuffleSplit(
n_splits=1, train_size=0.5, random_state=0
)
valset, testset = generate_partition(
sss_valtest, val_test_set, val_test_dataset_categories
)
return trainset, valset, testset | b57a0b7d651e6f9be4182fec8c918438dcae9b7a | 3,655,383 |
def is_inside_line_segment(x, y, x0, y0, x1, y1):
"""Return True if the (x, y) lies inside the line segment defined by
(x0, y0) and (x1, y1)."""
# Create two vectors.
v0 = np.array([ x0-x, y0-y ]).reshape((2,1))
v1 = np.array([ x1-x, y1-y ]).reshape((2,1))
# Inner product.
prod = v0.transpose().dot(v1)
if ( prod <= 0 ):
return True
else:
return False | b653c542d3d573857199d90257e9e36e6c45ccdc | 3,655,384 |
def transition_soil_carbon(area_final, carbon_final, depth_final,
transition_rate, year, area_initial,
carbon_initial, depth_initial):
"""This is the formula for calculating the transition of soil carbon
.. math:: (af * cf * df) - \
\\frac{1}{(1 + tr)^y} * \
[(af * cf * df) - \
(ai * ci * di)]
where
* :math:`af` is area_final
* :math:`cf` is carbon_final
* :math:`df` is depth_final
* :math:`tr` is transition_rate
* :math:`y` is year
* :math:`ai` is area_initial
* :math:`ci` is carbon_initial
* :math:`di` is depth_initial
Args:
area_final (float): The final area of the carbon
carbon_final (float): The final amount of carbon per volume
depth_final (float): The final depth of carbon
transition_rate (float): The rate at which the transition occurs
year (float): The amount of time in years overwhich the transition occurs
area_initial (float): The intial area of the carbon
carbon_initial (float): The iniital amount of carbon per volume
depth_initial (float): The initial depth of carbon
Returns:
float: Transition amount of soil carbon
"""
return (area_final * carbon_final * depth_final) - \
(1/((1 + transition_rate) ** year)) * \
((area_final * carbon_final * depth_final) - \
(area_initial * carbon_initial * depth_initial)) | bfbf83f201eb8b8b0be0ec6a8722e850f6084e95 | 3,655,385 |
def _snr_approx(array, source_xy, fwhm, centery, centerx):
"""
array - frame convolved with top hat kernel
"""
sourcex, sourcey = source_xy
rad = dist(centery, centerx, sourcey, sourcex)
ind_aper = draw.circle(sourcey, sourcex, fwhm/2.)
# noise : STDDEV in convolved array of 1px wide annulus (while
# masking the flux aperture) * correction of # of resolution elements
ind_ann = draw.circle_perimeter(int(centery), int(centerx), int(rad))
array2 = array.copy()
array2[ind_aper] = array[ind_ann].mean() # quick-n-dirty mask
n2 = (2*np.pi*rad)/fwhm - 1
noise = array2[ind_ann].std()*np.sqrt(1+(1/n2))
# signal : central px minus the mean of the pxs (masked) in 1px annulus
signal = array[sourcey, sourcex] - array2[ind_ann].mean()
snr = signal / noise
return sourcey, sourcex, snr | 6f055444163c03d0bcc61107db2045b968f06b52 | 3,655,388 |
def create_pipeline(training_set, validation_set, test_set):
"""
Create a pipeline for the training, validation and testing set
Parameters: training_set: Training data set
validation_set: Validation data set
test_set: Test data set
Returns: batch_size: Batch size
image_size: Image dimensions (width, height)
training_batches: Batches of training data set
validation_batches: Batches of validation data set
testing_batches: Batches of test data set
"""
# Define batch size and image size
batch_size = 64
image_size = 224
# Define function to convert images to appropriate format, resize to fit the input layer and normalize it
def format_image(image, label):
image = tf.cast(image, tf.float32)
image = tf.image.resize(image, [image_size, image_size])
image /= 255
return image, label
# Define batches, while modifying images according to above function as well as batch and prefetch them
training_batches = training_set.map(format_image).batch(batch_size).prefetch(1)
validation_batches = validation_set.map(format_image).batch(batch_size).prefetch(1)
testing_batches = test_set.map(format_image).batch(batch_size).prefetch(1)
return batch_size, image_size, training_batches, validation_batches, testing_batches | a6af6ff83180a0a11bfc3bacefd6a2e2261aaeed | 3,655,389 |
from typing import Tuple
from typing import Any
def invalid_request() -> Tuple[Any, int]:
"""Invalid request API response."""
return jsonify({API.Response.KEY_INFO: API.Response.VAL_INVALID_REQUEST}), 400 | 76a81f8c85014822f4fa306c917a06d92a89ea70 | 3,655,390 |
from pathlib import Path
from typing import List
from typing import Dict
from typing import Any
def _add_hyperparameters(
ranges_path: Path, defaults_path: Path
) -> List[Dict[str, Any]]:
"""Returns a list of hyperparameters in a format that is compatible with the json
reader of the ConfigSpace API.
The list is created from two files: a hp_space file that defines the ranges of the
hyperparameters and an options file that defines the default values of the
hyperparameters. Both are in json format.
Parameters
----------
ranges_path: Path
Path to the hp_space file
defaults_path: Path
Path to the options file
Returns
-------
List
A list of hyperparameters
"""
# load the ranges of the hyperparameters as a dict
ranges_dict = load_data(ranges_path)
ranges_dict = flatten_dictionary(ranges_dict)
# load the default values of the hyperparameters as a dict
defaults_dict = load_data(defaults_path)
defaults_dict = flatten_dictionary(defaults_dict)
hyperparameter_list = _add_ranges(ranges_dict)
hyperparameter_list = _add_defaults(hyperparameter_list, defaults_dict)
return hyperparameter_list | 9609d3f31ffaee69148360966b1040f1970399b3 | 3,655,391 |
def setup(app):
"""Setup extension."""
