content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def create_partial_image_rdd_decoder(key_type):
"""Creates a partial, tuple decoder function.
Args:
value_type (str): The type of the value in the tuple.
Returns:
A partial :meth:`~geopyspark.protobufregistry.ProtoBufRegistry.image_rdd_decoder`
function that requires ``proto_bytes`` to execute.
"""
return partial(image_rdd_decoder, key_decoder=key_type) | 2df5c506cf8603e9e4acbb4ccb77f8f5d830fe82 | 3,654,000 |
import json
def to_json(simple_object):
"""
Serializes the ``simple_object`` to JSON using the EnhancedJSONEncoder above.
"""
return json.dumps(simple_object, cls=EnhancedJSONEncoder) | c9f8c9474210661a7b63924a72442014c831e170 | 3,654,001 |
def bootstrap_metadata():
""" Provides cluster metadata which includes security modes
"""
return _metadata_helper('bootstrap-config.json') | ec2294606446a9b78a603826fca6f447ed2d9bb9 | 3,654,002 |
def unique_slug(*, title: str, new_slug: str = None) -> str:
"""Create unique slug.
Args:
title: The text where the slug will be generate.
new_slug: Custom slug to hard code.
Returns:
The created slug or hard code slug
"""
if new_slug is None:
slug = slugify(title)
new_slug = f"{slug}-{random_string()}"
return new_slug | b4e119502edf144f8393b38a47e3fbeb25335aff | 3,654,003 |
import math
def dcg(r, k=None):
"""The Burges et al. (2005) version of DCG.
This is what everyone uses (except trec_eval)
:param r: results
:param k: cut-off
:return: sum (2^ y_i - 1) / log (i +2)
"""
result = sum([(pow(2, rel) - 1) / math.log(rank + 2, 2) for rank, rel in enumerate(r[:k])])
return result | d93c500ba55411807570c8efebdeaa49ce7fe288 | 3,654,004 |
async def detect_objects(computervision_client, image_url):
"""Detect objects from a remote image"""
detect_objects_results_local = \
computervision_client.detect_objects(image_url)
return detect_objects_results_local.objects | 9adb2a3b2c08f99187159ad6a22047bbf3d4c30a | 3,654,005 |
def rgb(r=None, g=None, b=None, smooth=True, force=True):
"""
Set RGB values with PWM signal
:param r: red value 0-1000
:param g: green value 0-1000
:param b: blue value 0-1000
:param smooth: runs colors change with smooth effect
:param force: clean fade generators and set color
:return: verdict string
"""
def __buttery(r_from, g_from, b_from, r_to, g_to, b_to):
step_ms = 2
interval_sec = 0.3
if Data.RGB_CACHE[3] == 0:
# Turn from OFF to on (to colors)
r_from, g_from, b_from = 0, 0, 0
Data.RGB_CACHE[3] = 1
r_gen = transition(from_val=r_from, to_val=r_to, step_ms=step_ms, interval_sec=interval_sec)
g_gen = transition(from_val=g_from, to_val=g_to, step_ms=step_ms, interval_sec=interval_sec)
b_gen = transition(from_val=b_from, to_val=b_to, step_ms=step_ms, interval_sec=interval_sec)
for _r in r_gen:
Data.RGB_OBJS[0].duty(_r)
Data.RGB_OBJS[1].duty(g_gen.__next__())
Data.RGB_OBJS[2].duty(b_gen.__next__())
sleep_ms(step_ms)
__RGB_init()
if force and Data.FADE_OBJS[0]:
Data.FADE_OBJS = (None, None, None)
# Dynamic input handling: user/cache
r = Data.RGB_CACHE[0] if r is None else r
g = Data.RGB_CACHE[1] if g is None else g
b = Data.RGB_CACHE[2] if b is None else b
# Set RGB channels
if smooth:
__buttery(r_from=Data.RGB_CACHE[0], g_from=Data.RGB_CACHE[1], b_from=Data.RGB_CACHE[2], r_to=r, g_to=g, b_to=b)
else:
Data.RGB_OBJS[0].duty(int(r))
Data.RGB_OBJS[1].duty(int(g))
Data.RGB_OBJS[2].duty(int(b))
# Save channel duties if LED on
if r > 0 or g > 0 or b > 0:
Data.RGB_CACHE = [r, g, b, 1]
else:
Data.RGB_CACHE[3] = 0
# Save state machine (cache)
__persistent_cache_manager('s')
return status() | 5d5455a785a719e5252c3333e45c06352e8769ed | 3,654,006 |
from .core.configs import get_configs
from .core.configs import set_configs
from .core.configs import del_configs
def handle_config(args, configs):
"""Handle `view` subcommand
:param args: parsed arguments
:type args: `argparse.Namespace`
:param configs: configurations object
:type configs: ``sfftk.core.configs.Configs``
:return int status: status
"""
if args.config_subcommand == "get":
return get_configs(args, configs)
elif args.config_subcommand == "set":
return set_configs(args, configs)
elif args.config_subcommand == "del":
return del_configs(args, configs) | 60fb9b289e99369a9f83bdf675a793fe85191257 | 3,654,007 |
from typing import Dict
from typing import List
def filter_safe_actions(
action_shield: Dict[int, Dict[ActionData, int]], energy: int, bel_supp_state: int
) -> List[ActionData]:
"""Utility function to filter actions according to required energy for them with given action shield.
Parameters
----------
action_shield : List[Tuple[int, ActionData]]
List of pairs of minimum energy and action for which it is required.
energy : int
Available energy.
bel_supp_state : int
State in belief support cmdp to filter actions by.
Returns
-------
List[ActionData]
List of available actions for given energy and given belief support cmdp state.
"""
return [
action
for action, min_energy in action_shield[bel_supp_state].items()
if min_energy <= energy
] | e62b24233792d4decca1bd853b6344a8541882be | 3,654,008 |
def get_routes_by_tunnel(compute, project, region, tunnel, restore, debug):
""" Filters all routes to a specific project, region and tunnel."""
match = '%s/regions/%s/vpnTunnels/%s' % (project, region, tunnel)
routes_all = list_routes(compute, project, debug)
routes = []
for route in routes_all:
if route.has_key('nextHopVpnTunnel'):
token = '/'.join(route['nextHopVpnTunnel'].split('/')[-5:])
if token == match and restore == is_route_we_created(route):
routes.append(route)
return routes | 97500f97b75a225cf08329a12d841e0c92fe3c66 | 3,654,009 |
def fcard(card):
"""Create format string for card display"""
return f"{card[0]} {card[1]}" | ca3866011b418bf35e1b076afd7134926a9382f9 | 3,654,010 |
def resetChapterProgress(chapterProgressDict, chapter, initRepeatLevel):
"""This method resets chapter progress and sets initial level for repeat routine.
