content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import logging def loadData(data_source, loc, run, indexes, ntry=0, __text__=None, __prog__=None): """ Loads the data from a remote source. Has hooks for progress bars. """ if __text__ is not None: __text__.emit("Decoding File") if data_source.getName() == "Local WRF-ARW": url = data_source.getURLList(outlet="Local")[0].replace("file://", "") decoder = ARWDecoder dec = decoder((url, loc[0], loc[1])) else: decoder, url = data_source.getDecoderAndURL(loc, run, outlet_num=ntry) logging.info("Using decoder: " + str(decoder)) logging.info("Data URL: " + url) dec = decoder(url) if __text__ is not None: __text__.emit("Creating Profiles") profs = dec.getProfiles(indexes=indexes) return profs
d06fd6fb6194dac63911a5b9c3ad267525098cd2
3,718
def comp_psip_skin(self, u): """psip_skin for skin effect computation Parameters ---------- self : Conductor An Conductor object Returns ------- None """ y = (1 / u) * (sinh(u) + sin(u)) / (cosh(u) + cos(u)) # p257 Pyrhonen # y[u==0]=1 return y
23fe18a13b56f38c49fd3ca14b557983064c65b3
3,719
import random def homepage(var=random.randint(0, 1000)): """ The function returns the homepage html template. """ return render_template("index.html", var=var)
17e9033b8abeaa990cd31008861e5c412e35d1d7
3,720
import numbers def tier(value): """ A special function of ordinals which does not correspond to any mathematically useful function. Maps ordinals to small objects, effectively compressing the range. Used to speed up comparisons when the operands are very different sizes. In the current version, this is a map from ordinals to 2-tuples of integers, however, this is subject to change at any time, so please do not retain long lived records of what tier an ordinal number is. """ if isinstance(value, numbers.Real): value = ordinal(value) if isinstance(value, ordinal): return value._tier raise ValueError('Value is not of a known type representing a mathematical ordinal.')
851b36cf22c09d8f94168a0aa55292754451e351
3,721
from .models import Sequence def get_next_value( sequence_name="default", initial_value=1, reset_value=None, *, nowait=False, using=None, overrite=None, ): """ Return the next value for a given sequence. """ # Inner import because models cannot be imported before their application. if reset_value is not None: assert initial_value < reset_value if using is None: using = router.db_for_write(Sequence) connection = connections[using] db_table = connection.ops.quote_name(Sequence._meta.db_table) if ( connection.vendor == "postgresql" # Remove when dropping Django 2.2. Django 3.0 requires PostgreSQL 9.5. and getattr(connection, "pg_version", 0) >= 90500 and reset_value is None and not nowait ): # PostgreSQL ≥ 9.5 supports "upsert". # This is about 3x faster as the naive implementation. with connection.cursor() as cursor: cursor.execute( POSTGRESQL_UPSERT.format(db_table=db_table), [sequence_name, initial_value], ), result = cursor.fetchone() return result[0] elif connection.vendor == "mysql" and reset_value is None and not nowait: # MySQL supports "upsert" but not "returning". # This is about 2x faster as the naive implementation. with transaction.atomic(using=using, savepoint=False): with connection.cursor() as cursor: cursor.execute( MYSQL_UPSERT.format(db_table=db_table), [sequence_name, initial_value], ) cursor.execute( SELECT.format(db_table=db_table), [sequence_name], ) result = cursor.fetchone() return result[0] else: # Default, ORM-based implementation for all other cases. with transaction.atomic(using=using, savepoint=False): sequences = Sequence.objects.select_for_update(nowait=nowait) sequence, created = sequences.get_or_create( name=sequence_name, defaults={"last": initial_value}, ) if not created: sequence.last += 1 if reset_value is not None and sequence.last >= reset_value: sequence.last = initial_value if overrite is not None: sequence.last = overrite sequence.save() return sequence.last
0770c8d4a4bea732bacfe6b7eaa404546bb79699
3,722
def expected_shd(posterior, ground_truth): """Compute the Expected Structural Hamming Distance. This function computes the Expected SHD between a posterior approximation given as a collection of samples from the posterior, and the ground-truth graph used in the original data generation process. Parameters ---------- posterior : np.ndarray instance Posterior approximation. The array must have size `(B, N, N)`, where `B` is the number of sample graphs from the posterior approximation, and `N` is the number of variables in the graphs. ground_truth : np.ndarray instance Adjacency matrix of the ground-truth graph. The array must have size `(N, N)`, where `N` is the number of variables in the graph. Returns ------- e_shd : float The Expected SHD. """ # Compute the pairwise differences diff = np.abs(posterior - np.expand_dims(ground_truth, axis=0)) diff = diff + diff.transpose((0, 2, 1)) # Ignore double edges diff = np.minimum(diff, 1) shds = np.sum(diff, axis=(1, 2)) / 2 return np.mean(shds)
5e0daf39a13fc0a4cb7a4f5d0a9fe692fdae82db
3,723
import json def package_list_read(pkgpath): """Read package list""" try: with open(PACKAGE_LIST_FILE, 'r') as pkglistfile: return json.loads(pkglistfile.read()) except Exception: return []
afb97afd20823563ecfda3b5c908f7ad70322868
3,724
import pandas import types def hpat_pandas_series_le(self, other, level=None, fill_value=None, axis=0): """ Pandas Series method :meth:`pandas.Series.le` implementation. .. only:: developer Test: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_op8 Parameters ---------- self: :class:`pandas.Series` input arg other: :obj:`pandas.Series`, :obj:`int` or :obj:`float` input arg level: :obj:`int` or name *unsupported* fill_value: :obj:`float` or None, default None *unsupported* axis: default 0 *unsupported* Returns ------- :obj:`pandas.Series` returns :obj:`pandas.Series` object """ _func_name = 'Method le().' if not isinstance(self, SeriesType): raise TypingError('{} The object must be a pandas.series. Given: {}'.format(_func_name, self)) if level is not None or fill_value is not None or axis != 0: raise TypingError('{} Unsupported parameters. Given level: {}, fill_value: {}, axis: {}'.format(_func_name, level, fill_value, axis)) if isinstance(other, SeriesType): def hpat_pandas_series_le_impl(self, other): """ Test: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_op8 """ return pandas.Series(self._data <= other._data) return hpat_pandas_series_le_impl if isinstance(other, types.Integer) or isinstance(other, types.Float): def hpat_pandas_series_le_impl(self, other): """ Test: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_op8_integer_scalar Test: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_op8_float_scalar """ return pandas.Series(self._data <= other) return hpat_pandas_series_le_impl raise TypingError('{} The object must be a pandas.series and argument must be a number. Given: {} and other: {}'.format(_func_name, self, other))
f2969e17dd79b71a033e3c84ffd82e3bf2448554
3,725
def map_view(request): """ Place to show off the new map view """ # Define view options view_options = MVView( projection='EPSG:4326', center=[-100, 40], zoom=3.5, maxZoom=18, minZoom=2 ) # Define drawing options drawing_options = MVDraw( controls=['Modify', 'Delete', 'Move', 'Point', 'LineString', 'Polygon', 'Box'], initial='Point', output_format='GeoJSON' ) # Define GeoJSON layer geojson_object = { 'type': 'FeatureCollection', 'crs': { 'type': 'name', 'properties': { 'name': 'EPSG:3857' } }, 'features': [ { 'type': 'Feature', 'geometry': { 'type': 'Point', 'coordinates': [0, 0] } }, { 'type': 'Feature', 'geometry': { 'type': 'LineString', 'coordinates': [[4e6, -2e6], [8e6, 2e6]] } }, { 'type': 'Feature', 'geometry': { 'type': 'Polygon', 'coordinates': [[[-5e6, -1e6], [-4e6, 1e6], [-3e6, -1e6]]] } } ] } # Define layers map_layers = [] geojson_layer = MVLayer(source='GeoJSON', options=geojson_object, editable=False, legend_title='Test GeoJSON', legend_extent=[-46.7, -48.5, 74, 59], legend_classes=[ MVLegendClass('polygon', 'Polygons', fill='rgba(255,255,255,0.8)', stroke='#3d9dcd'), MVLegendClass('line', 'Lines', stroke='#3d9dcd') ]) map_layers.append(geojson_layer) if get_geoserver_wms(): # Define GeoServer Layer geoserver_layer = MVLayer(source='ImageWMS', options={'url': get_geoserver_wms(), 'params': {'LAYERS': 'topp:states'}, 'serverType': 'geoserver'}, legend_title='USA Population', legend_extent=[-126, 24.5, -66.2, 49], legend_classes=[ MVLegendClass('polygon', 'Low Density', fill='#00ff00', stroke='#000000'), MVLegendClass('polygon', 'Medium Density', fill='#ff0000', stroke='#000000'), MVLegendClass('polygon', 'High Density', fill='#0000ff', stroke='#000000') ]) map_layers.append(geoserver_layer) # Define KML Layer kml_layer = MVLayer(source='KML', options={'url': '/static/tethys_gizmos/data/model.kml'}, legend_title='Park City Watershed', legend_extent=[-111.60, 40.57, -111.43, 40.70], legend_classes=[ MVLegendClass('polygon', 'Watershed Boundary', fill='#ff8000'), MVLegendClass('line', 'Stream Network', stroke='#0000ff'), ]) map_layers.append(kml_layer) # Tiled ArcGIS REST Layer arc_gis_layer = MVLayer(source='TileArcGISRest', options={'url': 'http://sampleserver1.arcgisonline.com/ArcGIS/rest/services/' + 'Specialty/ESRI_StateCityHighway_USA/MapServer'}, legend_title='ESRI USA Highway', legend_extent=[-173, 17, -65, 72]) map_layers.append(arc_gis_layer) # Define map view options map_view_options = MapView( height='600px', width='100%', controls=['ZoomSlider', 'Rotate', 'FullScreen', {'MousePosition': {'projection': 'EPSG:4326'}}, {'ZoomToExtent': {'projection': 'EPSG:4326', 'extent': [-130, 22, -65, 54]}}], layers=map_layers, view=view_options, basemap='OpenStreetMap', draw=drawing_options, legend=True ) submitted_geometry = request.POST.get('geometry', None) if submitted_geometry is not None: messages.info(request, submitted_geometry) context = {'map_view': map_view_options} return render(request, 'tethys_gizmos/gizmo_showcase/map_view.html', context)
5d037262b2c93c538b5a5b6fe076ee04a9d9b5ee
3,727
def decompose_jamo(compound): """Return a tuple of jamo character constituents of a compound. Note: Non-compound characters are echoed back. WARNING: Archaic jamo compounds will raise NotImplementedError. """ if len(compound) != 1: raise TypeError("decompose_jamo() expects a single character,", "but received", type(compound), "length", len(compound)) if compound not in JAMO_COMPOUNDS: # Strict version: # raise TypeError("decompose_jamo() expects a compound jamo,", # "but received", compound) return compound return _JAMO_TO_COMPONENTS.get(compound, compound)
56eb503b47a966d7f88750f7fdc1bcc55ba1aa1b
3,728
from typing import Optional def cp_in_drive( source_id: str, dest_title: Optional[str] = None, parent_dir_id: Optional[str] = None, ) -> DiyGDriveFile: """Copy a specified file in Google Drive and return the created file.""" drive = create_diy_gdrive() if dest_title is None: dest_title = build_dest_title(drive, source_id) return drive.copy_file(source_id, dest_title, parent_dir_id)
981cfa18da78a160447778cab5f3326f35dbfc59
3,729