app.add_domain(StuffDomain)
app.connect("builder-inited", generate_latex_preamble)
app.connect("config-inited", init_numfig_format)
app.add_css_file("stuff.css")
app.add_enumerable_node(
StuffNode,
"stuff",
html=(html_visit_stuff_node, html_depart_stuff_node),
singlehtml=(html_visit_stuff_node, html_depart_stuff_node),
latex=(latex_visit_stuff_node, latex_depart_stuff_node),
)
app.add_node(
nodes.caption,
override=True,
html=(html_visit_caption_node, html_depart_caption_node),
singlehtml=(html_visit_caption_node, html_depart_caption_node),
latex=(latex_visit_caption_node, latex_depart_caption_node),
)
app.add_node(
ContentNode,
html=(html_visit_content_node, html_depart_content_node),
singlehtml=(html_visit_content_node, html_depart_content_node),
latex=(latex_visit_content_node, latex_depart_content_node),
)
return {"version": __version__, "parallel_read_safe": True} | 3c7a5d36c835e7339876cdf88673d79e5f76b590 | 3,655,392 |
from pathlib import Path
import typing
def has_checksum(path: Path, csum: str,
csum_fun: typing.Optional[Checksum] = None) -> bool:
"""
:return: True if the file at the path `path` has given checksum
"""
return get_checksum(path, csum_fun=csum_fun) == csum | e9bed6e0d82745113412e6dace5869aa32aa4fc9 | 3,655,393 |
import numpy as np
def remove_outliers(column):
"""
:param column: list of numbers
:return:
"""
if len(column) < 1:
return []
clean_column = []
q1 = np.percentile(column, 25)
q3 = np.percentile(column, 75)
#k = 1.5
k = 2
# [Q1 - k(Q3 - Q1), Q3 + k(Q3 - Q1)]
lower_bound = q1 - k*(q3-q1)
upper_bound = q3 + k*(q3-q1)
for c in column:
if c >= lower_bound and c <= upper_bound:
clean_column.append(c)
return clean_column | 04c1e736e27ffeaef528f25fd303d0f27c3a94ac | 3,655,394 |
def read_photons(photonfile, ra0, dec0, tranges, radius, verbose=0,
colnames=['t', 'x', 'y', 'xa', 'ya', 'q', 'xi', 'eta', 'ra',
'dec', 'flags']):
"""
Read a photon list file and return a python dict() with the expected
format.
:param photonfile: Name of the photon event file to use.
:type photonfile: str
:param ra0: Right ascension of the targeted sky position, in degrees.
:type ra0: float
:param dec0: Declination of the targeted sky position, in degrees.
:type dec0: float
:param tranges: Set of time ranges from which to retrieve photon events,
in GALEX time units
:type tranges: list
:param radius: The radius, in degrees, defining a cone on the sky that
is centered on ra0 and dec0, from which to extract photons.
:type radius: float
:param verbose: Verbosity level, a value of 0 is minimum verbosity.
:type verbose: int
:param colnames: Labels of the columns found in the photon event file.
:type colnames: list
:returns: dict -- The set of photon events and their properties.
"""
# [Future]: Consider moving this method to 'dbasetools'.
if verbose:
mc.print_inline('Reading photon list file: {f}'.format(f=photonfile))
data = pd.io.parsers.read_csv(photonfile, names=colnames)
ra, dec = np.array(data['ra']), np.array(data['dec'])
angsep = mc.angularSeparation(ra0, dec0, ra, dec)
ix = np.array([])
for trange in tranges:
cut = np.where((angsep <= radius) & (np.isfinite(angsep)))[0]
ix = np.concatenate((ix, cut), axis=0)
events = {'t':np.array(data['t'][ix])/tscale,
'ra':np.array(data['ra'][ix]),
'dec':np.array(data['dec'][ix]),
'xi':np.array(data['xi'][ix]),
'eta':np.array(data['eta'][ix]),
'x':np.array(data['x'][ix]),
'y':np.array(data['y'][ix])}
return events | c83958f8ae541e5df564c5ce53dd40593c9dfc3e | 3,655,396 |
def normElec(surf, electrode, normdist, NaN_as_zeros=True):
"""
Notes
-----
When `normway` is a scalar, it takes the normal of the points of the mesh which are closer
than `normway`. However, some points have a normal of (0, 0, 0) (default assigned
if the vertex does not belong to any triangle). projectElectrodes.m includes
those (0, 0, 0) in the calculation, but it might not be correct.
See l. 138 (there are no NaN in normals but only (0, 0, 0)).
To replicate the matlab behavior, make sure that `NaN_as_zeros` is True.
"""
dvect = norm(electrode - surf['pos'], axis=1) # l. 104-112 of projectElectrodes.m
closevert = dvect < normdist # l. 120 of projectElectrodes.m
normal = surf['pos_norm'][closevert, :].mean(axis=0) # l. 144 of projectElectrodes.m
normals2av = surf['pos_norm'][closevert, :].copy()
if NaN_as_zeros:
normals2av[isnan(normals2av)] = 0
normal = nanmean(normals2av, axis=0)
return normal | d449f4518c589a2a68b64ca812d964cb6249694e | 3,655,397 |
def filter_sources(sources, release):
"""Check if a source has already been consumed. If has not then add it to
sources dict.
"""
source, version, dist, arch = parse_release(release)
if source not in sources.keys():
sources[source] = {version: {dist: [arch]}}
return True
elif version not in sources[source].keys():
sources[source][version] = {dist: [arch]}
return True
elif dist not in sources[source][version]:
sources[source][version][dist] = [arch]
return True
elif arch not in sources[source][version][dist]:
sources[source][version][dist].append(arch)
return True
return False | 661d379291170a4994c0813d24820007e47bd092 | 3,655,398 |
from typing import Union
from typing import Dict
from typing import Any
async def train(model, *args: Union[BaseSource, Record, Dict[str, Any]]):
"""
Train a machine learning model.
Provide records to the model to train it. The model should be already
instantiated.
Parameters
----------
model : Model
Machine Learning model to use. See :doc:`/plugins/dffml_model` for
models options.
*args : list
Input data for training. Could be a ``dict``, :py:class:`Record`,
filename, one of the data :doc:`/plugins/dffml_source`, or a filename
with the extension being one of the data sources.