Args:
chapterProgressDict (dict): Chapter progress data.
chapter (int): Number of the chapter.
initRepeatLevel (int): Initial level for repeat routine.
Returns:
dictionary: Return Reseted chapter progress dictionary with initial level set.
"""
chapterProgressDict[chapter]["status"] = "Not started"
chapterProgressDict[chapter]["progress"]["current"] = 0
chapterProgressDict[chapter]["correct"] = {"correct":0, "subtotal":0, "rate":''}
chapterProgressDict[chapter]["repeatLevel"] = initRepeatLevel
return chapterProgressDict | e02d6e97f556a2c080c2bc273255aacedf7bb086 | 3,654,011 |
def aStarSearch(problem, heuristic=nullHeuristic):
"""Search the node that has the lowest combined cost and heuristic first."""
"*** YOUR CODE HERE ***"
priorityqueue = util.PriorityQueue()
priorityqueue.push( (problem.getStartState(), [], 0), heuristic(problem.getStartState(), problem) )
checkedstates = []
while not priorityqueue.isEmpty():
state, actions, curCost = priorityqueue.pop()
if problem.isGoalState(state):
return actions
if(not state in checkedstates):
checkedstates.append(state)
for child in problem.getSuccessors(state):
point = child[0]
direction = child[1]
cost = child[2]
g = curCost + cost
heuristic_cost = heuristic(point, problem)
sum_g_heuristic = g + heuristic_cost
priorityqueue.push((point, actions + [direction], g), sum_g_heuristic)
# util.raiseNotDefined() | 0d84de971424d82020b48e35443bfe92cc2665d0 | 3,654,012 |
def gen_flag(p1=0.5, **_args):
"""
Generates a flag.
:param p1: probability of flag = 1
:param _args:
:return: flag
"""
return 1 if np.random.normal(0, 100) <= p1 * 100 else 0 | 0accef3f2fd03c4918b52db2f6c72d405243af87 | 3,654,013 |
from typing import OrderedDict
import re
def load_migrations(path):
"""
Given a path, load all migrations in that path.
:param path: path to look for migrations in
:type path: pathlib.Path or str
"""
migrations = OrderedDict()
r = re.compile(r'^[0-9]+\_.+\.py$')
filtered = filter(
lambda x: r.search(x) is not None,
[x.name for x in path.iterdir()]
)
for migration in sorted(filtered):
migration_id = migration[:-3]
migrations[migration_id] = {
'id': migration_id,
'commit_time': None,
'status': 0,
'module': load_module(migration_id, path / migration),
'table': None
}
return migrations | 5bd761e6a9ffab4aa08a473e8d2c667e7fb87813 | 3,654,014 |
def filterkey(e, key, ns=False):
"""
Gibt eine Liste aus der Liste C{e} mit dem Attribut C{key} zurück.
B{Beispiel 1}: Herauslesen der SRS aus einer Liste, die C{dict}'s enthält.
>>> e = [{'SRS':'12345', 'Name':'WGS-1'}, {'SRS':'54321', 'Name':'WGS-2'}]
>>> key = "SRS"
>>> filterkey(e, key)
['12345', '54321']
B{Beispiel 2}: Herauslesen des Namens aus einer Liste, die C{dict}'s enthält.
>>> e = [{'SRS':'12345', 'Name':'WGS-1'}, {'SRS':'54321', 'Name':'WGS-2'}]
>>> key = "Name"
>>> filterkey(e, key)
['WGS-1', 'WGS-2']
@param e: Liste
@type e: list
@param key: Schlüssel
@type key: str
@param ns: Status, ob zusätzlich L{_helpers.ns} verwendet werden soll
@type ns: bool
@return: Liste mit den gefundenen Attributen C{key}
@rtype: list
"""
l = []
key_split = key.split("=")
if isinstance(e, list):
for i in e:
if len(key_split)>1:
if i[key_split[0]] == key_split[1]:
if ns:
l.append(_ns(i[key_split[0]]))
else:
l.append(i[key_split[0]])
else:
if ns:
l.append(_ns(i[key]))
else:
l.append(i[key])
return l | f56967e9623622d2dffdb9fe6f128893df9ad798 | 3,654,015 |
def get_runtime_preinstalls(internal_storage, runtime):
"""
Download runtime information from storage at deserialize
"""
if runtime in default_preinstalls.modules:
logger.debug("Using serialize/default_preinstalls")
runtime_meta = default_preinstalls.modules[runtime]
preinstalls = runtime_meta['preinstalls']
else:
logger.debug("Downloading runtime pre-installed modules from COS")
runtime_meta = internal_storage.get_runtime_info(runtime)
preinstalls = runtime_meta['preinstalls']
if not runtime_valid(runtime_meta):
raise Exception(("The indicated runtime: {} "
"is not appropriate for this Python version.")
.format(runtime))
return preinstalls | 3e9eda4f116f0f5baf38a2fea827c575e814deaa | 3,654,016 |
import os
def update_graph(slider_value):
"""
Update the graph depending on which value of the slider is selected
Parameters
----------
slider_value: the current slider value, None when starting the app
Returns
-------
dcc.Graph object holding the new Plotly Figure as given by the plot_slice function
"""
value = slider_value if slider_value is not None else 0
fname = os.path.join(solution_dir, f"{solution_prefix}_{value}.csv")
return plot_slice(fname) | 4a7e8939c1a86239a08f2fa460f7bf407fa5a686 | 3,654,017 |
def on_coordinator(f):
"""A decorator that, when applied to a function, makes a spawn of that function happen on the coordinator."""
f.on_coordinator = True
return f | d9c97c47255d165c67a4eb67a18cc85c3c9b9386 | 3,654,018 |
def redirect_subfeed(match):
"""
URL migration: my site used to have per-category/subcategory RSS feeds
as /category/path/rss.php. Many of the categories have Path-Aliases
in their respective .cat files, but some of the old subcategories no
longer apply, so now I just bulk-redirect all unaccounted-for subcategories
to the top-level category's feed.