def label_tuning( text_embeddings, text_labels, label_embeddings, n_steps: int, reg_coefficient: float, learning_rate: float, dropout: float, ) -> np.ndarray: """ With N as number of examples, K as number of classes, k as embedding dimension. Args: 'text_embeddings': float[N,k] of embedded texts 'text_labels': float[N,K] class score for each example. 'label_embeddings': float[K,k] class embeddings Returns: float[K,k] updated class embeddings """ if text_embeddings.shape[0] == 0: raise ValueError(text_embeddings.shape) if label_embeddings.shape[0] == 0: raise ValueError(label_embeddings.shape) text_embeddings = tf.constant(text_embeddings) text_labels = tf.constant(text_labels) label_embeddings = tf.constant(label_embeddings) init_label_embeddings = label_embeddings for i in range(n_steps): with tf.GradientTape() as tape: tape.watch(label_embeddings) dot_loss = _get_loss( text_embeddings, text_labels, label_embeddings, dropout=dropout, ) drift_loss = tf.reduce_mean( (label_embeddings - init_label_embeddings) ** 2 ) total_loss = dot_loss + reg_coefficient * drift_loss gradient = tape.gradient(total_loss + drift_loss, label_embeddings) label_embeddings = label_embeddings - (learning_rate * gradient) label_embeddings = label_embeddings.numpy() return label_embeddings
83e4181c6600065bfb2cc98b4ca4957ea920ad7c
3,730
def create_nan_filter(tensor): """Creates a layer which replace NaN's with zero's.""" return tf.where(tf.is_nan(tensor), tf.zeros_like(tensor), tensor)
4e03c4c4c275430e5228e2d73b09e24f8c787e71
3,731
def requestor_is_superuser(requestor): """Return True if requestor is superuser.""" return getattr(requestor, "is_superuser", False)
7b201601cf8a1911aff8271ff71b6d4d51f68f1a
3,732
from typing import Dict def process(business: Business, # pylint: disable=too-many-branches filing: Dict, filing_rec: Filing, filing_meta: FilingMeta): # pylint: disable=too-many-branches """Process the incoming historic conversion filing.""" # Extract the filing information for incorporation if not (conversion_filing := filing.get('filing', {}).get('conversion')): raise QueueException(f'CONVL legal_filing:conversion missing from {filing_rec.id}') if business: raise QueueException(f'Business Already Exist: CONVL legal_filing:conversion {filing_rec.id}') if not (corp_num := filing.get('filing', {}).get('business', {}).get('identifier')): raise QueueException(f'conversion {filing_rec.id} missing the business idnetifier.') # Initial insert of the business record business_info_obj = conversion_filing.get('nameRequest') if not (business := business_info.update_business_info(corp_num, Business(), business_info_obj, filing_rec)): raise QueueException(f'CONVL conversion {filing_rec.id}, Unable to create business.') if offices := conversion_filing.get('offices'): update_offices(business, offices) if parties := conversion_filing.get('parties'): update_parties(business, parties) if share_structure := conversion_filing.get('shareStructure'): shares.update_share_structure(business, share_structure) if name_translations := conversion_filing.get('nameTranslations'): aliases.update_aliases(business, name_translations) return business, filing_rec
78f5033251cb90023c2e0c0ad064b92af5212e65
3,733
def est_const_bsl(bsl,starttime=None,endtime=None,intercept=False,val_tw=None): """Performs a linear regression (assuming the intercept at the origin). The corresponding formula is tt-S*1/v-c = 0 in which tt is the travel time of the acoustic signal in seconds and 1/v is the reciprocal of the harmonic mean of the sound speed. The slope S is equal to the constant baseline length and by default c is assumed to be 0, but can optionally also be determined (intercept=True). It needs: bsl ... pandas.Dataframe with ID of beacon 1 ('ID'), ID of beacon 2 ('range_ID'), calculated baseline lengths in metres ('bsl'), one way traveltime in seconds ('tt'), sound speed at beacon 1 ('ssp1') in metres per second, sound speed at beacon 2 ('ssp2') in metres per second, measured traveltime in milliseconds ('range'), turn around time in milliseconds ('TAT')(eventually harmonic mean of 'ssp1' and 'ssp2' ('hmssp') and reciprocal of harmonic mean of 'ssp1' and 'ssp2' ('1/v'); if they do not exist, they will be calculated) with corresponding times of measurement for beacon pair. starttime (optional) ... string with starttime of time window for estimation of constant baseline length (format: 'YYYY-mm-dd HH:MM:SS', default: first entry in bsl) endtime (optional) ... string with endtime of time window for estimation of constant baseline length (format: 'YYYY-mm-dd HH:MM:SS', default: last entry in bsl) intercept (optional) ... specify whether intercept should be set to 0 [False] or should be calculated [True] (default is False) val_tw (optional) ... specify time window for which estimated constant baseline length and standard deviation (as well as intercept) will be stored in returned pandas.Dataframe (format: ['YYYY-mm-dd HH:MM:SS', 'YYYY-mm-dd HH:MM:SS'], default is starttime and endtime) It returns: bsl ... pandas.Dataframe with ID of beacon 1 ('ID'), ID of beacon 2 ('range_ID'), calculated baseline lengths in metres ('bsl'), one way traveltime in seconds ('tt'), sound speed at beacon 1 ('ssp1') in metres per second, sound speed at beacon 2 ('ssp2') in metres per second, measured traveltime in milliseconds ('range'), turn around time in milliseconds ('TAT'), harmonic mean of 'ssp1' and 'ssp2' ('hmssp'), reciprocal of harmonic mean of 'ssp1' and 'ssp2' ('1/v'), constant baseline length ('bsl_const') in given time window and standard deviation of the measurements compared to the fitted line in seconds (sigma = sqrt(sum((tt-S*1/v)^2)/(len(1/v)-1)), 'std_dev_tt') in given time window (and intercept ('intercept') ) with corresponding times of measurement for beacon pair. """ # check if columns 'hmssp' and '1/v' (harmonic mean of sound speeds and its # reciprocal already exist in bsl and if not then calculate them if not set(['hmssp','1/v']).issubset(bsl.columns): bsl = calc_hmssp_recp_v(bsl) # end if not set(['hmssp','1/v']).issubset(bsl.columns): # copy bsl to new pandas.Dataframe to cut it in time bsl_new = bsl.copy() # check if time window for estimation of constant baseline length is given if starttime is not None: bsl_new = bsl_new.loc[starttime:] else: # set startime to first index in bsl starttime = bsl_new.index[0] # end if starttime is not None: if endtime is not None: bsl_new = bsl_new.loc[:endtime] else: # set endtime to last index in bsl endtime = bsl_new.index[-1] # end if endtime is not None: # the numpy function numpy.linalg.lstsq() needs x as (M,N) matrix if not intercept: x = bsl_new['1/v'][:,np.newaxis] else: x = np.array(([[bsl_new['1/v'][j], 1] for j in range(len(bsl_new))])) # end if not intercept: S,residuals,_,_ = np.linalg.lstsq(x,bsl_new['tt']) sigma = np.sqrt(residuals/(len(x)-1)) # set column 'bsl_const' for values between starttime and endtime to S and # column 'std_dev_tt' to estimated sigma in bsl if val_tw is not None: starttime = val_tw[0] endtime = val_tw[1] # end if val_tw is not None: if not intercept: bsl.loc[starttime:endtime,'bsl_const'] = S else: bsl.loc[starttime:endtime,'bsl_const'] = S[0] bsl.loc[starttime:endtime,'intercept'] = S[1] # end if not intercept: bsl.loc[starttime:endtime,'std_dev_tt'] = sigma return(bsl)
906119dcc66f4ab536d4a89c9c9b633bb6835058
3,734
def SeasonUPdate(temp): """ Update appliance characteristics given the change in season Parameters ---------- temp (obj): appliance set object for an individual season Returns ---------- app_expected_load (float): expected load power in Watts app_expected_dur (float): expected duration in hours appliance_set (list of applience objects): applience list for a given season t_delta_exp_dur (pandas datetime): expected appliance duration app_index (array): index for each applience """ app_expected_load = temp.app_expected_load app_expected_dur = temp.app_expected_dur appliance_set = temp.appliance_set t_delta_exp_dur = temp.t_delta_exp_dur app_index = np.arange(0,len(temp.appliance_set)) return app_expected_load,app_expected_dur,appliance_set,t_delta_exp_dur,app_index
7fdfa932bedf2ac17490df6aaeedb547e1774c4d
3,735
def pad_and_reshape(instr_spec, frame_length, F): """ :param instr_spec: :param frame_length: :param F: :returns: """ spec_shape = tf.shape(instr_spec) extension_row = tf.zeros((spec_shape[0], spec_shape[1], 1, spec_shape[-1])) n_extra_row = (frame_length) // 2 + 1 - F extension = tf.tile(extension_row, [1, 1, n_extra_row, 1]) extended_spec = tf.concat([instr_spec, extension], axis=2) old_shape = tf.shape(extended_spec) new_shape = tf.concat([ [old_shape[0] * old_shape[1]], old_shape[2:]], axis=0) processed_instr_spec = tf.reshape(extended_spec, new_shape) return processed_instr_spec
097bc2e8f58f1e947b8f69a6163d1c64d2197f9e
3,736
def GetExclusiveStorageForNodes(cfg, node_uuids): """Return the exclusive storage flag for all the given nodes. @type cfg: L{config.ConfigWriter} @param cfg: cluster configuration @type node_uuids: list or tuple @param node_uuids: node UUIDs for which to read the flag @rtype: dict @return: mapping from node uuids to exclusive storage flags @raise errors.OpPrereqError: if any given node name has no corresponding node """ getflag = lambda n: _GetExclusiveStorageFlag(cfg, n) flags = map(getflag, node_uuids) return dict(zip(node_uuids, flags))
b93625bc2b865530bef0c648885f5615905e54c1
3,737
import csv def get_read_data(file, dic, keys): """ Assigns reads to labels""" r = csv.reader(open(file)) lines = list(r) vecs_forwards = [] labels_forwards = [] vecs_reverse = [] labels_reverse = [] for key in keys: for i in dic[key]: for j in lines: if i in j[0]: if '_2.fq' in j[0] or '_R2_' in j[0]: vecs_reverse.append(j[2:]) labels_reverse.append(key) else: vecs_forwards.append(j[2:]) labels_forwards.append(key) return np.array(vecs_forwards), np.array(labels_forwards), np.array(vecs_reverse), np.array(labels_reverse)
355c44cbf83ab9506755bda294723bfd1e8a15c1
3,738
def removeDuplicates(listToRemoveFrom: list[str]): """Given list, returns list without duplicates""" listToReturn: list[str] = [] for item in listToRemoveFrom: if item not in listToReturn: listToReturn.append(item) return listToReturn
8265e7c560d552bd9e30c0a1140d6668abd1b4d6
3,739
def check_hms_angle(value): """ Validating function for angle sexagesimal representation in hours. Used in the rich_validator """ if isinstance(value, list): raise validate.ValidateError("expected value angle, found list") match = hms_angle_re.match(value) if not match: raise VdtAngleError("not a valid hour angle: %s" % value) return hms_to_angle(match.groups())
bf1b6ec14cc131263913c331cb1d3cb9a06cdc76
3,740
def stats(): """Retrives the count of each object type. Returns: JSON object with the number of objects by type.""" return jsonify({ "amenities": storage.count("Amenity"), "cities": storage.count("City"), "places": storage.count("Place"), "reviews": storage.count("Review"), "states": storage.count("State"), "users": storage.count("User") })
31ebd630381fe33cdbff507a3d34497423dfd621
3,742
def addflux2pix(px,py,pixels,fmod): """Usage: pixels=addflux2pix(px,py,pixels,fmod) Drizel Flux onto Pixels using a square PSF of pixel size unity px,py are the pixel position (integers) fmod is the flux calculated for (px,py) pixel and it has the same length as px and py pixels is the image. """ xmax = pixels.shape[0] #Size of pixel array ymax = pixels.shape[1] pxmh = px-0.5 #location of reference corner of PSF square pymh = py-0.5 dx = np.floor(px+0.5)-pxmh dy = np.floor(py+0.5)-pymh # Supposing right-left as x axis and up-down as y axis: # Lower left pixel npx = int(pxmh) #Numpy arrays start at zero npy = int(pymh) #print('n',npx,npy) if (npx >= 0) & (npx < xmax) & (npy >= 0) & (npy < ymax) : pixels[npx,npy]=pixels[npx,npy]+fmod*dx*dy #Same operations are done for the 3 pixels other neighbouring pixels # Lower right pixel npx = int(pxmh)+1 #Numpy arrays start at zero npy = int(pymh) if (npx >= 0) & (npx < xmax) & (npy >= 0) & (npy < ymax) : pixels[npx,npy]=pixels[npx,npy]+fmod*(1.0-dx)*dy # Upper left pixel npx = int(pxmh) #Numpy arrays start at zero npy = int(pymh)+1 if (npx >= 0) & (npx < xmax) & (npy >= 0) & (npy < ymax) : pixels[npx,npy]=pixels[npx,npy]+fmod*dx*(1.0-dy) # Upper right pixel npx = int(pxmh)+1 #Numpy arrays start at zero npy = int(pymh)+1 if (npx >= 0) & (npx < xmax) & (npy >= 0) & (npy < ymax) : pixels[npx,npy]=pixels[npx,npy]+fmod*(1.0-dx)*(1.0-dy) return pixels;