Examples
--------
>>> import asyncio
>>> from dffml import *
>>>
>>> model = SLRModel(
... features=Features(
... Feature("Years", int, 1),
... ),
... predict=Feature("Salary", int, 1),
... directory="tempdir",
... )
>>>
>>> async def main():
... await train(
... model,
... {"Years": 0, "Salary": 10},
... {"Years": 1, "Salary": 20},
... {"Years": 2, "Salary": 30},
... {"Years": 3, "Salary": 40},
... )
>>>
>>> asyncio.run(main())
"""
sources = _records_to_sources(*args)
async with sources as sources, model as model:
async with sources() as sctx, model() as mctx:
return await mctx.train(sctx) | 9a8e1648247a8eb3c8354c324ac2c48a52617899 | 3,655,399 |
def setup_model_and_optimizer(args):
"""Setup model and optimizer."""
print ("setting up model...")
model = get_model(args)
print ("setting up optimizer...")
optimizer = get_optimizer(model, args)
print ("setting up lr scheduler...")
lr_scheduler = get_learning_rate_scheduler(optimizer, args)
if DEEPSPEED_WRAP and args.deepspeed:
print_rank_0("DeepSpeed is enabled.")
print ("Calling deepspeed.initialize with our model, optimizer and scheduler")
model, optimizer, _, lr_scheduler = DEEPSPEED_WRAP.deepspeed.initialize(
model=model,
optimizer=optimizer,
args=args,
lr_scheduler=lr_scheduler,
mpu=mpu,
dist_init_required=False
)
print ("We've wrapped our model, optimizer and scheduler in DeepSpeed")
if args.load is not None:
print_rank_0("Load checkpoint from " + args.load)
args.iteration = load_checkpoint(model, optimizer, lr_scheduler, args, deepspeed=DEEPSPEED_WRAP and args.deepspeed)
print_rank_0("Checkpoint loaded")
else:
args.iteration = 0
print ("returning our model, optimizer and scheduler")
return model, optimizer, lr_scheduler | 9283ec825b55ff6619ac2ee2f7ac7cce9e4bced7 | 3,655,401 |
def ensure_str(origin, decode=None):
"""
Ensure is string, for display and completion.
Then add double quotes
Note: this method do not handle nil, make sure check (nil)
out of this method.
"""
if origin is None:
return None
if isinstance(origin, str):
return origin
if isinstance(origin, int):
return str(origin)
elif isinstance(origin, list):
return [ensure_str(b) for b in origin]
elif isinstance(origin, bytes):
if decode:
return origin.decode(decode)
return _literal_bytes(origin)
else:
raise Exception(f"Unknown type: {type(origin)}, origin: {origin}") | 0409bc75856b012cf3063d9ed2530c2d7d5bf3e4 | 3,655,402 |
from typing import Union
from typing import Dict
from typing import Any
from typing import Optional
def restore(
collection: str, id: Union[str, int, Dict[str, Any]]
) -> Optional[Dict[str, Any]]:
"""Restrieve cached data from database.
:param collection: The collection to be retrieved. Same name as API commands.
:type collection: str
:param id: The unique identifier for a particular collection. This varies by command.
:type id: Union[str, int]
:return: The retrieved data if exists, else None.
:rtype: Optional[Dict[str, Any]]
"""
db = _get_connection()
if not db:
return None
if not isinstance(id, dict):
id = dict(_id=id)
return db[collection].find_one(id, dict(_id=0)) | a0b2ccb995661b5c3286dee3b3f5f250cb728011 | 3,655,403 |
def encode_bits(data, number):
"""Turn bits into n bytes of modulation patterns"""
# 0000 00BA gets encoded as:
# 128 64 32 16 8 4 2 1
# 1 B B 0 1 A A 0
# i.e. a 0 is a short pulse, a 1 is a long pulse
#print("modulate_bits %s (%s)" % (ashex(data), str(number)))
shift = number-2
encoded = []
for i in range(int(number/2)):
bits = (data >> shift) & 0x03
#print(" shift %d bits %d" % (shift, bits))
encoded.append(ENCODER[bits])
shift -= 2
#print(" returns:%s" % ashex(encoded))
return encoded | 0299a30c4835af81e97e518e116a51fa08006999 | 3,655,404 |
from typing import Tuple
def _tf_get_negs(
all_embed: "tf.Tensor", all_raw: "tf.Tensor", raw_pos: "tf.Tensor", num_neg: int
) -> Tuple["tf.Tensor", "tf.Tensor"]:
"""Get negative examples from given tensor."""
if len(raw_pos.shape) == 3:
batch_size = tf.shape(raw_pos)[0]
seq_length = tf.shape(raw_pos)[1]
else: # len(raw_pos.shape) == 2
batch_size = tf.shape(raw_pos)[0]
seq_length = 1
raw_flat = _tf_make_flat(raw_pos)
total_candidates = tf.shape(all_embed)[0]
all_indices = tf.tile(
tf.expand_dims(tf.range(0, total_candidates, 1), 0),
(batch_size * seq_length, 1),
)
shuffled_indices = tf.transpose(
tf.random.shuffle(tf.transpose(all_indices, (1, 0))), (1, 0)
)
neg_ids = shuffled_indices[:, :num_neg]
bad_negs = _tf_get_bad_mask(raw_flat, all_raw, neg_ids)
if len(raw_pos.shape) == 3:
bad_negs = tf.reshape(bad_negs, (batch_size, seq_length, -1))
neg_embed = _tf_sample_neg(batch_size * seq_length, all_embed, neg_ids)
if len(raw_pos.shape) == 3:
neg_embed = tf.reshape(
neg_embed, (batch_size, seq_length, -1, all_embed.shape[-1])
)
return neg_embed, bad_negs | 9cef1cf3fc869108d400704f8cd90d432382ac2e | 3,655,406 |
def load_pdb(path):
"""
Loads all of the atomic positioning/type arrays from a pdb file.
The arrays can then be transformed into density (or "field") tensors before
being sent through the neural network.
Parameters:
path (str, required): The full path to the pdb file being voxelized.
Returns:
dictionary: A dictionary containing the following arrays from
the pdb file: num_atoms, atom_types, positions, atom_type_set,
xcoords, ycoords, zcoords, residues, residue_set
"""
pdb = PandasPdb().read_pdb(path)
# This just creates a dataframe from the pdb file using biopandas
#print('This is vars',vars(pdb))
pdf = pdb.df['ATOM']
# atomic coordinates
x_coords = pdf['x_coord'].values
y_coords = pdf['y_coord'].values
z_coords = pdf['z_coord'].values
# create an array containing tuples of x,y,z for every atom
positions = []
for i, x in enumerate(x_coords):
position_tuple = (x_coords[i], y_coords[i], z_coords[i])
positions.append(position_tuple)
positions = np.array(positions)
# names of all the atoms contained in the protein
atom_types = pdf['atom_name'].values
num_atoms = len(atom_types)
atom_type_set = np.unique(atom_types)
num_atom_types = len(atom_type_set)
# residue names
residue_names = pdf['residue_name'].values
residue_set = np.unique(residue_names)
protein_dict = {'x_coords':x_coords, 'y_coords':y_coords, 'z_coords':z_coords,
'positions':positions, 'atom_types':atom_types,
'num_atoms':num_atoms, 'atom_type_set':atom_type_set,
'num_atom_types':num_atom_types, 'residues':residue_names,
'residue_set':residue_set}
# add a value to the dictionary, which is all of the atomic coordinates just
# shifted to the origin
protein_dict = shift_coords(protein_dict)
return protein_dict | aa7fe0f338119b03f00a2acb727608afcd5c1e0d | 3,655,409 |
def __filter_handler(query_set, model, params):
"""
Handle user-provided filtering requests.