"""
return flask.url_for(
'category',
category=match.group(1),
template='feed'), True | 101509cbf75ce9be5307edd265988cca662a7880 | 3,654,019 |
from typing import List
from typing import Tuple
import random
def _train_test_split_dataframe_strafified(df:pd.DataFrame, split_cols:List[str], test_ratio:float=0.2, verbose:int=0, **kwargs) -> Tuple[pd.DataFrame, pd.DataFrame]:
"""
ref. the function `train_test_split_dataframe`
"""
df_inspection = df[split_cols]
for item in split_cols:
all_entities = df_inspection[item].unique().tolist()
entities_dict = {e: str(i) for i, e in enumerate(all_entities)}
df_inspection[item] = df_inspection[item].apply(lambda e:entities_dict[e])
inspection_col_name = "Inspection" * (max([len(c) for c in split_cols])//10+1)
df_inspection[inspection_col_name] = df_inspection.apply(
func=lambda row: "-".join(row.values.tolist()),
axis=1
)
item_names = df_inspection[inspection_col_name].unique().tolist()
item_indices = {
n: df_inspection.index[df_inspection[inspection_col_name]==n].tolist() for n in item_names
}
if verbose >= 1:
print("item_names = {}".format(item_names))
for n in item_names:
random.shuffle(item_indices[n])
test_indices = []
for n in item_names:
item_test_indices = item_indices[n][:int(round(test_ratio*len(item_indices[n])))]
test_indices += item_test_indices
if verbose >= 2:
print("for the item `{}`, len(item_test_indices) = {}".format(n, len(item_test_indices)))
df_test = df.loc[df.index.isin(test_indices)].reset_index(drop=True)
df_train = df.loc[~df.index.isin(test_indices)].reset_index(drop=True)
return df_train, df_test | 82c4f2a1da3d7e7a4a854c037ab209dffe01f5b2 | 3,654,020 |
def index():
"""
This route will render a template.
If a query string comes into the URL, it will return a parsed
dictionary of the query string keys & values, using request.args
"""
args = None
if request.args:
args = request.args
return render_template("public/index.html", args=args)
return render_template("public/index.html", args=args) | ae76de55fb9263264d87447fc2fe173ad62e3245 | 3,654,021 |
from typing import Type
from typing import List
def multi_from_dict(cls: Type[T_FromDict], data: dict, key: str) -> List[T_FromDict]:
"""
Converts {"foo": [{"bar": ...}, {"bar": ...}]} into list of objects using the cls.from_dict method.
"""
return [cls.from_dict(raw) for raw in data.get(key, [])] | 44b9aa28d93f24cc76cddf3cba9fbcbcde937d3d | 3,654,022 |
import inspect
def infer_signature(func, class_name=''):
"""Decorator that infers the signature of a function."""
# infer_method_signature should be idempotent
if hasattr(func, '__is_inferring_sig'):
return func
assert func.__module__ != infer_method_signature.__module__
try:
funcfile = get_defining_file(func)
funcsource, sourceline = inspect.getsourcelines(func)
sourceline -= 1 # getsourcelines is apparently 1-indexed
except:
return func
funcid = (class_name, func.__name__, funcfile, sourceline)
func_source_db[funcid] = ''.join(funcsource)
try:
func_argid_db[funcid] = getfullargspec(func)
vargs_name, kwargs_name = func_argid_db[funcid][1], func_argid_db[funcid][2]
except TypeError:
# Not supported.
return func
def wrapper(*args, **kwargs):
global is_performing_inference
# If we're already doing inference, we should be in our own code, not code we're checking.
# Not doing this check sometimes results in infinite recursion.
if is_performing_inference:
return func(*args, **kwargs)
expecting_type_error, got_type_error, got_exception = False, False, False
is_performing_inference = True
try:
callargs = getcallargs(func, *args, **kwargs)
# we have to handle *args and **kwargs separately
if vargs_name:
va = callargs.pop(vargs_name)
if kwargs_name:
kw = callargs.pop(kwargs_name)
arg_db = {arg: infer_value_type(value) for arg, value in callargs.items()}
# *args and **kwargs need to merge the types of all their values
if vargs_name:
arg_db[vargs_name] = union_many_types(*[infer_value_type(v) for v in va])
if kwargs_name:
arg_db[kwargs_name] = union_many_types(*[infer_value_type(v) for v in kw.values()])
except TypeError:
got_exception = expecting_type_error = True
except:
got_exception = True
finally:
is_performing_inference = False
try:
ret = func(*args, **kwargs)
except TypeError:
got_type_error = got_exception = True
raise
except:
got_exception = True
raise
finally:
if not got_exception:
assert not expecting_type_error
# if we didn't get a TypeError, update the actual database
for arg, t in arg_db.items():
update_db(func_arg_db, (funcid, arg), t)
# if we got an exception, we don't have a ret
if not got_exception:
is_performing_inference = True
try:
type = infer_value_type(ret)
update_db(func_return_db, funcid, type)
except:
pass
finally:
is_performing_inference = False
return ret
if hasattr(func, '__name__'):
wrapper.__name__ = func.__name__
wrapper.__is_inferring_sig = True
return wrapper | e1ab5d9850b4a3026ecd563324026c9cd1675d31 | 3,654,023 |
def field_wrapper(col):
"""Helper function to dynamically create list display method
for :class:`ViewProfilerAdmin` to control value formating
and sort order.