808f99dac20cda962146fee8f2b9878a07804f9b
3,743
def get_dea_landsat_vrt_dict(feat_list): """ this func is designed to take all releveant landsat bands on the dea public database for each scene in stac query. it results in a list of vrts for each band seperately and maps them to a dict where band name is the key, list is the value pair. """ # notify print('Getting landsat vrts for each relevant bands.') # check features type, length if not isinstance(feat_list, list): raise TypeError('Features must be a list of xml objects.') elif not len(feat_list) > 0: raise ValueError('No features provided.') # required dea landsat ard band names bands = [ 'nbart_blue', 'nbart_green', 'nbart_red', 'nbart_nir', 'nbart_swir_1', 'nbart_swir_2', 'oa_fmask' ] # iter each band name and build associated vrt list band_vrts_dict = {} for band in bands: print('Building landsat vrt list for band: {}.'.format(band)) band_vrts_dict[band] = make_vrt_list(feat_list, band=band) # notify and return print('Got {} landsat vrt band lists successfully.'.format(len(band_vrts_dict))) return band_vrts_dict
79009cc9fbcd085c8e95cf15f4271419d598d1ce
3,744
def is_zh_l_bracket(uni_ch): """判断一个 unicode 是否是中文左括号。""" if uni_ch == u'\uff08': return True else: return False
3ba18418005824a51de380c898726d050d464ec2
3,746
def petlink32_to_dynamic_projection_mMR(filename,n_packets,n_radial_bins,n_angles,n_sinograms,time_bins,n_axial,n_azimuthal,angles_axial,angles_azimuthal,size_u,size_v,n_u,n_v,span,n_segments,segments_sizes,michelogram_segments,michelogram_planes, status_callback): """Make dynamic compressed projection from list-mode data. """ descriptor = [ {'name':'filename', 'type':'string', 'value':filename ,'size':len(filename)}, {'name':'n_packets', 'type':'long', 'value':n_packets }, {'name':'n_radial_bins', 'type':'uint', 'value':n_radial_bins }, {'name':'n_angles', 'type':'uint', 'value':n_angles }, {'name':'n_sinograms', 'type':'uint', 'value':n_sinograms }, {'name':'n_time_bins', 'type':'uint', 'value':len(time_bins)-1 }, {'name':'time_bins', 'type':'array', 'value':np.int32(time_bins) }, {'name':'n_axial', 'type':'uint', 'value':n_axial }, {'name':'n_azimuthal', 'type':'uint', 'value':n_azimuthal }, {'name':'angles_axial', 'type':'array', 'value':angles_axial }, {'name':'angles_azimuthal', 'type':'array', 'value':angles_azimuthal }, {'name':'size_u', 'type':'float', 'value':size_u }, {'name':'size_v', 'type':'float', 'value':size_v }, {'name':'n_u', 'type':'uint', 'value':n_u }, {'name':'n_v', 'type':'uint', 'value':n_v }, {'name':'span', 'type':'uint', 'value':span }, {'name':'n_segments', 'type':'uint', 'value':n_segments }, {'name':'segments_sizes', 'type':'array', 'value':np.int32(segments_sizes) }, {'name':'michelogram_segments', 'type':'array', 'value':np.int32(michelogram_segments) }, {'name':'michelogram_planes', 'type':'array', 'value':np.int32(michelogram_planes) }, {'name':'status_callback', 'type':'function','value':status_callback, 'arg_types':['uint'] }, ] r = call_c_function( mMR_c.petlink32_to_dynamic_projection_mMR_michelogram, descriptor ) if not r.status == petlink.status_success(): raise ErrorInCFunction("The execution of 'petlink32_to_dynamic_projection_mMR_michelogram' was unsuccessful.",r.status,'mMR_c.petlink32_to_dynamic_projection_mMR') return r.dictionary
9764da2a2fb0c021274133fdd46661a44cf0dc31
3,747
from typing import Dict def is_core_recipe(component: Dict) -> bool: """ Returns True if a recipe component contains a "Core Recipe" preparation. """ preparations = component.get('recipeItem', {}).get('preparations') or [] return any(prep.get('id') == PreparationEnum.CORE_RECIPE.value for prep in preparations)
451798c6f31297a80ac43db00243fb2dd85ced46
3,748
def build_estimator(output_dir, first_layer_size, num_layers, dropout, learning_rate, save_checkpoints_steps): """Builds and returns a DNN Estimator, defined by input parameters. Args: output_dir: string, directory to save Estimator. first_layer_size: int, size of first hidden layer of DNN. num_layers: int, number of hidden layers. dropout: float, dropout rate used in training. learning_rate: float, learning_rate used in training. save_checkpoints_steps: int, training steps to save Estimator. Returns: `Estimator` instance. """ # Sets head to default head for DNNClassifier with two classes. model_params = { 'head': head_lib._binary_logistic_head_with_sigmoid_cross_entropy_loss(), 'feature_columns': [ tf.feature_column.numeric_column(c, shape=[]) for c in constants.FEATURE_COLUMNS ], 'hidden_units': [ max(int(first_layer_size / (pow(2, i))), 2) for i in range(int(num_layers)) ], 'dropout': dropout, 'optimizer': tf.train.AdagradOptimizer(learning_rate) } def _model_fn(features, labels, mode, params): """Build TF graph based on canned DNN classifier.""" key_column = features.pop(constants.KEY_COLUMN, None) if key_column is None: raise ValueError('Key is missing from features.') spec = _dnn_model_fn(features=features, labels=labels, mode=mode, **params) predictions = spec.predictions if predictions: predictions[constants.KEY_COLUMN] = tf.convert_to_tensor_or_sparse_tensor( key_column) spec = spec._replace(predictions=predictions) spec = spec._replace(export_outputs={ 'classes': tf.estimator.export.PredictOutput(predictions) }) return spec config = tf.estimator.RunConfig(save_checkpoints_steps=save_checkpoints_steps) return tf.estimator.Estimator( model_fn=_model_fn, model_dir=output_dir, config=config, params=model_params)
339e26fd910aa7412b8e2b66845718e440ccada6
3,749
import json def importConfig(): """設定ファイルの読み込み Returns: tuple: str: interface, str: alexa_remote_control.sh path list: device list """ with open("config.json", "r", encoding="utf-8") as f: config = json.load(f) interface = config["interface"] if not interface: return False arc_path = config["arc_path"] devices = config["device_list"] return (interface, arc_path, devices)
84f8fc0deec4aebfe48209b01d1a35f7373d31e6
3,750
from typing import List from typing import Dict from typing import Any def create_local_command(opts: Options, jobs: List[Dict[str, Any]], jobs_metadata: List[Options]) -> str: """Create a terminal command to run the jobs locally.""" cmd = "" for meta, job in zip(jobs_metadata, jobs): input_file = meta.input.absolute().as_posix() workdir = meta.workdir.absolute().as_posix() # Run locally cmd += f'cd {workdir} && {opts.command} {input_file} & ' return cmd
f5d23c1fb2271b44a323d1d17e9dda35df29fcd7
3,752
import time def time_for_log() -> str: """Function that print the current time for bot prints""" return time.strftime("%d/%m %H:%M:%S - ")
0f964d5c827782ff8cc433e57bb3e78d0a7c7cba
3,753
import math def _is_int(n) -> bool: """ is_int 是判断给定数字 n 是否为整数, 在判断中 n 小于epsilon的小数部分将被忽略, 是则返回 True,否则 False :param n: 待判断的数字 :return: True if n is A_ub integer, False else """ return (n - math.floor(n) < _epsilon) or (math.ceil(n) - n < _epsilon)
076a82d245333890d6790f65a58e5507905ca68f
3,754
def _cpp_het_stat(A, t_stop, rates, t_start=0. * pq.ms): """ Generate a Compound Poisson Process (CPP) with amplitude distribution A and heterogeneous firing rates r=r[0], r[1], ..., r[-1]. Parameters ---------- A : np.ndarray CPP's amplitude distribution. A[j] represents the probability of a synchronous event of size j among the generated spike trains. The sum over all entries of A must be equal to one. t_stop : pq.Quantity The end time of the output spike trains rates : pq.Quantity Array of firing rates of each spike train generated with t_start : pq.Quantity, optional The start time of the output spike trains Default: 0 pq.ms Returns ------- list of neo.SpikeTrain List of neo.SpikeTrains with different firing rates, forming a CPP with amplitude distribution `A`. """ # Computation of Parameters of the two CPPs that will be merged # (uncorrelated with heterog. rates + correlated with homog. rates) n_spiketrains = len(rates) # number of output spike trains # amplitude expectation expected_amplitude = np.dot(A, np.arange(n_spiketrains + 1)) r_sum = np.sum(rates) # sum of all output firing rates r_min = np.min(rates) # minimum of the firing rates # rate of the uncorrelated CPP r_uncorrelated = r_sum - n_spiketrains * r_min # rate of the correlated CPP r_correlated = r_sum / expected_amplitude - r_uncorrelated # rate of the hidden mother process r_mother = r_uncorrelated + r_correlated # Check the analytical constraint for the amplitude distribution if A[1] < (r_uncorrelated / r_mother).rescale( pq.dimensionless).magnitude: raise ValueError('A[1] too small / A[i], i>1 too high') # Compute the amplitude distribution of the correlated CPP, and generate it A = A * (r_mother / r_correlated).magnitude A[1] = A[1] - r_uncorrelated / r_correlated compound_poisson_spiketrains = _cpp_hom_stat( A, t_stop, r_min, t_start) # Generate the independent heterogeneous Poisson processes poisson_spiketrains = \ [homogeneous_poisson_process(rate - r_min, t_start, t_stop) for rate in rates] # Pool the correlated CPP and the corresponding Poisson processes return [_pool_two_spiketrains(compound_poisson_spiketrain, poisson_spiketrain) for compound_poisson_spiketrain, poisson_spiketrain in zip(compound_poisson_spiketrains, poisson_spiketrains)]
adc00577e9a6cb1ff7f9e0313befe98c81332ab1
3,755
def return_bad_parameter_config() -> CloudSettings: """Return a wrongly configured cloud config class.""" CloudSettingsTest = CloudSettings( # noqa: N806 settings_order=[ "init_settings", "aws_parameter_setting", "file_secret_settings", "env_settings", ] ) # noqa: N806 class AWSSettings(CloudSettingsTest): # type: ignore test: str = "Cool" prefix_test_store: str = "" return AWSSettings()
06f8af87873d571be9c5ae7fd2e563402e57b2d0
3,756
def update(isamAppliance, instance_id, id, filename=None, contents=None, check_mode=False, force=False): """ Update a file in the administration pages root :param isamAppliance: :param instance_id: :param id: :param name: :param contents: :param check_mode: :param force: :return: """ if force is True or _check_file(isamAppliance, instance_id, id) is True: if check_mode is True: return isamAppliance.create_return_object(changed=True) else: if filename is not None: return isamAppliance.invoke_put_files( "Update a file in the administration page root", "/wga/reverseproxy/{0}/management_root/{1}".format(instance_id, id), [ { 'file_formfield': 'file', 'filename': filename, 'mimetype': 'application/octet-stream' } ], { 'file': filename, 'type': 'file' }) elif contents is not None: return isamAppliance.invoke_put_files( "Update a file in the administration page root", "/wga/reverseproxy/{0}/management_root/{1}".format(instance_id, id), { 'contents': contents, 'type': 'file' }) else: return isamAppliance.create_return_object( warnings=["Either contents or filename parameter need to be provided. Skipping update request."])