Args:
query_set: SQLAlchemy query set to be filtered.
model: Data model from which given query set is generated.
params: User-provided filter params, with format {"query": [...], ...}.
For query format see "__build_filter_exp" function.
Returns:
A query set with user-provided filters applied.
"""
query = params.get("query")
if query:
filter_exp = __build_filter_exp(query, model)
return query_set.filter(filter_exp)
else:
return query_set | c91b7d55795399f453106d0dda52e80a0c998075 | 3,655,411 |
def split_data_set(data_set, axis, value):
"""
按照给定特征划分数据集,筛选某个特征为指定特征值的数据
(然后因为是按该特征进行划分了,该特征在以后的划分中就不用再出现,所以把该特征在新的列表中移除)
:param data_set: 待划分的数据集,格式如下,每一行是一个list,list最后一个元素就是标签,其他元素是特征
:param axis: 划分数据集的特征(特征的序号)
:param value: 需要返回的特征的值(筛选特征的值要等于此值)
:return:
>>>myDat = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
>>>split_data_set(myDat,0,1)
[[1, 'yes'], [1, 'yes'], [0, 'no']]
>>>split_data_set(myDat,0,0)
[[1, 'no'], [1, 'no']]
"""
# 创建新的list对象
ret_data_set = []
for feature_vec in data_set:
if feature_vec[axis] == value:
# 抽取, 把指定特征从列表中去掉,组成一个新的特征+标签的列表
reduced_feature_vec = feature_vec[:axis]
reduced_feature_vec.extend(feature_vec[axis + 1:])
ret_data_set.append(reduced_feature_vec)
return ret_data_set | f90fdffee3bbee4b4477e371a9ed43094051126a | 3,655,412 |
import ast
import six
import types
import inspect
import textwrap
def get_ast(target_func_or_module):
"""
See :func:``bettertimeit`` for acceptable types.
:returns: an AST for ``target_func_or_module``
"""
if isinstance(target_func_or_module, ast.AST):
return target_func_or_module
if not isinstance(target_func_or_module,
(six.string_types, six.binary_type)):
handled_types = (
types.ModuleType,
types.FunctionType,
getattr(types, "UnboundMethodType", types.MethodType),
types.MethodType,
)
if not isinstance(target_func_or_module, handled_types):
raise TypeError("Don't know how to handle objects of types '%s'"
% type(target_func_or_module))
target_func_or_module = inspect.getsource(target_func_or_module)
target_func_or_module = textwrap.dedent(target_func_or_module)
return ast.parse(target_func_or_module) | 929a8f1b915850c25369edf0dcf0dc8bc2fe16e9 | 3,655,413 |
from typing import List
from re import T
from typing import Callable
from typing import Tuple
def enumerate_spans(sentence: List[T],
offset: int = 0,
max_span_width: int = None,
min_span_width: int = 1,
filter_function: Callable[[List[T]], bool] = None) -> List[Tuple[int, int]]:
"""
Given a sentence, return all token spans within the sentence. Spans are `inclusive`.
Additionally, you can provide a maximum and minimum span width, which will be used
to exclude spans outside of this range.
Finally, you can provide a function mapping ``List[T] -> bool``, which will
be applied to every span to decide whether that span should be included. This
allows filtering by length, regex matches, pos tags or any Spacy ``Token``
attributes, for example.
Parameters
----------
sentence : ``List[T]``, required.
The sentence to generate spans for. The type is generic, as this function
can be used with strings, or Spacy ``Tokens`` or other sequences.
offset : ``int``, optional (default = 0)
A numeric offset to add to all span start and end indices. This is helpful
if the sentence is part of a larger structure, such as a document, which
the indices need to respect.
max_span_width : ``int``, optional (default = None)
The maximum length of spans which should be included. Defaults to len(sentence).
min_span_width : ``int``, optional (default = 1)
The minimum length of spans which should be included. Defaults to 1.
filter_function : ``Callable[[List[T]], bool]``, optional (default = None)
A function mapping sequences of the passed type T to a boolean value.
If ``True``, the span is included in the returned spans from the
sentence, otherwise it is excluded..
"""
max_span_width = max_span_width or len(sentence)
filter_function = filter_function or (lambda x: True)
spans: List[Tuple[int, int]] = []
for start_index in range(len(sentence)):
last_end_index = min(start_index + max_span_width, len(sentence))
first_end_index = min(start_index + min_span_width - 1, len(sentence))
for end_index in range(first_end_index, last_end_index):
start = offset + start_index
end = offset + end_index
# add 1 to end index because span indices are inclusive.
if filter_function(sentence[slice(start_index, end_index + 1)]):
spans.append((start, end))
return spans | 68df595e4fd55d2b36645660df6fa9198a8d28ef | 3,655,414 |
def fixed_mu(mu, data, qty, comp='muAI', beads_2_M=1):
"""
"""
return fixed_conc(mu*np.ones([len(data.keys())]), data, qty, comp=comp,
beads_2_M=beads_2_M) | f7241e8b1534d5d537a1817bce4f019e5a4081a7 | 3,655,415 |
def error_nrmse(y_true, y_pred, time_axis=0):
""" Computes the Normalized Root Mean Square Error (NRMSE).
The NRMSE index is computed separately on each channel.
Parameters
----------
y_true : np.array
Array of true values. If must be at least 2D.
y_pred : np.array
Array of predicted values. If must be compatible with y_true'
time_axis : int
Time axis. All other axes define separate channels.
Returns
-------
NRMSE : np.array
Array of r_squared value.