:type col: :data:`settings.ReportColumnFormat`
:rtype: function
"""
def field_format(obj):
return col.format.format(getattr(obj, col.attr_name))
field_format.short_description = col.name
field_format.admin_order_field = col.attr_name
return field_format | 0a41b5462a6905af5d1f0cc8b9f2bdd00206e6bd | 3,654,024 |
def is_isotropic(value):
""" Determine whether all elements of a value are equal """
if hasattr(value, '__iter__'):
return np.all(value[1:] == value[:-1])
else:
return True | 9c99855d53cf129931c9a9cb51fc491d2fe0df21 | 3,654,025 |
def grouper(iterable, n, fillvalue=None):
"""Iterate over a given iterable in n-size groups."""
args = [iter(iterable)] * n
return zip_longest(*args, fillvalue=fillvalue) | 26adffa4a3c748defe3732d5b94358dda20d095c | 3,654,026 |
def format_gro_coord(resid, resname, aname, seqno, xyz):
""" Print a line in accordance with .gro file format, with six decimal points of precision
Nine decimal points of precision are necessary to get forces below 1e-3 kJ/mol/nm.
@param[in] resid The number of the residue that the atom belongs to
@param[in] resname The name of the residue that the atom belongs to
@param[in] aname The name of the atom
@param[in] seqno The sequential number of the atom
@param[in] xyz A 3-element array containing x, y, z coordinates of that atom
"""
return "%5i%-5s%5s%5i % 13.9f % 13.9f % 13.9f" % (resid,resname,aname,seqno,xyz[0],xyz[1],xyz[2]) | ceeeeeafe4f7484fa17ee4ebd79363209c8f7391 | 3,654,027 |
def return_as_list(ignore_nulls: bool = False):
"""
Enables you to write a list-returning functions using a decorator. Example:
>>> def make_a_list(lst):
>>> output = []
>>> for item in lst:
>>> output.append(item)
>>> return output
Is equivalent to:
>>> @return_as_list()
>>> def make_a_list(lst):
>>> for item in lst:
>>> yield item
Essentially a syntactic sugar for @for_argument(returns=list)
:param ignore_nulls: if True, then if your function yields None, it won't be appended.
"""
def outer(fun):
@wraps(fun)
def inner(*args, **kwargs):
output = []
for item in fun(*args, **kwargs):
if item is None and ignore_nulls:
continue
output.append(item)
return output
return inner
return outer | 5f5f089e5664ffbbd5d78a71bf984909e677bcc5 | 3,654,028 |
def get_pingback_url(target_url):
"""
Grabs an page, and reads the pingback url for it.
"""
logger.debug("get_pingback_url called...")
logger.debug("grabbing " + str(target_url))
html = urlopen(target_url).read()
logger.info( "Got %d bytes" % len(html))
soup = bs(html, 'html.parser')
# check for link tags...
pbaddress = None
for l in soup.findAll('link'):
if l.get('rel','') == 'pingback':
pbaddress = str(l.get('href'))
logger.debug("Got: %s" % pbaddress)
logger.debug("get_pingback_url completed")
return pbaddress | cfca2962cf7fee480bae1c0654358dec70906fdd | 3,654,029 |
def assemble_insert_msg_content(row, column, digit):
"""Assemble a digit insertion message."""
return str(row) + CONTENT_SEPARATOR + str(column) + CONTENT_SEPARATOR + str(digit) | 5c4a40aedf4569a8f12793356c2cbedecf32d839 | 3,654,030 |
from typing import Union
def get_difference_of_means(uni_ts: Union[pd.Series, np.ndarray]) -> np.float64:
"""
:return: The absolute difference between the means of the first and the second halves of a
given univariate time series.
"""
mid = int(len(uni_ts) / 2)
return np.abs(get_mean(uni_ts[:mid]) - get_mean(uni_ts[mid:])) | 5e7e709afffde843f3f1be7941c620d4f248e8b4 | 3,654,031 |
def user_collection():
"""
用户的收藏页面
1. 获取参数
- 当前页
2. 返回数据
- 当前页
- 总页数
- 每页的数据
:return:
"""
user = g.user
if not user:
return "请先登录"
# 获取当前页
page = request.args.get('p', 1)
page_show = constants.USER_COLLECTION_MAX_NEWS
# 校验参数
try:
page = int(page)
except Exception as e:
current_app.logger.error(e)
# return jsonify(errno=RET.PARAMERR, errmsg="参数错误")
abort(404)
try:
user_collection = user.collection_news.paginate(page, page_show)
currentPage = user_collection.page
totalPage = user_collection.pages
items = user_collection.items
except Exception as e:
current_app.logger.error(e)
# return jsonify(errno=RET.DBERR, errmsg="数据库查询出错")
abort(404)
user_collection_list = []
for item in items:
user_collection_list.append(item.to_review_dict())
data = {
'currentPage': currentPage,
'totalPage': totalPage,
'user_collection_list': user_collection_list
}
return render_template("news/user_collection.html", data=data) | d5ad3a3121dfc169952cad514b3fa930662dd2af | 3,654,032 |
def activity(*, domain, name, version):
"""Decorator that registers a function to `ACTIVITY_FUNCTIONS`
"""
def function_wrapper(func):
identifier = '{}:{}:{}'.format(name, version, domain)
ACTIVITY_FUNCTIONS[identifier] = func
return function_wrapper | 1529c19b8d1d5be02c45e87a446abf62aafc143a | 3,654,033 |
def OEDParser(soup, key):
""" The parser of Oxford Learner's Dictionary. """
rep = DicResult(key)
rep.defs = parseDefs(soup)
rep.examples = parseExample(soup)
return rep | 21b4670047e06f1251e70e09aed5da4dba0449ec | 3,654,034 |
def X_SIDE_GAP_THREE_METHODS(data):
"""
Upside/Downside Gap Three Methods
:param pd.DataFrame data: pandas DataFrame with open, high, low, close data
:return pd.Series: with indicator data calculation results
"""
fn = Function('CDLXSIDEGAP3METHODS')
return fn(data) | 87d3ca966d13756c3cd2bf15647a4d696f1e1f02 | 3,654,035 |
def fix_legacy_database_uri(uri):
""" Fixes legacy Database uris, like postgres:// which is provided by Heroku but no longer supported by SqlAlchemy """
if uri.startswith('postgres://'):
uri = uri.replace('postgres://', 'postgresql://', 1)
return uri | aa3aa20110b7575abf77534d08a35dccb04b731d | 3,654,036 |
def create_need():
"""
Créé le besoin en db
:return:
"""
student = Student.query.filter_by(id_user=session['uid']).first()
title = request.form.get('title')
description = request.form.get('description')
speaker_id = request.form.get('speaker_id')
estimated_tokens = int(request.form.get('estimated_tokens'))
if estimated_tokens < 0:
estimated_tokens = 0
need = Need(
title=title,
description=description,
estimated_tokens=estimated_tokens,
status='En cours',
id_assigned_team=student.team.id,
id_assigned_speaker=speaker_id
)
db.session.add(need)
try:
db.session.commit()
except:
abort(500)
return redirect(url_for('get_student_dashboard')) | d8af541668818e1ed40382b4ed457ac819ab3ce6 | 3,654,037 |
def insert_rolling_mean_columns(data, column_list, window):
"""This function selects the columns of a dataframe
according to a provided list of strings, re-scales its
values and inserts a new column in the dataframe with the
rolling mean of each variable in the column list and the
provided window length.