af0b95096638fb34af130623b0929c4394a1a845
3,757
def view_deflate_encoded_content(): """Returns Deflate-encoded data. --- tags: - Response formats produces: - application/json responses: 200: description: Defalte-encoded data. """ return jsonify(get_dict("origin", "headers", method=request.method, deflated=True))
ff8d39f75a6cb526b3a61e85234e71efa174a208
3,758
def predict_from_word_vectors_matrix(tokens, matrix, nlp, POS="NOUN", top_number=constants.DEFAULT_TOP_ASSOCIATIONS): """ Make a prediction based on the word vectors :param tokens: :param matrix: :param nlp: :param POS: :param top_number: :return: """ vector_results = collect_word_vector_associations(tokens, matrix) top_results = get_top_results(vector_results, nlp, top_number, POS) return top_results
6a491e481238af932994bb8d383baca4da1ebd55
3,759
def blendImg(img_a, img_b, α=0.8, β=1., γ=0.): """ The result image is computed as follows: img_a * α + img_b * β + γ """ return cv2.addWeighted(img_a, α, img_b, β, γ)
f60918ba424b0d59e9025c088c0f2c9a3f739fde
3,762
def genoimc_dup4_loc(): """Create genoimc dup4 sequence location""" return { "_id": "ga4gh:VSL.us51izImAQQWr-Hu6Q7HQm-vYvmb-jJo", "sequence_id": "ga4gh:SQ.-A1QmD_MatoqxvgVxBLZTONHz9-c7nQo", "interval": { "type": "SequenceInterval", "start": { "value": 30417575, "comparator": "<=", "type": "IndefiniteRange" }, "end": { "value": 31394018, "comparator": ">=", "type": "IndefiniteRange" } }, "type": "SequenceLocation" }
3ea1b39fed22487bebffc78d45cb493b7d7afa4a
3,764
def compare_versions(a, b): """Return 0 if a == b, 1 if a > b, else -1.""" a, b = version_to_ints(a), version_to_ints(b) for i in range(min(len(a), len(b))): if a[i] > b[i]: return 1 elif a[i] < b[i]: return -1 return 0
0b22589164f7d3731edc34af97d306186e677371
3,765
def get_machine_action_data(machine_action_response): """Get machine raw response and returns the machine action info in context and human readable format. Notes: Machine action is a collection of actions you can apply on the machine, for more info https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/machineaction Returns: dict. Machine action's info """ action_data = \ { "ID": machine_action_response.get('id'), "Type": machine_action_response.get('type'), "Scope": machine_action_response.get('scope'), "Requestor": machine_action_response.get('requestor'), "RequestorComment": machine_action_response.get('requestorComment'), "Status": machine_action_response.get('status'), "MachineID": machine_action_response.get('machineId'), "ComputerDNSName": machine_action_response.get('computerDnsName'), "CreationDateTimeUtc": machine_action_response.get('creationDateTimeUtc'), "LastUpdateTimeUtc": machine_action_response.get('lastUpdateTimeUtc'), "RelatedFileInfo": { "FileIdentifier": machine_action_response.get('fileIdentifier'), "FileIdentifierType": machine_action_response.get('fileIdentifierType') }, "Commands": machine_action_response.get('commands') } return action_data
1e0ffc37d8d3b5662b64ec28cb850c6277b1bad2
3,766
import torch def convolutionalize(modules, input_size): """ Recast `modules` into fully convolutional form. The conversion transfers weights and infers kernel sizes from the `input_size` and modules' action on it. n.b. This only handles the conversion of linear/fully-connected modules, although other module types could require conversion for correctness. """ fully_conv_modules = [] x = torch.zeros((1, ) + input_size) for m in modules: if isinstance(m, nn.Linear): n = nn.Conv2d(x.size(1), m.weight.size(0), kernel_size=(x.size(2), x.size(3))) n.weight.data.view(-1).copy_(m.weight.data.view(-1)) n.bias.data.view(-1).copy_(m.bias.data.view(-1)) m = n fully_conv_modules.append(m) x = m(x) return fully_conv_modules
5693a17bac0f39538bfcada3280ce06ef91230a3
3,768
def is_unique2(s): """ Use a list and the int of the character will tell if that character has already appeared once """ d = [] for t in s: if d[int(t)]: return False d[int(t)] = True return True
b1a1bdea8108690a0e227fd0b75f910bd6b99a07
3,769
import random def uncomplete_tree_parallel(x:ATree, mode="full"): """ Input is tuple (nl, fl, split) Output is a randomly uncompleted tree, every node annotated whether it's terminated and what actions are good at that node """ fl = x fl.parent = None add_descendants_ancestors(fl) y = ATree("@START@", []) y.align = fl y.is_open = True i = 0 y = assign_gold_actions(y, mode=mode) choices = [deepcopy(y)] # !! can't cache because different choices ! while not all_terminated(y): y = mark_for_execution(y, mode=mode) y = execute_chosen_actions(y, mode=mode) y = assign_gold_actions(y, mode=mode) y = adjust_gold(y, mode=mode) choices.append(deepcopy(y)) i += 1 ret = random.choice(choices[:-1]) return ret
f59e0f0279c9c439034116f769f51d60a924c4af
3,770
def stations_by_river(stations): """Give a dictionary to hold the rivers name as keys and their corresponding stations' name as values""" rivers_name = [] for i in stations: if i.river not in rivers_name: rivers_name.append(i.river) elif i.river in rivers_name: continue big_list = [] for n in rivers_name: lists = [] for y in stations: if n == y.river: lists.append(y.name) elif n != y.river: continue lists = sorted(lists) big_list.append(lists) dictionary = dict(zip(rivers_name, big_list)) dicti = {} for key in sorted(dictionary): dicti.update({key : dictionary[key]}) assert dicti != {} return dicti
66fd928415619d175b7069b8c3103a3f7d930aac
3,771
def QA_SU_save_huobi(frequency): """ Save huobi kline "smart" """ if (frequency not in ["1d", "1day", "day"]): return QA_SU_save_huobi_min(frequency) else: return QA_SU_save_huobi_day(frequency)
cdea45afe6d7e0b61dea517adb8fc484e8eafa38
3,772
def inverse(a): """ [description] calculating the inverse of the number of characters, we do this to be able to find our departure when we arrive. this part will be used to decrypt the message received. :param a: it is an Int :return: x -> it is an Int """ x = 0 while a * x % 97 != 1: x = x + 1 return x
2893d2abda34e4573eb5d9602edc0f8e14246e09
3,774
from typing import Optional from typing import Union def currency_column_to_numeric( df: pd.DataFrame, column_name: str, cleaning_style: Optional[str] = None, cast_non_numeric: Optional[dict] = None, fill_all_non_numeric: Optional[Union[float, int]] = None, remove_non_numeric: bool = False, ) -> pd.DataFrame: """Convert currency column to numeric. This method does not mutate the original DataFrame. This method allows one to take a column containing currency values, inadvertently imported as a string, and cast it as a float. This is usually the case when reading CSV files that were modified in Excel. Empty strings (i.e. `''`) are retained as `NaN` values. Example: >>> import pandas as pd >>> import janitor >>> df = pd.DataFrame({ ... "a_col": [" 24.56", "-", "(12.12)", "1,000,000"], ... "d_col": ["", "foo", "1.23 dollars", "-1,000 yen"], ... }) >>> df # doctest: +NORMALIZE_WHITESPACE a_col d_col 0 24.56 1 - foo 2 (12.12) 1.23 dollars 3 1,000,000 -1,000 yen The default cleaning style. >>> df.currency_column_to_numeric("d_col") a_col d_col 0 24.56 NaN 1 - NaN 2 (12.12) 1.23 3 1,000,000 -1000.00 The accounting cleaning style. >>> df.currency_column_to_numeric("a_col", cleaning_style="accounting") # doctest: +NORMALIZE_WHITESPACE a_col d_col 0 24.56 1 0.00 foo 2 -12.12 1.23 dollars 3 1000000.00 -1,000 yen Valid cleaning styles are: - `None`: Default cleaning is applied. Empty strings are always retained as `NaN`. Numbers, `-`, `.` are extracted and the resulting string is cast to a float. - `'accounting'`: Replaces numbers in parentheses with negatives, removes commas. :param df: The pandas DataFrame. :param column_name: The column containing currency values to modify. :param cleaning_style: What style of cleaning to perform. :param cast_non_numeric: A dict of how to coerce certain strings to numeric type. For example, if there are values of 'REORDER' in the DataFrame, `{'REORDER': 0}` will cast all instances of 'REORDER' to 0. Only takes effect in the default cleaning style. :param fill_all_non_numeric: Similar to `cast_non_numeric`, but fills all strings to the same value. For example, `fill_all_non_numeric=1`, will make everything that doesn't coerce to a currency `1`. Only takes effect in the default cleaning style. :param remove_non_numeric: If set to True, rows of `df` that contain non-numeric values in the `column_name` column will be removed. Only takes effect in the default cleaning style. :raises ValueError: If `cleaning_style` is not one of the accepted styles. :returns: A pandas DataFrame. """ # noqa: E501 check("column_name", column_name, [str]) check_column(df, column_name) column_series = df[column_name] if cleaning_style == "accounting": df.loc[:, column_name] = df[column_name].apply( _clean_accounting_column ) return df if cleaning_style is not None: raise ValueError( "`cleaning_style` is expected to be one of ('accounting', None). " f"Got {cleaning_style!r} instead." ) if cast_non_numeric: check("cast_non_numeric", cast_non_numeric, [dict]) _make_cc_patrial = partial( _currency_column_to_numeric, cast_non_numeric=cast_non_numeric, ) column_series = column_series.apply(_make_cc_patrial) if remove_non_numeric: df = df.loc[column_series != "", :] # _replace_empty_string_with_none is applied here after the check on # remove_non_numeric since "" is our indicator that a string was coerced # in the original column column_series = _replace_empty_string_with_none(column_series) if fill_all_non_numeric is not None: check("fill_all_non_numeric", fill_all_non_numeric, [int, float]) column_series = column_series.fillna(fill_all_non_numeric) column_series = _replace_original_empty_string_with_none(column_series) df = df.assign(**{column_name: pd.to_numeric(column_series)}) return df
e382752e5aff389872da69f42a3ec62785df336f
3,775
async def subreddit_type_submissions(sub="wallstreetbets", kind="new"): """ """ comments = [] articles = [] red = await reddit_instance() subreddit = await red.subreddit(sub) if kind == "hot": submissions = subreddit.hot() elif kind == "top": submissions = subreddit.top() elif kind == "new": submissions = subreddit.new() elif kind == "random_rising": submissions = subreddit.random_rising() else: submissions = subreddit.random() async for submission in submissions: article = clean_submission(submission) article['subreddit'] = sub articles.append(article) top_level_comments = await submission.comments() print(f"📗 Looking at submission: {article['title'][:40]}...") for top_level_comment in top_level_comments: if isinstance(top_level_comment, MoreComments): continue comment = clean_comment(top_level_comment) print(f"🗯️ ... {comment['author']} said {comment['body'][:40]}") comment['article_id'] = article['id'] comments.append(comment) return (articles, comments)