"""
SSE = np.mean((y_pred - y_true)**2, axis=time_axis)
RMSE = np.sqrt(SSE)
NRMSE = RMSE/np.std(y_true, axis=time_axis)
return NRMSE | 39461cdf0337c9d681d4247168ba32d7a1cbd364 | 3,655,416 |
import shutil
def rmdir_empty(f):
"""Returns a count of the number of directories it has deleted"""
if not f.is_dir():
return 0
removable = True
result = 0
for i in f.iterdir():
if i.is_dir():
result += rmdir_empty(i)
removable = removable and not i.exists()
else:
removable = removable and (i.name == '.DS_Store')
if removable:
items = list(f.iterdir())
assert not items or items[0].name == '.DS_Store'
print(f)
shutil.rmtree(f)
result += 1
return result | f2dba5bb7e87c395886574ca5f3844a8bab609d9 | 3,655,417 |
def generic_exception_json_response(code):
"""
Turns an unhandled exception into a JSON payload to respond to a service call
"""
payload = {
"error": "TechnicalException",
"message": "An unknown error occured",
"code": code
}
resp = make_response(jsonify(payload), code)
resp.headers["Content-type"] = "application/json"
return resp | fc2f0edfc774a56e6b6ccfc8a746b37ad19f6536 | 3,655,418 |
def UnN(X, Z, N, sampling_type, kernel="prod"):
"""Computes block-wise complete U-statistic."""
def fun_block(x, z):
return Un(x, z, kernel=kernel)
return UN(X, Z, N, fun_block, sampling_type=sampling_type) | 962788706d3b4d71a0f213f925e89fd78f220791 | 3,655,419 |
def delete_card(request):
"""Delete card"""
return delete_container_element(request) | 128b521ed89077ebae019942147fc3b4af1a5cdf | 3,655,420 |
def get_plot_grid_size(num_plots, fewer_rows=True):
"""
Returns the number of rows and columns ideal for visualizing multiple (identical) plots within a single figure
Parameters
----------
num_plots : uint
Number of identical subplots within a figure
fewer_rows : bool, optional. Default = True
Set to True if the grid should be short and wide or False for tall and narrow
Returns
-------
nrows : uint
Number of rows
ncols : uint
Number of columns
"""
assert isinstance(num_plots, Number), 'num_plots must be a number'
# force integer:
num_plots = int(num_plots)
if num_plots < 1:
raise ValueError('num_plots was less than 0')
if fewer_rows:
nrows = int(np.floor(np.sqrt(num_plots)))
ncols = int(np.ceil(num_plots / nrows))
else:
ncols = int(np.floor(np.sqrt(num_plots)))
nrows = int(np.ceil(num_plots / ncols))
return nrows, ncols | e83f14db347cd679e9e7b0761d928cd563444712 | 3,655,422 |
def check_source(module):
"""
Check that module doesn't have any globals.
Example::
def test_no_global(self):
result, line = check_source(self.module)
self.assertTrue(result, "Make sure no code is outside functions.\\nRow: " + line)
"""
try:
source = module.__file__
except Exception:
raise Exception('Varmista, että koodin suoritus onnistuu')
allowed = [
"import ",
"from ",
"def ",
"class ",
" ",
"\t",
"#",
"if __name__",
"@",
]
with open(source) as file:
for line in file.readlines():
if line.strip() == "":
continue
for prefix in allowed:
if line.startswith(prefix):
break
else:
return (False, line)
return (True, "") | 6bc012892d6ec7bb6788f20a565acac0f6d1c662 | 3,655,423 |
def pre_processing(X):
""" Center and sphere data."""
eps = 1e-18
n = X.shape[0]
cX = X - np.mean(X, axis=0) # centering
cov_mat = 1.0/n * np.dot(cX.T, cX)
eigvals, eigvecs = eigh(cov_mat)
D = np.diag(1./np.sqrt(eigvals+eps))
W = np.dot(np.dot(eigvecs, D), eigvecs.T) # whitening matrix
wcX = np.dot(cX, W)
return wcX | 802ce958c6616dcf03de5842249be8480e6a5a7c | 3,655,424 |
def get_as_tags(bundle_name, extension=None, config="DEFAULT", attrs=""):
"""
Get a list of formatted <script> & <link> tags for the assets in the
named bundle.
:param bundle_name: The name of the bundle
:param extension: (optional) filter by extension, eg. "js" or "css"
:param config: (optional) the name of the configuration
:param attrs: (optional) further attributes on the tags
:return: a list of formatted tags as strings
"""
bundle = _get_bundle(bundle_name, extension, config)
return _render_tags(bundle, attrs) | ec54184ff2b13bd4f37de8395276685191535948 | 3,655,425 |
def devpiserver_get_credentials(request):
"""Search request for X-Remote-User header.
Returns a tuple with (X-Remote-User, '') if credentials could be
extracted, or None if no credentials were found.
The first plugin to return credentials is used, the order of plugin
calls is undefined.
"""
if 'X-Remote-User' in request.headers:
remote_user = request.headers['X-Remote-User']
threadlog.info("Found X-Remote-User in request: %s", remote_user)
return remote_user, '' | bc6ccaa52b719c25d14784c758d6b78efeae104d | 3,655,427 |
def vader_sentiment(
full_dataframe,
grading_column_name,
vader_columns=COLUMN_NAMES,
logger=config.LOGGER
):
"""apply vader_sentiment analysis to dataframe
Args:
full_dataframe (:obj:`pandas.DataFrame`): parent dataframe to apply analysis to
grading_column_name (str): column with the data to grade
vader_columns (:obj:`list`. optional): names to map vader results to ['neu', 'pos', 'compound', 'neg']
logger (:obj:`logging.logger`, optional): logging handle
Returns;
(:obj:`pandas.DataFrame`): updated dataframe with vader sentiment
"""
logger.info('applying vader sentiment analysis to `%s`', grading_column_name)
logger.info('--applying vader_lexicon')
vader_df = map_vader_sentiment(
full_dataframe[grading_column_name],
column_names=vader_columns
)
logger.info('--merging results into original dataframe')
joined_df = full_dataframe.merge(
vader_df,
how='left',
on=grading_column_name
)
return joined_df | 43572857ecc382f800b243ee12e6f3fe3b1f5d5a | 3,655,428 |
def _overlayPoints(points1, points2):
"""Given two sets of points, determine the translation and rotation that matches them as closely as possible.