Params:
data: original dataframe
column_list: list of columns to select
window: window length to calculate rolling mean
"""
scaler = MinMaxScaler()
data[column_list] = scaler.fit_transform(data[column_list])
for var in column_list:
data[var + "_RollingMean"] = data[var].rolling(window).mean()
return data | fd37ca307aaa0d755cd59aa69320003d02cb677a | 3,654,038 |
def get_url_names():
""" Получение ссылок на контент
Returns:
Здесь - список файлов формата *.str
"""
files = ['srts/Iron Man02x26.srt', 'srts/Iron1and8.srt']
return files | 4ee8fdd5ab9efc04eda4bfe1205e073064030520 | 3,654,039 |
from datetime import datetime
def unix_utc_now() -> int:
"""
Return the number of seconds passed from January 1, 1970 UTC.
"""
delta = datetime.utcnow() - datetime(1970, 1, 1)
return int(delta.total_seconds()) | b9768b60cf6f49a7cccedd88482d7a2b21cf05a2 | 3,654,040 |
from typing import Set
def _preload_specific_vars(env_keys: Set[str]) -> Store:
"""Preloads env vars from environ in the given set."""
specified = {}
for env_name, env_value in environ.items():
if env_name not in env_keys:
# Skip vars that have not been requested.
continue
specified[env_name] = env_value
return specified | 6eb6c09f56235b024f15749d8ec65e8801991b43 | 3,654,041 |
import re
def _format_workflow_id(id):
"""
Add workflow prefix to and quote a tool ID.
Args:
id (str): ...
"""
id = urlparse.unquote(id)
if not re.search('^#workflow', id):
return urlparse.quote_plus('#workflow/{}'.format(id))
else:
return urlparse.quote_plus(id) | ea6b6f83ef430128c8a876c9758ce3d70b1bef63 | 3,654,042 |
def calc_log_sum(Vals, sigma):
"""
Returns the optimal value given the choice specific value functions Vals.
Parameters
----------
Vals : [numpy.array]
A numpy.array that holds choice specific values at common grid points.
sigma : float
A number that controls the variance of the taste shocks
Returns
-------
V : [numpy.array]
A numpy.array that holds the integrated value function.
"""
# Assumes that NaNs have been replaced by -numpy.inf or similar
if sigma == 0.0:
# We could construct a linear index here and use unravel_index.
V = np.amax(Vals, axis=0)
return V
# else we have a taste shock
maxV = np.max(Vals, axis=0)
# calculate maxV+sigma*log(sum_i=1^J exp((V[i]-maxV))/sigma)
sumexp = np.sum(np.exp((Vals - maxV) / sigma), axis=0)
LogSumV = np.log(sumexp)
LogSumV = maxV + sigma * LogSumV
return LogSumV | 18f71725ea4ced0ea5243fb201f25ae636547947 | 3,654,043 |
def comment_create(request, post_pk):
"""記事へのコメント作成"""
post = get_object_or_404(Post, pk=post_pk)
form = CommentForm(request.POST or None)
if request.method == 'POST':
comment = form.save(commit=False)
comment.post = post
comment.save()
return redirect('blog:post_detail', pk=post.pk)
context = {
'form': form,
'post': post
}
return render(request, 'blog/comment_form.html', context) | fe6357cfcff1a522064ad9f49b030cf63a02b575 | 3,654,044 |
import torch
def tensor_from_var_2d_list(target, padding=0.0, max_len=None, requires_grad=True):
"""Convert a variable 2 level nested list to a tensor.
e.g. target = [[1, 2, 3], [4, 5, 6, 7, 8]]
"""
max_len_calc = max([len(batch) for batch in target])
if max_len == None:
max_len = max_len_calc
if max_len_calc > max_len:
print("Maximum length exceeded: {}>{}".format(max_len_calc, max_len))
target = [batch[:max_len] for batch in target]
padded = [batch + (max_len - len(batch)) * [padding] for batch in target]
return torch.tensor(padded, requires_grad=requires_grad) | 2aa5fcc5b2be683c64026126da55330937cd8242 | 3,654,045 |
from web3.middleware import geth_poa_middleware
def make_w3(gateway_config=None):
"""
Create a Web3 instance configured and ready-to-use gateway to the blockchain.
:param gateway_config: Blockchain gateway configuration.
:type gateway_config: dict
:return: Configured Web3 instance.
:rtype: :class:`web3.Web3`
"""
if gateway_config is None or gateway_config['type'] == 'auto':
w3 = web3.Web3()
elif gateway_config['type'] == 'user':
request_kwargs = gateway_config.get('http_options', {})
w3 = web3.Web3(web3.Web3.HTTPProvider(gateway_config['http'], request_kwargs=request_kwargs))
elif gateway_config['type'] == 'infura':
request_kwargs = gateway_config.get('http_options', {})
project_id = gateway_config['key']
# project_secret = gateway_config['secret']
http_url = 'https://{}.infura.io/v3/{}'.format(gateway_config['network'], project_id)
w3 = web3.Web3(web3.Web3.HTTPProvider(http_url, request_kwargs=request_kwargs))
# https://web3py.readthedocs.io/en/stable/middleware.html#geth-style-proof-of-authority
if gateway_config.get('network', None) == 'rinkeby':
# This middleware is required to connect to geth --dev or the Rinkeby public network.
# inject the poa compatibility middleware to the innermost layer
w3.middleware_onion.inject(geth_poa_middleware, layer=0)
else:
raise RuntimeError('invalid blockchain gateway type "{}"'.format(gateway_config['type']))
return w3 | 85119161c7842319718e7075192b277f810b4328 | 3,654,046 |
def _log2_ratio_to_absolute(log2_ratio, ref_copies, expect_copies, purity=None):
"""Transform a log2 ratio to absolute linear scale (for an impure sample).