9cc8655575ca8fd3729e220b0ee3fc8e45e4ed56
3,776
import typing import json def _get_bundle_manifest( uuid: str, replica: Replica, version: typing.Optional[str], *, bucket: typing.Optional[str] = None) -> typing.Optional[dict]: """ Return the contents of the bundle manifest file from cloud storage, subject to the rules of tombstoning. If version is None, return the latest version, once again, subject to the rules of tombstoning. If the bundle cannot be found, return None """ uuid = uuid.lower() handle = Config.get_blobstore_handle(replica) default_bucket = replica.bucket # need the ability to use fixture bucket for testing bucket = default_bucket if bucket is None else bucket def tombstone_exists(uuid: str, version: typing.Optional[str]): return test_object_exists(handle, bucket, BundleTombstoneID(uuid=uuid, version=version).to_key()) # handle the following deletion cases # 1. the whole bundle is deleted # 2. the specific version of the bundle is deleted if tombstone_exists(uuid, None) or (version and tombstone_exists(uuid, version)): return None # handle the following deletion case # 3. no version is specified, we want the latest _non-deleted_ version if version is None: # list the files and find the one that is the most recent. prefix = f"bundles/{uuid}." object_names = handle.list(bucket, prefix) version = _latest_version_from_object_names(object_names) if version is None: # no matches! return None bundle_fqid = BundleFQID(uuid=uuid, version=version) # retrieve the bundle metadata. try: bundle_manifest_blob = handle.get(bucket, bundle_fqid.to_key()).decode("utf-8") return json.loads(bundle_manifest_blob) except BlobNotFoundError: return None
7881e1514a9a645c1f7ee6479baa6e74bae4dabb
3,778
def handler400(request, exception): """ This is a Django handler function for 400 Bad Request error :param request: The Django Request object :param exception: The exception caught :return: The 400 error page """ context = get_base_context(request) context.update({ 'message': { 'title': '400 Bad Request', 'description': 'Your client has issued a malformed or illegal request.' } }) return render(request, 'velarium/base.html', context=context, status=400)
0dc1b81ec86d675f348728863dfe07efbd936e8e
3,779
def _gather_topk_beams(nested, score_or_log_prob, batch_size, beam_size): """Gather top beams from nested structure.""" _, topk_indexes = tf.nn.top_k(score_or_log_prob, k=beam_size) return _gather_beams(nested, topk_indexes, batch_size, beam_size)
ebdaf391104a3f271a42549708f3e7adfaf8b0b0
3,781
import scipy import numpy def _traceinv_exact(K, B, C, matrix, gram, exponent): """ Finds traceinv directly for the purpose of comparison. """ # Exact solution of traceinv for band matrix if B is not None: if scipy.sparse.isspmatrix(K): K_ = K.toarray() B_ = B.toarray() if C is not None: C_ = C.toarray() else: K_ = K B_ = B if C is not None: C_ = C if exponent == 0: if C is not None: traceinv_exact = numpy.trace(C_ @ B_) else: traceinv_exact = numpy.trace(B_) else: if gram: K_ = numpy.matmul(K_.T, K_) if exponent > 1: K1 = K_.copy() for i in range(1, exponent): K_ = numpy.matmul(K_, K1) Kinv = numpy.linalg.inv(K_) Op = numpy.matmul(Kinv, B_) if C is not None: Op = Kinv @ C_ @ Op traceinv_exact = numpy.trace(Op) elif exponent == 1 and not gram: # B is identity. Using analytic formula. traceinv_exact = band_matrix_traceinv(matrix['a'], matrix['b'], matrix['size'], True) else: # B and C are identity. Compute traceinv directly. if scipy.sparse.isspmatrix(K): K_ = K.toarray() else: K_ = K if exponent == 0: traceinv_exact = K_.shape[0] else: if gram: K_ = numpy.matmul(K_.T, K_) K_temp = K_.copy() for i in range(1, exponent): K_ = numpy.matmul(K_, K_temp) Kinv = numpy.linalg.inv(K_) traceinv_exact = numpy.trace(Kinv) return traceinv_exact
3637a5aa726ef1bf8489783c435c429b59422240
3,782
def create_feature_vector_of_mean_mfcc_for_song(song_file_path: str) -> ndarray: """ Takes in a file path to a song segment and returns a numpy array containing the mean mfcc values :param song_file_path: str :return: ndarray """ song_segment, sample_rate = librosa.load(song_file_path) mfccs = librosa.feature.mfcc(y=song_segment, sr=sample_rate, n_mfcc=NUMBER_OF_MFCC) mfccs_processed = np.mean(mfccs.T, axis=0) df = pd.DataFrame(mfccs_processed) z_score_normalized_mfccs = (df.values - df.values.mean()) / df.values.std() z_score_normalized_mfccs = np.array([i[0] for i in z_score_normalized_mfccs]) return z_score_normalized_mfccs
8992feafd483bfe7b4af5e715ba1455884e1b710
3,783
def stations_highest_rel_level(stations, N): """Returns a list containing the names of the N stations with the highest water level relative to the typical range""" names = [] # create list for names levels = [] # create list for levels for i in range(len(stations)): # iterate through stations if stations[i].relative_water_level() is not None: # ^checks for valid relative water level names.append(stations[i].name) levels.append(stations[i].relative_water_level()) # ^adds names and levels to respective lists combined = list(zip(names, levels)) # combines names and levels combined.sort(key=lambda x: x[1], reverse=1) # sorts in reverse output = [] # create output list for i in range(N): # iterate up to N output.append(combined[i][0]) # add station name to output return output
780a03a424c9b2f0dedee2e93eb9bd27cc1fce36
3,784
def add_global_nodes_edges(g_nx : nx.Graph, feat_data: np.ndarray, adj_list: np.ndarray, g_feat_data: np.ndarray, g_adj_list: np.ndarray): """ :param g_nx: :param feat_data: :param adj_list: :param g_feat_data: :param g_adj_list: :return: """ feat_data = np.concatenate([feat_data, g_feat_data], 0) # adj_list.update((k, adj_list[k].union(g_adj_list[k])) for k in range(len(g_adj_list))) adj_list.update((k, adj_list[k].union(g_adj_list[k])) for k in range(len(feat_data))) g_edge_list = [[[k, v] for v in vs] for k, vs in g_adj_list.items()] g_edge_list = [x for sublist in g_edge_list for x in sublist] g_nx.add_edges_from(g_edge_list) return g_nx, feat_data, adj_list
1097becfe88f05008541aaa6c3c074fcd5c3149a
3,786
def get_data_collector_instance(args, config): """Get the instance of the data :param args: arguments of the script :type args: Namespace :raises NotImplementedError: no data collector implemented for given data source :return: instance of the specific data collector :rtype: subclass of BaseDataCollector """ if args.data_source == DATA_SOURCE_RSS: return RssDataCollector(args.base_url, config[CONFIG_RSS_HEADER]) elif args.data_source == DATA_SOURCE_REDDIT: return RedditDataCollector(REDDIT_CLIENT_ID, REDDIT_CLIENT_SECRET) elif args.data_source == DATA_SOURCE_TWITTER: return TwitterDataCollector(TWITTER_CONSUMER_KEY, TWITTER_CONSUMER_SECRET, TWITTER_BEARER_TOKEN) else: raise NotImplementedError
75fda1231e1489da4b0c10473c9f657b143047c1
3,788
def timeIntegration(params): """Sets up the parameters for time integration :param params: Parameter dictionary of the model :type params: dict :return: Integrated activity variables of the model :rtype: (numpy.ndarray,) """ dt = params["dt"] # Time step for the Euler intergration (ms) duration = params["duration"] # imulation duration (ms) RNGseed = params["seed"] # seed for RNG # ------------------------------------------------------------------------ # local parameters # See Papadopoulos et al., Relations between large-scale brain connectivity and effects of regional stimulation # depend on collective dynamical state, arXiv, 2020 tau_exc = params["tau_exc"] # tau_inh = params["tau_inh"] # c_excexc = params["c_excexc"] # c_excinh = params["c_excinh"] # c_inhexc = params["c_inhexc"] # c_inhinh = params["c_inhinh"] # a_exc = params["a_exc"] # a_inh = params["a_inh"] # mu_exc = params["mu_exc"] # mu_inh = params["mu_inh"] # # external input parameters: # Parameter of the Ornstein-Uhlenbeck process for the external input(ms) tau_ou = params["tau_ou"] # Parameter of the Ornstein-Uhlenbeck (OU) process for the external input ( mV/ms/sqrt(ms) ) sigma_ou = params["sigma_ou"] # Mean external excitatory input (OU process) (mV/ms) exc_ou_mean = params["exc_ou_mean"] # Mean external inhibitory input (OU process) (mV/ms) inh_ou_mean = params["inh_ou_mean"] # ------------------------------------------------------------------------ # global coupling parameters # Connectivity matrix # Interareal relative coupling strengths (values between 0 and 1), Cmat(i,j) connection from jth to ith Cmat = params["Cmat"] N = len(Cmat) # Number of nodes K_gl = params["K_gl"] # global coupling strength # Interareal connection delay lengthMat = params["lengthMat"] signalV = params["signalV"] if N == 1: Dmat = np.zeros((N, N)) else: # Interareal connection delays, Dmat(i,j) Connnection from jth node to ith (ms) Dmat = dp.computeDelayMatrix(lengthMat, signalV) Dmat[np.eye(len(Dmat)) == 1] = np.zeros(len(Dmat)) Dmat_ndt = np.around(Dmat / dt).astype(int) # delay matrix in multiples of dt params["Dmat_ndt"] = Dmat_ndt # ------------------------------------------------------------------------ # Initialization # Floating point issue in np.arange() workaraound: use integers in np.arange() t = np.arange(1, round(duration, 6) / dt + 1) * dt # Time variable (ms) sqrt_dt = np.sqrt(dt) max_global_delay = np.max(Dmat_ndt) startind = int(max_global_delay + 1) # timestep to start integration at exc_ou = params["exc_ou"] inh_ou = params["inh_ou"] exc_ext = params["exc_ext"] inh_ext = params["inh_ext"] # state variable arrays, have length of t + startind # they store initial conditions AND simulated data excs = np.zeros((N, startind + len(t))) inhs = np.zeros((N, startind + len(t))) # ------------------------------------------------------------------------ # Set initial values # if initial values are just a Nx1 array if np.shape(params["exc_init"])[1] == 1: exc_init = np.dot(params["exc_init"], np.ones((1, startind))) inh_init = np.dot(params["inh_init"], np.ones((1, startind))) # if initial values are a Nxt array else: exc_init = params["exc_init"][:, -startind:] inh_init = params["inh_init"][:, -startind:] # xsd = np.zeros((N,N)) # delayed activity exc_input_d = np.zeros(N) # delayed input to x inh_input_d = np.zeros(N) # delayed input to y np.random.seed(RNGseed) # Save the noise in the activity array to save memory excs[:, startind:] = np.random.standard_normal((N, len(t))) inhs[:, startind:] = np.random.standard_normal((N, len(t))) excs[:, :startind] = exc_init inhs[:, :startind] = inh_init noise_exc = np.zeros((N,)) noise_inh = np.zeros((N,)) # ------------------------------------------------------------------------ return timeIntegration_njit_elementwise( startind, t, dt, sqrt_dt, N, Cmat, K_gl, Dmat_ndt, excs, inhs, exc_input_d, inh_input_d, exc_ext, inh_ext, tau_exc, tau_inh, a_exc, a_inh, mu_exc, mu_inh, c_excexc, c_excinh, c_inhexc, c_inhinh, noise_exc, noise_inh, exc_ou, inh_ou, exc_ou_mean, inh_ou_mean, tau_ou, sigma_ou, )