Parameters
----------
points1 (numpy array of simtk.unit.Quantity with units compatible with distance) - reference set of coordinates
points2 (numpy array of simtk.unit.Quantity with units compatible with distance) - set of coordinates to be rotated
Returns
-------
translate2 - vector to translate points2 by in order to center it
rotate - rotation matrix to apply to centered points2 to map it on to points1
center1 - center of points1
Notes
-----
This is based on W. Kabsch, Acta Cryst., A34, pp. 828-829 (1978).
"""
if len(points1) == 0:
return (mm.Vec3(0, 0, 0), np.identity(3), mm.Vec3(0, 0, 0))
if len(points1) == 1:
return (points1[0], np.identity(3), -1*points2[0])
# Compute centroids.
center1 = unit.sum(points1)/float(len(points1))
center2 = unit.sum(points2)/float(len(points2))
# Compute R matrix.
R = np.zeros((3, 3))
for p1, p2 in zip(points1, points2):
x = p1-center1
y = p2-center2
for i in range(3):
for j in range(3):
R[i][j] += y[i]*x[j]
# Use an SVD to compute the rotation matrix.
(u, s, v) = lin.svd(R)
return (-1*center2, np.dot(u, v).transpose(), center1) | c3d1df9569705bcee33e112596e8ab2a332e947e | 3,655,429 |
def return_request(data):
"""
Arguments:
data
Return if call detect: list[dist1, dist2, ...]:
dist = {
"feature": feature
}
Return if call extract: list[dist1, dist2, ...]:
dist = {
"confidence_score": predict probability,
"class": face,
"bounding_box": [xmin, ymin, xmax, ymax],
"keypoints": {'left_eye': (x,y), 'right_eye':(x,y), 'nose': (x,y), 'mouth_left': (x,y), 'mouth_right': (x,y)}
}
"""
contents = []
try:
boxs = data['predictions']
print(type(boxs))
print(boxs)
# for box in boxs:
# contents.append({
# "confidence_score": box[4],
# "class": 'face',
# "bounding_box": [box[0], box[1], box[2], box[3]]
# })
except:
pass
try:
features = data['features']
for feature in features:
contents.append({
"feature": feature
})
except:
pass
return contents | 11887921c89a846ee89bc3cbb79fb385382262fa | 3,655,430 |
def get_recent_messages_simple(e: TextMessageEventObject):
"""
Command to get the most recent messages with default count.
This command has a cooldown of ``Bot.RecentActivity.CooldownSeconds`` seconds.
This command will get the most recent ``Bot.RecentActivity.DefaultLimitCountDirect`` messages without the message
that called this command.
:param e: message event that called this command
:return: default count of most recent messages with a link to the recent activity page
"""
return get_recent_messages(e, Bot.RecentActivity.DefaultLimitCountLink) | 58d03a4b34254dc532ad6aa53747ea730446cd31 | 3,655,431 |
def parse_systemctl_units(stdout:str, stderr:str, exitcode:int) -> dict:
"""
UNIT LOAD ACTIVE SUB DESCRIPTION
mono-xsp4.service loaded active running LSB: Mono XSP4
motd-news.service loaded inactive dead Message of the Day
● mountkernfs.service masked inactive dead mountkernfs.service
systemd-machine-id-commit.service loaded inactive dead Commit a transient machine-id on disk
● systemd-modules-load.service loaded failed failed Load Kernel Modules
systemd-networkd-resolvconf-update.service loaded inactive dead Update resolvconf for networkd DNS
sysinit.target loaded active active System Initialization
● syslog.target not-found inactive dead syslog.target
time-sync.target loaded active active System Time Synchronized
LOAD = Reflects whether the unit definition was properly loaded.
ACTIVE = The high-level unit activation state, i.e. generalization of SUB.
SUB = The low-level unit activation state, values depend on unit type.
354 loaded units listed.
To show all installed unit files use 'systemctl list-unit-files'.
"""
if exitcode != 0:
raise Exception()
# split into list of lines
lines = LineList(stdout)
assert isinstance(lines, LineList)
# now we must separate a trailing description.
lineNumbers = lines.getLineNumbersOfEmptyLines()
assert lineNumbers
assert lineNumbers[0] > 0
del lines[lineNumbers[0]:]
# get column split positions
wordPos = [ 0 ] + getPositionsOfWords(lines[0])
table = lines.createDataTableFromColumns(wordPos, bLStrip=True, bRStrip=True, bFirstLineIsHeader=True, columnDefs=[
ColumnDef("MARK", _parseMark),
ColumnDef("UNIT"),
ColumnDef("LOAD"),
ColumnDef("ACTIVE"),
ColumnDef("SUB"),
ColumnDef("DESCRIPTION"),
])
# build output matrix: use service names as keys
ret = {}
for record in table:
key = record[1]
pos = key.rfind(".")
category = key[pos+1:] + "s" # pluralize the category
key = key[:pos]
if category not in ret:
ret[category] = {}
ret[category][key] = record
return ret | d9e7e4c71f418311799345c7dacfb9655912475f | 3,655,432 |
def resnet_model_fn(is_training, feature, label, data_format, params):
"""Build computation tower (Resnet).
Args:
is_training: true if is training graph.
feature: a Tensor.
label: a Tensor.
data_format: channels_last (NHWC) or channels_first (NCHW).
params: params for the model to consider
Returns:
A tuple with the loss for the tower, the gradients and parameters, and
predictions.