Does not round to an integer absolute value here.
Math::
log2_ratio = log2(ncopies / ploidy)
2^log2_ratio = ncopies / ploidy
ncopies = ploidy * 2^log2_ratio
With rescaling for purity::
let v = log2 ratio value, p = tumor purity,
r = reference ploidy, x = expected ploidy,
n = tumor ploidy ("ncopies" above);
v = log_2(p*n/r + (1-p)*x/r)
2^v = p*n/r + (1-p)*x/r
n*p/r = 2^v - (1-p)*x/r
n = (r*2^v - x*(1-p)) / p
If purity adjustment is skipped (p=1; e.g. if germline or if scaling for
heterogeneity was done beforehand)::
n = r*2^v
"""
if purity and purity < 1.0:
ncopies = (ref_copies * 2**log2_ratio - expect_copies * (1 - purity)
) / purity
else:
ncopies = _log2_ratio_to_absolute_pure(log2_ratio, ref_copies)
return ncopies | 939a9e4ccb0a1fe9c8c2e6f369bb23c556f04a14 | 3,654,047 |
def fixt():
"""
Create an Exchange object that will be re-used during testing.
"""
mesh = df.UnitCubeMesh(10, 10, 10)
S3 = df.VectorFunctionSpace(mesh, "DG", 0)
Ms = 1
A = 1
m = df.Function(S3)
exch = ExchangeDG(A)
exch.setup(S3, m, Ms)
return {"exch": exch, "m": m, "A": A, "S3": S3, "Ms": Ms} | 4e46550f1ef9e821e459612b82c0410b7459b09b | 3,654,048 |
def touch_emulator(ev, x, y):
"""
This emulates a touch-screen device, like a tablet or smartphone.
"""
if ev.type == pygame.MOUSEBUTTONDOWN:
if ev.button != 1:
return None, x, y
elif ev.type == pygame.MOUSEBUTTONUP:
if ev.button != 1:
return None, x, y
move = pygame.event.Event(pygame.MOUSEMOTION, { "pos" : (0, 0), "rel" : (0, 0), "buttons" : (0, 0, 0) })
renpy.display.interface.pushed_event = move
elif ev.type == pygame.MOUSEMOTION:
if not ev.buttons[0]:
x = 0
y = 0
elif ev.type == pygame.KEYDOWN:
if not ev.key in TOUCH_KEYS:
return None, x, y
elif ev.type == pygame.KEYUP:
if not ev.key in TOUCH_KEYS:
return None, x, y
return ev, x, y | 826b17c7bc9089acebdf3e1ea64fa0613e13e8ea | 3,654,049 |
import sys
def check_python_version() -> bool:
"""Check minimum Python version is being used.
Returns:
True if version is OK.
"""
if sys.version_info.major == 3 and sys.version_info.minor >= 6:
return True
logger.error(
"Aborting... Python version 3.6 or greater is required.\n"
f"Current Python version is {sys.version_info.major}.{sys.version_info.minor}."
)
return False | 3ca8296e72a380f86744460ec88cccae1fd58be4 | 3,654,050 |
def invert_dict(d):
"""
Invert dictionary by switching keys and values.
Parameters
----------
d : dict
python dictionary
Returns
-------
dict
Inverted python dictionary
"""
return dict((v, k) for k, v in d.items()) | c70bfdb5ffa96cf07b1a4627aa484e3d5d0f4fea | 3,654,051 |
def atom_present_in_geom(geom, b, tol=DEFAULT_SYM_TOL):
"""Function used by set_full_point_group() to scan a given geometry
and determine if an atom is present at a given location.
"""
for i in range(len(geom)):
a = [geom[i][0], geom[i][1], geom[i][2]]
if distance(b, a) < tol:
return True
return False | ad4afd6ca3d419b69ef502d64e3e66635485d340 | 3,654,052 |
import locale
def atof(value):
"""
locale.atof() on unicode string fails in some environments, like Czech.
"""
if isinstance(value, unicode):
value = value.encode("utf-8")
return locale.atof(value) | b0b2d2ea70c5e631ad2a1d25eb5c55d06cbdac1e | 3,654,053 |
def r_group_list(mol, core_mol):
"""
This takes a mol and the common core and finds all the R-groups by
replacing the atoms in the ligand (which make up the common core) with
nothing.
This fragments the ligand and from those fragments we are able to
determine what our R-groups are. for any common core atom which touched
the fragment a * will replace that atom in the fragments.
Inputs:
:param rdkit.Chem.rdchem.Mol mol: an rdkit molecule
:param rdkit.Chem.rdchem.Mol core_mol: an rdkit molecule for the shared
common core
Returns:
:returns: rdkit.Chem.rdchem.Mol replace_core_mol: an rdkit molecule with
the common core removed from a ligand fragments the mol which can be used
to make lists of R-groups
"""
# This returns all the mol frags for a particular compound against the
# core molecule
replace_core_mol = Chem.ReplaceCore(
mol, core_mol, labelByIndex=True, replaceDummies=True, requireDummyMatch=False
)
if len(replace_core_mol.GetAtoms()) == 0:
# This means that the mol either did not contain the core_mol or the
# core_mol is the same mol as the mol. ie) if mol_string
# ="[10000N-]=[10001N+]=[10002N][10003CH]1[10004O][10005CH]([10006CH2][10007OH])[10008CH]([10013OH])[10009CH]([10012OH])[10010CH]1[10011OH]"
# and core_string
# ="[10000NH]=[10001N+]=[10002N][10003CH]1[10004O][10005CH]([10006CH2][10007OH])[10008CH]([10013OH])[10009CH]([10012OH])[10010CH]1[10011OH]"
# the only difference is the H's which means it can be replaced within
# because its the same mol This is rare but does occur.
return None
return replace_core_mol | 16df0f54a5bf374bd1e77d3443baa42aab2dd231 | 3,654,054 |
def set_execution_target(backend_id='simulator'):
"""
Used to run jobs on a real hardware
:param backend_id: device name. List of available devices depends on the provider
example usage.