24d6702a92f82c6cc7fc1a337cd351b54c567e8b
3,789
def is_role_user(session, user=None, group=None): # type: (Session, User, Group) -> bool """ Takes in a User or a Group and returns a boolean indicating whether that User/Group is a component of a service account. Args: session: the database session user: a User object to check group: a Group object to check Throws: AssertionError if neither a user nor a group is provided Returns: whether the User/Group is a component of a service account """ if user is not None: return user.role_user assert group is not None user = User.get(session, name=group.groupname) if not user: return False return user.role_user
3d6b62b1708882b734031d737fa00f29ba9a9f95
3,790
def argCOM(y): """argCOM(y) returns the location of COM of y.""" idx = np.round(np.sum(y/np.sum(y)*np.arange(len(y)))) return int(idx)
197ac25043b10575efb7405dba12c0d2e6f9976f
3,791
def fringe(z, z1, z2, rad, a1): """ Approximation to the longitudinal profile of a multipole from a permanent magnet assembly. see Wan et al. 2018 for definition and Enge functions paper (Enge 1964) """ zz1 = (z - z1) / (2 * rad / pc.pi) zz2 = (z - z2) / (2 * rad / pc.pi) fout = ( (1 / ( 2 * np.tanh((z2 - z1) / (4 * rad / pc.pi)) ) ) * (np.tanh(zz1 + a1 * zz1**2 ) - np.tanh(zz2 - a1 * zz2**2) ) ) return fout
b1d0138937d1c622809d6f559f17430e89259fed
3,792
import random def random_param_shift(vals, sigmas): """Add a random (normal) shift to a parameter set, for testing""" assert len(vals) == len(sigmas) shifts = [random.gauss(0, sd) for sd in sigmas] newvals = [(x + y) for x, y in zip(vals, shifts)] return newvals
07430572c5051b7142499bcbdbc90de5abfcbd4d
3,793
def compute_encrypted_request_hash(caller): """ This function will compute encrypted request Hash :return: encrypted request hash """ first_string = get_parameter(caller.params_obj, "requesterNonce") or "" worker_order_id = get_parameter(caller.params_obj, "workOrderId") or "" worker_id = get_parameter(caller.params_obj, "workerId") or "" workload_id = get_parameter(caller.params_obj, "workloadId") or "" requester_id = get_parameter(caller.params_obj, "requesterId") or "" requester_id = str(requester_id) first_string += \ worker_order_id + worker_id + workload_id + requester_id concat_hash = first_string.encode("UTF-8") hash_1 = crypto_utils.compute_message_hash(concat_hash) in_data = get_parameter(caller.params_obj, "inData") out_data = get_parameter(caller.params_obj, "outData") hash_2 = bytearray() if in_data is not None: hash_2 = compute_hash_string(in_data) hash_3 = bytearray() if out_data is not None: hash_3 = compute_hash_string(out_data) final_string = hash_1 + hash_2 + hash_3 caller.final_hash = crypto_utils.compute_message_hash(final_string) encrypted_request_hash = crypto_utils.byte_array_to_hex( crypto_utils.encrypt_data( caller.final_hash, caller.session_key, caller.session_iv)) return encrypted_request_hash
cf87c354df550b142030781e8b84ec1cb385489f
3,794
def translate_line_test(string): """ Translates raw log line into sequence of integer representations for word tokens with sos and eos tokens. :param string: Raw log line from auth_h.txt :return: (list) Sequence of integer representations for word tokens with sos and eos tokens. """ data = string.split(",") time = int(data[0]) # could be used to make categorical variables for day of week and time of day. src_user, src_domain, dst_user, dst_domain, src_pc, dst_pc = split_line(string) src_user = lookup(src_user, word_token_inds, None) src_domain = lookup(src_domain, word_token_inds, domain_counts) if dst_user.startswith('U'): dst_user = lookup(dst_user, word_token_inds, None) else: dst_user = lookup(dst_user, word_token_inds, pc_counts) dst_domain = lookup(dst_domain, word_token_inds, domain_counts) src_pc = lookup(src_pc, word_token_inds, pc_counts) dst_pc = lookup(dst_pc, word_token_inds, pc_counts) if data[5].startswith("MICROSOFT_AUTH"): # Deals with file corruption for this value. data[5] = "MICROSOFT_AUTH" auth_type = lookup(data[5], word_token_inds, None) logon_type = lookup(data[6], word_token_inds, None) auth_orient = lookup(data[7], word_token_inds, None) success = lookup(data[8].strip(), word_token_inds, None) return "%s %s %s %s %s %s %s %s %s %s %s %s\n" % (str(sos), src_user, src_domain, dst_user, dst_domain, src_pc, dst_pc, auth_type, logon_type, auth_orient, success, str(eos))
d311eb9c6b398391724e868071d89f2f6c442912
3,795
def preprocess_signal(signal, sample_rate): """ Preprocess a signal for input into a model Inputs: signal: Numpy 1D array containing waveform to process sample_rate: Sampling rate of the input signal Returns: spectrogram: STFT of the signal after resampling to 10kHz and adding preemphasis. X_in: Scaled STFT input feature for the model """ # Compute the spectrogram of the signal spectrogram = make_stft_features(signal, sample_rate) # Get the magnitude spectrogram mag_spec = np.abs(spectrogram) # Scale the magnitude spectrogram with a square root squashing, and percent # normalization X_in = np.sqrt(mag_spec) m = X_in.min() M = X_in.max() X_in = (X_in - m)/(M - m) return spectrogram, X_in
d2b6c5cb700ae877f7bf8bd4b5a772471e69a75d
3,796
def get_frameheight(): """return fixed height for extra panel """ return 120
3bd810eea77af15527d3c1df7ab0b788cfe90000
3,797
def default_heart_beat_interval() -> int: """ :return: in seconds """ return 60
58171c8fb5632aa2aa46de8138828cce2eaa4d33
3,798
import re def email_valid(email): """test for valid email address >>> email_valid('[email protected]') True >>> email_valid('test@@testco.com') False >>> email_valid('test@testco') False """ if email == '': return True email_re = re.compile( r"(^[-!#$%&'*+/=?^_`{}|~0-9A-Z]+" r"(\.[-!#$%&'*+/=?^_`{}|~0-9A-Z]+)*" # dot-atom r'|^"([\001-\010\013\014\016-\037!#-\[\]-\177]|' r'\\[\001-011\013\014\016-\177])*"' # quoted-string r')@(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)' r'+[A-Z]{2,6}\.?$', re.IGNORECASE) # domain return bool(email_re.match(email))
c76a621647595c741b1da71734a34372919e800f
3,799
from typing import Any def get_node_data(workspace: str, graph: str, table: str, node: str) -> Any: """Return the attributes associated with a node.""" return Workspace(workspace).graph(graph).node_attributes(table, node)
0ac48d715fd31876b62d837d5b18b2ee75c791dd
3,800
def siso_optional(fn, h_opt, scope=None, name=None): """Substitution module that determines to include or not the search space returned by `fn`. The hyperparameter takes boolean values (or equivalent integer zero and one values). If the hyperparameter takes the value ``False``, the input is simply put in the output. If the hyperparameter takes the value ``True``, the search space is instantiated by calling `fn`, and the substitution module is replaced by it. Args: fn (() -> (dict[str,deep_architect.core.Input], dict[str,deep_architect.core.Output])): Function returning a graph fragment corresponding to a sub-search space. h_opt (deep_architect.core.Hyperparameter): Hyperparameter for whether to include the sub-search space or not. scope (deep_architect.core.Scope, optional): Scope in which the module will be registered. If none is given, uses the default scope. name (str, optional): Name used to derive an unique name for the module. If none is given, uses the class name to derive the name. Returns: (dict[str,deep_architect.core.Input], dict[str,deep_architect.core.Output]): Tuple with dictionaries with the inputs and outputs of the substitution module. """ def substitution_fn(dh): return fn() if dh["opt"] else identity() return substitution_module(_get_name(name, "SISOOptional"), substitution_fn, {'opt': h_opt}, ['in'], ['out'], scope)
187a292c8dba59d5d4d7f67d54cdd087ee2b6582
3,801
def saconv3x3_block(in_channels, out_channels, stride=1, pad=1, **kwargs): """ 3x3 version of the Split-Attention convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. stride : int or tuple/list of 2 int, default 1 Stride of the convolution. pad : int or tuple/list of 2 int, default 1 Padding value for convolution layer. """ return SAConvBlock( in_channels=in_channels, out_channels=out_channels, ksize=3, stride=stride, pad=pad, **kwargs)
bda938d53bbb56a7035ae50125743e4eb9aa709b
3,802
def add_hook(**_kwargs): """Creates and adds the import hook in sys.meta_path""" hook = import_hook.create_hook( transform_source=transform_source, hook_name=__name__, extensions=[".pyfr"], ) return hook
20c7e37aead055e32bfcb520a579b66069a3e26c
3,803
def mul(n1, n2): """ multiply two numbers """ return n1 * n2
c137432dd2e5c6d4dbded08546e3d54b98fe03df
3,804
import torch def pytorch_normalze(img): """ https://github.com/pytorch/vision/issues/223 return appr -1~1 RGB """ normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) img = normalize(torch.from_numpy(img)) return img.numpy()
7667d6fa3da69d89973bb804ad08a139ae7f3564
3,805
def get_nic_capacity(driver_info, ilo_fw): """Gets the FRU data to see if it is NIC data Gets the FRU data in loop from 0-255 FRU Ids and check if the returned data is NIC data. Couldn't find any easy way to detect if it is NIC data. We should't be hardcoding the FRU Id. :param driver_info: Contains the access credentials to access the BMC. :param ilo_fw: a tuple containing major and minor versions of firmware :returns: the max capacity supported by the NIC adapter. """ i = 0x0 value = None ilo_fw_rev = get_ilo_version(ilo_fw) or DEFAULT_FW_REV # Note(vmud213): iLO firmware versions >= 2.3 support reading the FRU # information in a single call instead of iterating over each FRU id. if ilo_fw_rev < MIN_SUGGESTED_FW_REV: for i in range(0xff): # Note(vmud213): We can discard FRU ID's between 0x6e and 0xee # as they don't contain any NIC related information if (i < 0x6e) or (i > 0xee): cmd = "fru print %s" % hex(i) out = _exec_ipmitool(driver_info, cmd) if out and 'port' in out and 'Adapter' in out: value = _parse_ipmi_nic_capacity(out) if value is not None: break else: continue else: cmd = "fru print" out = _exec_ipmitool(driver_info, cmd) if out: for line in out.split('\n'): if line and 'port' in line and 'Adapter' in line: value = _parse_ipmi_nic_capacity(line) if value is not None: break return value