"""
num_layers = params.num_layers
batch_norm_decay = params.batch_norm_decay
batch_norm_epsilon = params.batch_norm_epsilon
weight_decay = params.weight_decay
model = cifar10_with_resnet_model.ResNetCifar10(
num_layers,
batch_norm_decay=batch_norm_decay,
batch_norm_epsilon=batch_norm_epsilon,
is_training=is_training,
data_format=data_format)
logits = model.forward_pass(feature, input_data_format='channels_last')
predictions = {
'classes': tf.argmax(input=logits, axis=1),
'probabilities': tf.nn.softmax(logits)
}
loss = tf.losses.sparse_softmax_cross_entropy(
logits=logits, labels=label)
loss = tf.reduce_mean(loss)
model_params = tf.trainable_variables()
loss += weight_decay * tf.add_n(
[tf.nn.l2_loss(v) for v in model_params])
gradients = tf.gradients(loss, model_params)
return loss, zip(gradients, model_params), predictions | 70f30b4c5b4485ed1c4f362cc7b383cb192c57c4 | 3,655,433 |
def permutate_touched_latent_class(untouched_classes, class_info_np, gran_lvl_info):
"""untouch certain class num latent class, permute the rest (reserve H(Y))"""
# get untouched instance index
untouched_instance_index = []
for i in untouched_classes:
index = np.where(class_info_np == i)[0]
untouched_instance_index.append(index)
untouched_instance_index_np = np.concatenate(untouched_instance_index)
# permutate touched id
my_gran_lvl_info = gran_lvl_info * np.ones(gran_lvl_info.shape) # replicate the gran_lvl_info
untouched_latent_class_np = my_gran_lvl_info[untouched_instance_index_np]
touched_index = np.delete(np.arange(my_gran_lvl_info.shape[0]), untouched_instance_index_np, 0) # exclude untouched index
tourched_latent_class = my_gran_lvl_info[touched_index]
my_gran_lvl_info[touched_index] = np.random.permutation(tourched_latent_class)
return my_gran_lvl_info.astype(np.int32) | ebae2213508260474a9e9c581f6b42fd81006a22 | 3,655,434 |
from datetime import datetime
import pytz
def get_interarrival_times(arrival_times, period_start):
"""
Given a list of report dates, it returns the list corresponding to the interrival times.
:param arrival_times: List of arrival times.
:return: List of inter-arrival times.
"""
interarrival_times = []
for position, created_date in enumerate(arrival_times):
if position > 0:
distance = created_date - arrival_times[position - 1]
interarrival_times.append(get_distance_in_hours(distance))
else:
if isinstance(created_date, np.datetime64):
created_date = datetime.datetime.utcfromtimestamp(created_date.tolist() / 1e9)
created_date = pytz.utc.localize(created_date)
distance = get_distance_in_hours(created_date - period_start)
if distance > 0:
interarrival_times.append(distance)
return pd.Series(data=interarrival_times) | b6d345ff73e16d8c7502509ddd36e2a1d7f12252 | 3,655,435 |
def _indexOp(opname):
"""
Wrapper function for Series arithmetic operations, to avoid
code duplication.
"""
def wrapper(self, other):
func = getattr(self.view(np.ndarray), opname)
return func(other)
return wrapper | a9bdccca9d0bc1ffa2334132c6cfd4b965b95878 | 3,655,436 |
def safe_log(a):
"""
Return the element-wise log of an array, checking for negative
array elements and avoiding divide-by-zero errors.
"""
if np.any([a < 0]):
raise ValueError('array contains negative components')
return np.log(a + 1e-12) | 7ac5f01272f4c90110c4949aba8dfb9f783c82b9 | 3,655,437 |
def make_batch_keys(args, extras=None):
"""depending on the args, different data are used by the listener."""
batch_keys = ['objects', 'tokens', 'target_pos'] # all models use these
if extras is not None:
batch_keys += extras
if args.obj_cls_alpha > 0:
batch_keys.append('class_labels')
if args.lang_cls_alpha > 0:
batch_keys.append('target_class')
return batch_keys | a86c2a5cff58f811a67cbdd5eed322c86aa3e0e0 | 3,655,441 |
from typing import List
def magic_split(value: str, sep=",", open="(<", close=")>"):
"""Split the value according to the given separator, but keeps together elements
within the given separator. Useful to split C++ signature function since type names
can contain special characters...
Examples:
- magic_split("a,b,c", sep=",") -> ["a", "b", "c"]
- magic_split("a<b,c>,d(e,<k,c>),p) -> ["a<b,c>", "d(e,<k,c>)", "p"]
Args:
value: String to split.
sep: Separator to use.
open: List of opening characters.
close: List of closing characters. Order must match open.
Returns: The list of split parts from value.
"""
i, j = 0, 0
s: List[str] = []
r = []
while i < len(value):
j = i + 1
while j < len(value):
c = value[j]
# Separator found and the stack is empty:
if c == sep and not s:
break
# Check close/open:
if c in open:
s.append(open.index(c))
elif c in close:
# The stack might be empty if the separator is also an opening element:
if not s and sep in open and j + 1 == len(value):
pass
else:
t = s.pop()
if t != close.index(c):
raise ValueError(
"Found closing element {} for opening element {}.".format(
c, open[t]
)
)
j += 1
r.append(value[i:j])
i = j + 1
return r | 9f152c9cfa82778dcf5277e3342b5cab25818a55 | 3,655,443 |
def update_group_annotation(name=None, annotation_name=None, x_pos=None, y_pos=None, angle=None, opacity=None,
canvas=None, z_order=None, network=None, base_url=DEFAULT_BASE_URL):
"""Update Group Annotation
Updates a group annotation, changing the given properties.
Args:
name (UUID or str): Single UUID or str naming group object
annotation_name (UUID or str): Name of annotation by UUID or name
x_pos (int): X position in pixels from left; default is center of current view
y_pos (int): Y position in pixels from top; default is center of current view
angle (float): Angle of text orientation; default is 0.0 (horizontal)
canvas (str): Canvas to display annotation, i.e., foreground (default) or background
z_order (int): Arrangement order specified by number (larger values are in front of smaller values); default is 0
network (SUID or str or None): Name or SUID of the network. Default is the "current" network active in Cytoscape.
base_url (str): Ignore unless you need to specify a custom domain,
port or version to connect to the CyREST API. Default is http://localhost:1234
and the latest version of the CyREST API supported by this version of py4cytoscape.