set_execution_target(backend_id='arn:aws:braket:::device/quantum-simulator/amazon/sv1')
"""
global device
if backend_id == None or backend_id == "":
device = None
elif backend_id == "simulator":
device = LocalSimulator()
else:
device = AwsDevice(backend_id)
if verbose:
print(f"... using Braket device = {device}")
# create an informative device name
device_name = device.name
device_str = str(device)
if device_str.find(":device/") > 0:
idx = device_str.rindex(":device/")
device_name = device_str[idx+8:-1]
metrics.set_plot_subtitle(f"Device = {device_name}")
return device | 2efb44723a804e39d998ddc3e7a7c3bdaa0440db | 3,654,055 |
def segregate(str):
"""3.1 Basic code point segregation"""
base = bytearray()
extended = set()
for c in str:
if ord(c) < 128:
base.append(ord(c))
else:
extended.add(c)
extended = sorted(extended)
return bytes(base), extended | e274393735bf4f1d51a75c73351848cbfdd5f81f | 3,654,056 |
def count_tetrasomic_indivs(lis) -> dict:
""" Count number of times that a chromosome is tetrasomic (present in four copies)
:returns counts_of_tetrasomic_chromosomes"""
counts_of_tetrasomic_chromosomes = {k: 0 for k in chr_range}
for kary_group in lis:
for index, chr_type in enumerate(chr_range):
if kary_group[index // 2].count(chr_type) == 4:
counts_of_tetrasomic_chromosomes[chr_type] += 1
return counts_of_tetrasomic_chromosomes | 598cd10bdbaeea061be0e259de756beba9d248b7 | 3,654,057 |
def make_image_grid(images: np.ndarray, nrow: int = 1) -> np.ndarray:
"""Concatenate multiple images into a single image.
Args:
images (np.array):
Images can be:
- A 4D mini-batch image of shape [B, C, H, W].
- A 3D RGB image of shape [C, H, W].
- A 2D grayscale image of shape [H, W].
nrow (int):
Number of images in each row of the grid. Final grid size is
`[B / nrow, nrow]`. Default: `1`.
Returns:
cat_image (np.ndarray):
Concatenated image.
"""
# NOTE: Type checking
if images.ndim == 3:
return images
# NOTE: Conversion (just for sure)
if is_channel_first(images):
images = to_channel_last(images)
b, c, h, w = images.shape
ncols = nrow
nrows = (b // nrow) if (b // nrow) > 0 else 1
cat_image = np.zeros((c, int(h * nrows), w * ncols))
for idx, im in enumerate(images):
j = idx // ncols
i = idx % ncols
cat_image[:, j * h: j * h + h, i * w: i * w + w] = im
return cat_image | 1b367392c275a44e5c23ce19c96f5727015285f5 | 3,654,058 |
def drive_time_shapes(drive_time):
"""Simplify JSON response into a dictionary of point lists."""
isochrones = {}
try:
for shape in drive_time['response']['isoline']:
uid = str(int(shape['range'] / 60)) + ' minutes'
points = shape['component'][0]['shape']
point_list = array_to_points(points)
isochrones[uid] = point_list
except KeyError:
print(drive_time)
return isochrones | f8f5074d5326ba598c083fdcc228bdfb69f427a5 | 3,654,059 |
def compute_transformation_sequence_case_1(cumprod, local_shape, ind,
sharded_leg_pos, pgrid):
"""
Helper function for `pravel`, see `pravel` for more details.
"""
ops = []
ndev = np.prod(pgrid)
if ndev % cumprod[ind - 1] != 0:
raise ValueError("reshaping not possible")
remainder = ndev // cumprod[ind - 1]
# the local leg has to be divisible by the remainder,
# otherwise we can't place the sharded legs that need to be
# localized at their respective positions
if local_shape[sharded_leg_pos] % remainder != 0:
raise ValueError(
f"tensor.shape[{sharded_leg_pos}] = {local_shape[sharded_leg_pos]}"
f" is not divisible by a local remainder of {remainder}. "
f"Try using a different shape for the input tensor")
if np.prod(local_shape[sharded_leg_pos:]) % remainder != 0:
raise ValueError("reshaping not possible 2")
# the first index group contains all legs that are going to be sharded
# the second index group contain is swapped with the currently sharded legs
# the third group remains unchanged
orig_left_shape = tuple(local_shape[:sharded_leg_pos],) + (remainder,)
orig_right_shape = (local_shape[sharded_leg_pos] // remainder,) + tuple(
local_shape[sharded_leg_pos + 1:])
shape_1 = orig_left_shape + (ndev,) + (np.prod(orig_right_shape) // ndev,)
ops.append(('reshape', [local_shape, shape_1]))
ops.append(('pswapaxes', {
'axis_name': AXIS_NAME,
'axis': sharded_leg_pos + 1
}))
# the previously sharded legs are now localized at position
# sharded_leg_pos + 1 we now split off the legs that need
# to be distributed again and move them to the right of their
# corresponding local legs
shape_2 = orig_left_shape + tuple(pgrid) + (
np.prod(orig_right_shape) // ndev,)
l = list(range(len(shape_2)))
left = l[:len(orig_left_shape)]
right = l[len(orig_left_shape):]
perm_1 = misc.flatten([[r, l] for l, r in zip(left, right[:len(left)])
]) + right[len(left):]
shape_3 = (np.prod(shape_2[:2 * len(orig_left_shape)]),) + tuple(
shape_2[2 * len(orig_left_shape):])
ops.append(('reshape', [shape_1, shape_2]))
ops.append(('transpose', perm_1))
perm_shape_2 = [shape_2[p] for p in perm_1]
ops.append(('reshape', [perm_shape_2, shape_3]))
ops.append(('pswapaxes', {'axis_name': AXIS_NAME, 'axis': 0}))
# swap the first local axis with the sharded one
# now we have the harded legs in the right order
# next we need to fix the order of the localized legs
perm_2 = list(range(1, len(
pgrid[sharded_leg_pos:]))) + [0] + [len(pgrid[sharded_leg_pos:])]
shape_4 = tuple(pgrid[sharded_leg_pos + 1:]) + orig_right_shape
ops.append(('transpose', perm_2))
perm_shape_3 = [shape_3[p] for p in perm_2]
ops.append(('reshape', [perm_shape_3, shape_4]))
p = len(pgrid[sharded_leg_pos + 1:])
left = list(range(p))
right = list(range(p + 1, len(shape_4)))
perm_3 = [p] + misc.flatten([[l, r] for l, r in zip(left, right[:len(left)])
]) + right[len(left):]
ops.append(('transpose', perm_3))
perm_shape_4 = [shape_4[p] for p in perm_3]
shape_5 = misc.maybe_ravel_shape(perm_shape_4)
ops.append(('reshape', [perm_shape_4, shape_5]))
return ops | 0f88967a2fcc132af753a2c5dfbf2a9b8087877a | 3,654,060 |
def fix_join_words(text: str) -> str:
"""
Replace all join ``urdu`` words with separate words
Args:
text (str): raw ``urdu`` text
Returns:
str: returns a ``str`` object containing normalized text.