cc20e1b35a47bec1242ed5dba60da8473527ca4f
3,806
import re def isValidInifileKeyName(key): """ Check that this key name is valid to be used in inifiles, and to be used as a python property name on a q or i object """ return re.match("^[\w_]+$", key)
9e68b987d6ac9af3c40e053c2347b01f737f0665
3,807
def installed_pkgs(): """ Return the list of installed packages on the machine Returns: list: List of installed packages CLI Example: .. code-block:: bash salt '*' macpackage.installed_pkgs """ cmd = "pkgutil --pkgs" return __salt__["cmd.run"](cmd).split("\n")
b9a66600327ea8eb0ec63745cacd8509a0f757d9
3,808
import math def extract_feature(audio, sr=44100): """ extract feature like below: sig: rmse: silence: harmonic: pitch: audio: audio file or audio list return feature_list: np of [n_samples, n_features] """ feature_list = [] y = [] if isinstance(audio, str): y, _ = librosa.load(audio, sr) elif isinstance(audio, np.ndarray): y = audio # 1. sig sig_mean = np.mean(abs(y)) feature_list.append(sig_mean) # sig_mean feature_list.append(np.std(y)) # sig_std # 2. rmse rmse = librosa.feature.rms(y + 0.0001)[0] feature_list.append(np.mean(rmse)) # rmse_mean feature_list.append(np.std(rmse)) # rmse_std # 3. silence silence = 0 for e in rmse: if e <= 0.4 * np.mean(rmse): silence += 1 silence /= float(len(rmse)) feature_list.append(silence) # silence # 4. harmonic y_harmonic = librosa.effects.hpss(y)[0] feature_list.append(np.mean(y_harmonic) * 1000) # harmonic (scaled by 1000) # 5. pitch (instead of auto_correlation) cl = 0.45 * sig_mean center_clipped = [] for s in y: if s >= cl: center_clipped.append(s - cl) elif s <= -cl: center_clipped.append(s + cl) elif np.abs(s) < cl: center_clipped.append(0) # auto_corrs = librosa.core.autocorrelate(np.array(center_clipped)) pitch, _, _ = librosa.pyin(y, fmin=librosa.note_to_hz('C2'), fmax=librosa.note_to_hz('C7')) pitch = [0 if math.isnan(p) else p for p in pitch] feature_list.append(np.mean(pitch)) feature_list.append(np.std(pitch)) return np.array(feature_list).reshape(1, -1)
d4eca914605bc87c57dbaf846a9a01d79a953c56
3,809
from typing import OrderedDict import six def BuildPartialUpdate(clear, remove_keys, set_entries, field_mask_prefix, entry_cls, env_builder): """Builds the field mask and patch environment for an environment update. Follows the environments update semantic which applies operations in an effective order of clear -> remove -> set. Leading and trailing whitespace is stripped from elements in remove_keys and the keys of set_entries. Args: clear: bool, If true, the patch removes existing keys. remove_keys: iterable(string), Iterable of keys to remove. set_entries: {string: string}, Dict containing entries to set. field_mask_prefix: string, The prefix defining the path to the base of the proto map to be patched. entry_cls: AdditionalProperty, The AdditionalProperty class for the type of entry being updated. env_builder: [AdditionalProperty] -> Environment, A function which produces a patch Environment with the given list of entry_cls properties. Returns: (string, Environment), a 2-tuple of the field mask defined by the arguments and a patch environment produced by env_builder. """ remove_keys = set(k.strip() for k in remove_keys or []) # set_entries is sorted by key to make it easier for tests to set the # expected patch object. set_entries = OrderedDict( (k.strip(), v) for k, v in sorted(six.iteritems(set_entries or {}))) if clear: entries = [ entry_cls(key=key, value=value) for key, value in six.iteritems(set_entries) ] return field_mask_prefix, env_builder(entries) field_mask_entries = [] seen_keys = set() for key in remove_keys: field_mask_entries.append('{}.{}'.format(field_mask_prefix, key)) seen_keys.add(key) entries = [] for key, value in six.iteritems(set_entries): entries.append(entry_cls(key=key, value=value)) if key not in seen_keys: field_mask_entries.append('{}.{}'.format(field_mask_prefix, key)) # Sorting field mask entries makes it easier for tests to set the expected # field mask since dictionary iteration order is undefined. field_mask_entries.sort() return ','.join(field_mask_entries), env_builder(entries)
320c589cd45dcec9a3ebba4b295075e23ef805ed
3,811
def create_schema_usb(): """Create schema usb.""" return vol.Schema(CONFIG_SCHEMA_USB)
e543a5950788ad629ed3986cc7a6c5a58931a478
3,813
def _build_field_queries(filters): """ Builds field queries. Same as _build_field_query but expects a dict of field/values and returns a list of queries. """ return [ _build_field_query(field, value) for field, value in filters.items() ]
9b1241cce6c421a79cd5ea26dd134d5fd93d6fde
3,814
def bycode(ent, group): """ Get the data with the given group code from an entity. Arguments: ent: An iterable of (group, data) tuples. group: Group code that you want to retrieve. Returns: The data for the given group code. Can be a list of items if the group code occurs multiple times. """ data = [v for k, v in ent if k == group] if len(data) == 1: return data[0] return data
c5b92f2bbd1cd5bc383a1102ccf54031222d82c3
3,815
from typing import List from typing import Tuple def get_midi_programs(midi: MidiFile) -> List[Tuple[int, bool]]: """ Returns the list of programs of the tracks of a MIDI, deeping the same order. It returns it as a list of tuples (program, is_drum). :param midi: the MIDI object to extract tracks programs :return: the list of track programs, as a list of tuples (program, is_drum) """ return [(int(track.program), track.is_drum) for track in midi.instruments]
7249baa46b80b8b42400068edacf5ce9e829c71f
3,817
def is_depth_wise_conv(module): """Determine Conv2d.""" if hasattr(module, "groups"): return module.groups != 1 and module.in_channels == module.out_channels elif hasattr(module, "group"): return module.group != 1 and module.in_channels == module.out_channels
27127f54edbf8d0653cab6c7dbfb1448f33ecab4
3,818
def list_all_routed(): """ List all the notifications that have been routed to any repository, limited by the parameters supplied in the URL. See the API documentation for more details. :return: a list of notifications appropriate to the parameters """ return _list_request()
d67141d6fa5908d99292d898a5a77df3e80d47aa
3,819
def Lstart(gridname='BLANK', tag='BLANK', ex_name='BLANK'): """ This adds more run-specific entries to Ldir. """ # put top level information from input into a dict Ldir['gridname'] = gridname Ldir['tag'] = tag Ldir['ex_name'] = ex_name # and add a few more things Ldir['gtag'] = gridname + '_' + tag Ldir['gtagex'] = gridname + '_' + tag + '_' + ex_name Ldir['grid'] = Ldir['data'] / 'grids' / gridname Ldir['forecast_days'] = 3 Ldir['ds_fmt'] = ds_fmt Ldir['roms_time_units'] = roms_time_units Ldir['modtime0'] = modtime0 return Ldir.copy() # the use of copy() means different calls to Lstart (e.g. when importing # plotting_functions) to not overwrite each other
92d992c3a7eba7bbba9146018060bca7844d4a78
3,822
def rfe_w2(x, y, p, classifier): """RFE algorithm, where the ranking criteria is w^2, described in [Guyon02]_. `classifier` must be an linear classifier with learn() and w() methods. .. [Guyon02] I Guyon, J Weston, S Barnhill and V Vapnik. Gene Selection for Cancer Classification using Support Vector Machines. Machine Learning, 2002. :Parameters: x: 2d array_like object (N,P) training data y : 1d array_like object integer (N) class labels (only two classes) p : float [0.0, 1.0] percentage of features (upper rounded) to remove at each iteration (p=0 one variable) classifier : object with learn() and w() methods object :Returns: ranking : 1d numpy array int feature ranking. ranking[i] contains the feature index ranked in i-th position. """ if (p < 0.0) or (p > 1.0): raise ValueError("parameter p must be in [0.0, 1.0]") if not (hasattr(classifier, 'learn') and hasattr(classifier, 'w')): raise ValueError("parameter classifier must have learn() and w() methods") xarr = np.asarray(x, dtype=np.float) yarr = np.asarray(y, dtype=np.int) if xarr.ndim != 2: raise ValueError("x must be a 2d array_like object") if yarr.ndim != 1: raise ValueError("y must be an 1d array_like object") if xarr.shape[0] != yarr.shape[0]: raise ValueError("x, y shape mismatch") labels = np.unique(yarr) if labels.shape[0] != 2: raise ValueError("number of classes must be = 2") idxglobal = np.arange(xarr.shape[1], dtype=np.int) ranking = [] while True: nelim = np.max((int(np.ceil(idxglobal.shape[0] * p)), 1)) xi = xarr[:, idxglobal] classifier.learn(xi, yarr) w = classifier.w() idxsorted = np.argsort(w**2) # indexes to remove idxelim = idxglobal[idxsorted[:nelim]][::-1] ranking.insert(0, idxelim) # update idxglobal idxglobal = idxglobal[idxsorted[nelim:]] idxglobal.sort() if len(idxglobal) <= 1: ranking.insert(0, idxglobal) break return np.concatenate(ranking)
9176ee36c1180ab862b23be9d9a09584abea50ca
3,823
from typing import List def compress_timeline(timeline: List, salt: bytes) -> List: """ Compress the verbose Twitter feed into a small one. Just keep the useful elements. The images are downloaded per-request. Args: timeline (List): The Twitter timeline. salt (bytes): The salt to apply on the filename. Returns: List: The timeline with less information and links to the (locally) stored images. """ compressed_timeline = [] for tweet in timeline: profile_image_url = tweet["user"]["profile_image_url_https"] compressed_tweet = { "created_at": tweet["created_at"], "text": tweet["text"], "id_str": tweet["id_str"], "user": { "name": tweet["user"]["name"], "screen_name": tweet["user"]["screen_name"], "profile_image_origin": encode_media_origin(profile_image_url), "profile_image_filename": create_media_filename( profile_image_url, salt ), }, } if tweet["retweeted"]: original_source = tweet["retweeted_status"]["user"] profile_image_url = original_source["profile_image_url_https"] compressed_tweet["retweeted_status"] = { "user": { "name": original_source["name"], "screen_name": original_source["screen_name"], "profile_image_origin": encode_media_origin(profile_image_url), "profile_image_filename": create_media_filename( profile_image_url, salt ), } } compressed_timeline.append(compressed_tweet) return compressed_timeline
aff1364714d7e83685ab2257167fcd8bc7e10436
3,824