Returns:
dict: A named list of annotation properties, including UUID
Raises:
CyError: if invalid name
requests.exceptions.HTTPError: if can't connect to Cytoscape or Cytoscape returns an error
Examples:
>>> update_group_annotation(annotation_name='Group 1', angle=180)
{'canvas': 'foreground', 'rotation': '180.0', 'name': 'Group 1', 'x': '2450.0', 'y': '1883.0', 'z': '0', 'type': 'org.cytoscape.view.presentation.annotations.GroupAnnotation', 'uuid': 'b9bf3184-3c5a-4e8b-9651-4bc4403af158', 'memberUUIDs': 'bb3061c5-d8d5-4fca-ac5c-9b7bf8fb9fd0,32f89c1d-e987-4867-9b8a-787aaac6e165,ec73aad8-b00b-4f4d-9361-a4b93f70c8f8'}
>>> update_group_annotation(name='2c0a77f8-a6d0-450d-b6ee-1bfe3c8f8aea', annotation_name=group_uuid, x_pos=101, y_pos=201, angle=180, canvas='foreground')
{'canvas': 'foreground', 'rotation': '180.0', 'name': 'Group 1', 'x': '101.0', 'y': '201.0', 'z': '0', 'type': 'org.cytoscape.view.presentation.annotations.GroupAnnotation', 'uuid': '2c0a77f8-a6d0-450d-b6ee-1bfe3c8f8aea', 'memberUUIDs': '8872c2f6-42ad-4b6a-8fb9-1d1b13da504d,2c830227-7f6a-4e58-bbef-2070f1b5a603,8d04e34d-86b8-486f-9927-581184cbe03e'}
"""
cmd_string, net_suid = _build_base_cmd_string('annotation update group', network, base_url) # a good start
cmd_string += _get_annotation_name_cmd_string(annotation_name, 'Must provide the UUID or name of group')
# x and y position
cmd_string += _get_x_y_pos_cmd_string(x_pos, y_pos, net_suid, base_url)
# optional params
cmd_string += _get_angle_cmd_string(angle)
cmd_string += _get_name_cmd_string(name, network, base_url)
cmd_string += _get_canvas_cmd_string(canvas)
cmd_string += _get_z_order_cmd_string(z_order)
# execute command
res = commands.commands_post(cmd_string, base_url=base_url)
return res | fd515728ee3a3dece381bb65e2c6816b9c96b41e | 3,655,444 |
import urllib
def _extract_properties(properties_str):
"""Return a dictionary of properties from a string in the format
${key1}={value1}&${key2}={value2}...&${keyn}={valuen}
"""
d = {}
kv_pairs = properties_str.split("&")
for entry in kv_pairs:
pair = entry.split("=")
key = urllib.parse.unquote(pair[0]).lstrip("$")
value = urllib.parse.unquote(pair[1])
d[key] = value
return d | 4f22cae8cbc2dd5b73e6498d5f8e6d10e184f91c | 3,655,445 |
from typing import Any
def first_fail_second_succeed(_: Any, context: Any) -> str:
""" Simulate Etherscan saying for the first time 'wait', but for the second time 'success'. """
context.status_code = 200
try:
if first_fail_second_succeed.called: # type: ignore
return '{ "status": "1", "result" : "Pass - Verified", "message" : "" }'
except AttributeError: # first time
pass
first_fail_second_succeed.called = True # type: ignore
return '{ "status": "0", "result" : "wait for a moment", "message" : "" }' | 5feb3188bdee2d0d758584709df13dc876c37391 | 3,655,446 |
def get_ipsw_url(device, ios_version, build):
"""Get URL of IPSW by specifying device and iOS version."""
json_data = fw_utils.get_json_data(device, "ipsw")
if build is None:
build = fw_utils.get_build_id(json_data, ios_version, "ipsw")
fw_url = fw_utils.get_firmware_url(json_data, build)
if fw_url is None:
print("[w] could not get IPSW url, exiting...")
return fw_url | 75b9d85d93b03b1ebda681aeb51ac1c9b0a30474 | 3,655,447 |
from typing import Any
def escape_parameter(value: Any) -> str:
"""
Escape a query parameter.
"""
if value == "*":
return value
if isinstance(value, str):
value = value.replace("'", "''")
return f"'{value}'"
if isinstance(value, bytes):
value = value.decode("utf-8")
return f"'{value}'"
if isinstance(value, bool):
return "TRUE" if value else "FALSE"
if isinstance(value, (int, float)):
return str(value)
return f"'{value}'" | 00b706681b002a3226874f04e74acbb67d54d12e | 3,655,448 |
def Get_Query(Fq):
""" Get_Query
"""
Q = ""
EoF = False
Ok = False
while True:
l = Fq.readline()
if ("--" in l) :
# skip line
continue
elif l=="":
EoF=True
break
else:
Q += l
if ";" in Q:
Ok = True
break
return EoF, Ok, Q | a1850799f7c35e13a5b61ba8ebbed5d49afc08df | 3,655,449 |
def get_path_segments(url):
"""
Return a list of path segments from a `url` string. This list may be empty.
"""
path = unquote_plus(urlparse(url).path)
segments = [seg for seg in path.split("/") if seg]
if len(segments) <= 1:
segments = []
return segments | fe8daff2269d617516a22f7a2fddc54bd76c5025 | 3,655,450 |
import typing
from pathlib import Path
def get_config_file(c: typing.Union[str, ConfigFile, None]) -> typing.Optional[ConfigFile]:
"""
Checks if the given argument is a file or a configFile and returns a loaded configFile else returns None
"""
if c is None:
# See if there's a config file in the current directory where Python is being run from
current_location_config = Path("flytekit.config")
if current_location_config.exists():
logger.info(f"Using configuration from Python process root {current_location_config.absolute()}")
return ConfigFile(str(current_location_config.absolute()))
# If not, see if there's a config in the user's home directory
home_dir_config = Path(Path.home(), ".flyte", "config") # _default_config_file_name in main.py
if home_dir_config.exists():
logger.info(f"Using configuration from home directory {home_dir_config.absolute()}")
return ConfigFile(str(home_dir_config.absolute()))
# If not, see if the env var that flytectl sandbox tells the user to set is set,
# or see if there's something in the default home directory location
flytectl_path = Path(Path.home(), ".flyte", "config.yaml")
flytectl_path_from_env = getenv(FLYTECTL_CONFIG_ENV_VAR, None)
if flytectl_path_from_env:
flytectl_path = Path(flytectl_path_from_env)
if flytectl_path.exists():
logger.info(f"Using flytectl/YAML config {flytectl_path.absolute()}")
return ConfigFile(str(flytectl_path.absolute()))
# If not, then return None and let caller handle
return None
if isinstance(c, str):
return ConfigFile(c)
return c | 6e176167a81bccaa0e0f4570c918fcb32a406edb | 3,655,451 |
def get_index():
"""Redirects the index to /form """
return redirect("/form") | e52323397156a5a112e1d6b5d619136ad0fea3f0 | 3,655,453 |
def _register_network(network_id: str, chain_name: str):
"""Register a network.
"""
network = factory.create_network(network_id, chain_name)
cache.infra.set_network(network)
# Inform.
utils.log(f"registered {network.name_raw} - metadata")
return network | 8e9b84670057974a724df1387f4a8cf9fc886a56 | 3,655,454 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.