def createFinalCompactedData(compacted_data,elevations): """ This function creates a dataframe that combines the RGB data and the elevations data into a dataframe that can be used for analysis Parameters ---------- compacted_data : list of compacted data returned from condensePixels. elevations : list of elevations from getUSGSElevations. Returns ------- final_compacted_data : dataframe of merged data. """ lats = [] lons = [] reds = [] greens = [] blues = [] els = [] for i in range(len(compacted_data)): for j in range(len(compacted_data[0])): reds.append(compacted_data[i][j][0]) greens.append(compacted_data[i][j][1]) blues.append(compacted_data[i][j][2]) lats.append(compacted_data[i][j][3]) lons.append(compacted_data[i][j][4]) els.append(elevations[i][j]) final_compacted_data = pd.DataFrame({'Lat':lats,'Lon':lons,'Elevation':els,'Red':reds,'Green':greens,'Blue':blues}) return final_compacted_data
0d8b6a5e10504c32988e05e7450ebcf077305949
3,825
def get_sorted_nodes_edges(bpmn_graph): """ Assure an ordering as-constant-as-possible Parameters -------------- bpmn_graph BPMN graph Returns -------------- nodes List of nodes of the BPMN graph edges List of edges of the BPMN graph """ graph = bpmn_graph.get_graph() graph_nodes = list(graph.nodes(data=False)) graph_edges = list(graph.edges(data=False)) bfs = bfs_bpmn(graph_nodes, graph_edges) graph_nodes = sort_nodes_given_bfs(graph_nodes, bfs) graph_edges = sort_edges_given_bfs(graph_edges, bfs) return graph_nodes, graph_edges
879d7e8e3e5e4e9a8db3fc01622b96dde2b7af25
3,826
from typing import Optional from typing import Dict from typing import Any def list_commits( access_key: str, url: str, owner: str, dataset: str, *, revision: Optional[str] = None, offset: Optional[int] = None, limit: Optional[int] = None, ) -> Dict[str, Any]: """Execute the OpenAPI `GET /v2/datasets/{owner}/{dataset}/commits`. Arguments: access_key: User's access key. url: The URL of the graviti website. owner: The owner of the dataset. dataset: Name of the dataset, unique for a user. revision: The information to locate the specific commit, which can be the commit id, the branch name, or the tag name. offset: The offset of the page. The default value of this param in OpenAPIv2 is 0. limit: The limit of the page. The default value of this param in OpenAPIv2 is 24. Returns: The response of OpenAPI. Examples: >>> list_commits( ... "ACCESSKEY-********", ... "https://api.graviti.com", ... "czhual", ... "MNIST", ... ) { "commits": [ { "commit_id": "85c57a7f03804ccc906632248dc8c359", "parent_commitId": "784ba0d3bf0a41f6a7bfd771d8c00fcb", "title": "upload data", "description": "", "committer": "Gravitier", "committed_at": "2021-03-03T18:58:10Z" } ], "offset": 0, "record_size": 1, "total_count": 1 } """ url = f"{url}/v2/datasets/{owner}/{dataset}/commits" params: Dict[str, Any] = {} if offset is not None: params["offset"] = offset if limit is not None: params["limit"] = limit if revision is not None: params["revision"] = revision return open_api_do("GET", access_key, url, params=params).json()
be3899be0b77de069c7d32ca39aaec2039fe89e4
3,827
import heapq def dijkstra(graph, start, end=None): """ Find shortest paths from the start vertex to all vertices nearer than or equal to the end. The input graph G is assumed to have the following representation: A vertex can be any object that can be used as an index into a dictionary. G is a dictionary, indexed by vertices. For any vertex v, G[v] is itself a dictionary, indexed by the neighbors of v. For any edge v->w, G[v][w] is the length of the edge. The output is a pair (D,P) where D[v] is the distance from start to v and P[v] is the predecessor of v along the shortest path from s to v. Original by David Eppstein, UC Irvine, 4 April 2002 http://code.activestate.com/recipes/119466-dijkstras-algorithm-for-shortest-paths/ >>> G = DirectedGraph({'s':{'u':10, 'x':5}, 'u':{'v':1, 'x':2}, 'v':{'y':4}, 'x':{'u':3, 'v':9, 'y':2}, \ 'y':{'s':7, 'v':6}}) >>> distances, predecessors = dijkstra(G, 's', 'v') >>> sorted(distances.items()) [('s', 14), ('u', 8), ('v', 9), ('x', 5), ('y', 7)] >>> sorted(predecessors.items()) [('s', 'y'), ('u', 'x'), ('v', 'u'), ('x', 's'), ('y', 'x')] """ distances = {} # dictionary of final distances predecessors = {} # dictionary of predecessors (previous node) queue = [] # queue heapq.heappush(queue, (0, start)) while len(queue) > 0: distance, node = heapq.heappop(queue) if node in distances and distance > distances[node]: continue if node == end: break # Loop through neighbours edges = graph.edges(node, distance=distance) for neighbour, length in edges.items(): total = distance + length if neighbour in distances: if total >= distances[neighbour]: continue distances[neighbour] = total predecessors[neighbour] = node heapq.heappush(queue, (total, neighbour)) return distances, predecessors
b2a1ee983534c0a4af36ae7e3490c3b66949609b
3,828
def tournament_selection(pop, size): """ tournament selection individual eliminate one another until desired breeding size is reached """ participants = [ind for ind in pop.population] breeding = [] # could implement different rounds here # but I think that's almost the same as calling tournament different times with smaller sizes for i in range(size): a, b = rng.choice(participants, 2) if a > b: breeding.append(a) participants.remove(a) else: breeding.append(b) participants.remove(b) return breeding
78bebc2de25d0744f3f8dabd67f70136d5f020b5
3,830
import math def bond_number(r_max, sigma, rho_l, g): """ calculates the Bond number for the largest droplet according to Cha, H.; Vahabi, H.; Wu, A.; Chavan, S.; Kim, M.-K.; Sett, S.; Bosch, S. A.; Wang, W.; Kota, A. K.; Miljkovic, N. Dropwise Condensation on Solid Hydrophilic Surfaces. Science Advances 2020, 6 (2), eaax0746. https://doi.org/10.1126/sciadv.aax0746""" l_y = math.sqrt(sigma / (rho_l*g)) bond = r_max**2 / l_y**2 return bond
2098a762dd7c2e80ff4a570304acf7cfbdbba2e5
3,831
def spatial_conv(inputs, conv_type, kernel, filters, stride, is_training, activation_fn='relu', data_format='channels_last'): """Performs 1x1 conv followed by 2d or depthwise conv. Args: inputs: `Tensor` of size `[batch*time, height, width, channels]`. Only supports 'channels_last' as the data format. conv_type: 'string' of "std", "depth", "maxpool", or "avgpool" this selects the spatial conv/pooling method. kernel: `int` kernel size to be used for `conv2d` or max_pool2d` operations. Should be a positive integer. filters: `int` number of filters in the convolution. stride: 'int' temporal stride is_training: 'bool' specifying whether in training mode or not. activation_fn: 'string' the activation function to use (relu or swish) data_format: `str`. Only supports 'channels_last' as the data format. Returns: A `Tensor` of the same data_format """ if kernel == 1: return inputs use_relu = (activation_fn == 'relu') if conv_type == 'std' or conv_type == 'depth': inputs = conv2d(inputs, 1, filters, 1, is_training, use_relu=use_relu) if not use_relu: inputs = hard_swish(inputs) if conv_type == 'std' or conv_type == '1std': inputs = conv2d(inputs, int(kernel), filters, int(stride), is_training, use_relu=use_relu) if not use_relu: inputs = hard_swish(inputs) elif conv_type == 'depth': depth_multiplier = 1 depthwise_kernel_shape = (int(kernel), int(kernel), inputs.shape[-1], depth_multiplier) depthwise_kernel = contrib_framework.model_variable( name='depthwise_kernel', shape=depthwise_kernel_shape, dtype=tf.float32, initializer=contrib_layers.variance_scaling_initializer( factor=2.0, mode='FAN_IN', uniform=False), trainable=True) inputs = tf.nn.depthwise_conv2d( inputs, tf.cast(depthwise_kernel, inputs.dtype), strides=[1, int(stride), int(stride), 1], padding='SAME', rate=[1, 1], data_format='NHWC' if data_format == 'channels_last' else 'NCHW') inputs = bn.batch_norm_relu( inputs, is_training, relu=use_relu, data_format=data_format) if not use_relu: inputs = hard_swish(inputs) elif conv_type == 'maxpool': inputs = tf.layers.max_pooling2d( inputs, int(kernel), int(stride), padding='same', data_format=data_format) elif conv_type == 'avgpool': inputs = tf.layers.average_pooling2d( inputs, int(kernel), int(stride), padding='same', data_format=data_format) return inputs
e87820eaa5b8ed13157fe0790c4e09b1bc546a0d
3,832
async def timeron(websocket, battleID): """Start the timer on a Metronome Battle. """ return await websocket.send(f'{battleID}|/timer on')
f1601694e2c37d41adcc3983aa535347dc13db71
3,833
import numpy def to_unit_vector(this_vector): """ Convert a numpy vector to a unit vector Arguments: this_vector: a (3,) numpy array Returns: new_vector: a (3,) array with the same direction but unit length """ norm = numpy.linalg.norm(this_vector) assert norm > 0.0, "vector norm must be greater than 0" if norm: return this_vector/numpy.linalg.norm(this_vector) else: return this_vector
ae46bf536b8a67a1be1e98ae051eebf1f8696e37
3,834
import base64 def decode(msg): """ Convert data per pubsub protocol / data format Args: msg: The msg from Google Cloud Returns: data: The msg data as a string """ if 'data' in msg: data = base64.b64decode(msg['data']).decode('utf-8') return data
32e85b3f0c18f3d15ecb0779825941024da75909
3,835
def pivot_longer_by_humidity_and_temperature(df: pd.DataFrame) -> pd.DataFrame: """ Reshapes the dataframe by collapsing all of the temperature and humidity columns into an temperature, humidity, and location column Parameters ---------- df : pd.DataFrame The cleaned and renamed dataframe from add_date_features(). Returns ------- pd.DataFrame A much longer dataframe with an exposed location column to perform operations on. """ # Need to melt both variables individually, which creates # a ton of meaningless rows in the second melt. temporary_df = df.melt( id_vars=[colname for colname in df.columns if "temp" not in colname], var_name="temperature_location", value_name="temperature", ignore_index=False, ) temporary_df = temporary_df.melt( id_vars=[ colname for colname in temporary_df.columns if "humidity" not in colname ], var_name="humidity_location", value_name="humidity", ignore_index=False, ) temporary_df["temperature_location"] = temporary_df[ "temperature_location" ].str.replace("temperature_", "") temporary_df["humidity_location"] = temporary_df["humidity_location"].str.replace( "humidity_", "" ) # We know all measurements come from slices of time that contain a measurement of both humidity # and temperature from one location, so if we combine the location columns we can drop # the extra rows created during the second melt. df = temporary_df[ temporary_df["temperature_location"] == temporary_df["humidity_location"] ] df = df.drop(columns=["humidity_location"]).rename( columns={"temperature_location": "measurement_location"} ) return df
d60b92b523c31b3f7db799f58a42bd9ca810d258
3,836