"""
for key, value in WORDS_SPACE.items():
text = text.replace(key, value)
return text | a13040b420db5b0daf27f3a2f6a1e93a9188c312 | 3,654,061 |
def degree_of_appropriateness(attr_list,data_list,summarizers,summarizer_type,t3,letter_map_list,alpha_sizes,age,activity_level,flag=None,goals=None):
"""
Inputs:
- data: the database
- summarizer: the conclusive phrase of the summary
- summarizer_type: the type of summarizer
- t3: the degree of covering
- letter_map: a mapping from letters to integers
- alpha_size: the alphabet size
- age: the user's age
- activity_level: the user's activity level
Outputs: the degree of appropriateness
Purpose: to calculate the degree of appropriateness. The degree of appropriateness describes how characteristic for the particular database the summary found is. This helps avoid the output of trivial summaries
"""
# TODO: Factor this in once we have multiple attributes
#t4_list = []
# Day count
r_list = []
#print(data_list)
#input([summarizers,attr_list])
#print("degree")
#print(summarizers)
try:
n = len(data_list[0])
except TypeError:
data_list = [data_list]
n = len(data_list)
#if "Pattern Recognition" in summarizer_type:
#n = len(data_list)
#print(flag)
for j in range(len(summarizers)):
t_k = []
summarizer = summarizers[j]
for i in range(n):
#print(j,i)
if flag == "compare":
if (i == 0 and "Pattern Recognition" not in summarizer_type): #or ("Pattern Recognition" in summarizer_type and ((i+1)%2==0 or i == len(data_list[j])-1)):
continue
#print(i)
prev_letter = data_list[j][i-1]
curr_letter = data_list[j][i]
if "Pattern Recognition" in summarizer_type:
#print(data_list,j,i)
prev_letter = data_list[j][i][0]
curr_letter = data_list[j][i][1]
#print(prev_letter,curr_letter)
goal_list, conclusion_list = compare_SAX(attr_list[j],prev_letter,curr_letter,summarizer_type,letter_map_list[j])
conclusion = conclusion_list[0]
if "Pattern Recognition" in summarizer_type:
summarizer_map = { "better" : "rose",
"about the same" : "stayed the same",
"not do as well" : "dropped"}
conclusion = summarizer_map[conclusion_list[0]]
#print(prev_letter,curr_letter,conclusion,summarizer)
if conclusion == summarizer:
t_k.append(1)
else:
t_k.append(0)
elif flag == "compareHR":
#if i%7 != 0 or i < 7:
#continue
#curr_tw = data_list[j][i:i+7]
#last_tw = data_list[j][i-7:i]
if "Pattern Recognition" in summarizer_type:
last_tw = [data_list[j][i][0]]
curr_tw = [data_list[j][i][1]]
else:
curr_tw = [data_list[j][i]]
last_tw = [data_list[j][i-1]]
#print(curr_tw,last_tw,flag)
summary, conclusion, goal_list = comparison_TW_SAX_summary(summarizer_type,attr_list,last_tw,curr_tw,"weeks",letter_map_list,i-1,i,flag="eval")
#conclusion = compare_HR_TW(last_tw,curr_tw,age,activity_level)
conclusion_map = { 'lower' : 'dropped',
'higher' : 'rose',
'about the same' : 'stayed the same'}
#print(conclusion,summarizers)
#print(conclusion_map[conclusion[j]],summarizers[j])
if conclusion_map[conclusion[j]] == summarizer:
t_k.append(1)
else:
t_k.append(0)
elif flag == "compareACT":
if i==0:
continue
conclusion, pair_word = compareACT(data_list[j][i-1],data_list[j][i])
if summarizer == conclusion:
t_k.append(1)
else:
t_k.append(0)
elif flag == "HR" or (attr_list[j] == "Heart Rate" and "Trends" not in summarizer_type):
#print(hr_evaluation(data_list[j][i],age,activity_level),summarizer)
if hr_evaluation(data_list[j][i],age,activity_level) == summarizer:
t_k.append(1)
else:
t_k.append(0)
else:
curr_data = data_list[j][i]
if "If-then pattern" in summarizer_type:
start_index = 1
skip_index = 1
valid = True
extra = len(summarizer)
for k in range(start_index,len(summarizer)):
if i+k >= len(data_list[j]):
valid = False
break
#print(flag,summarizer,k,weekday_map)
if flag != None and summarizer[k] in weekday_map.keys():
#input(weekday_map.keys())
curr_data += str(weekday_map[flag[i+k]])
else:
curr_data += data_list[j][i+k]
if not valid or len(summarizer)==0:
continue
goal = None
if goals != None and None not in goals:
try:
goal = goals[j][i]
except IndexError:
#goal = goals[j]
try:
goal = goals[j]
except IndexError:
goals = goals[0]
try:
goal = goals[j][i]
except IndexError:
goal = goals[j]
#print(curr_data)
#print(summarizer_type)
#print(summarizer_type,summarizer,flag,goal,curr_data)
#input(get_muS(attr_list[j],summarizer_type,summarizer,curr_data,letter_map_list[j],alpha_sizes[j],flag=flag,goal_=goal))
if get_muS(attr_list[j],summarizer_type,summarizer,curr_data,letter_map_list[j],alpha_sizes[j],flag=flag,goal_=goal):
t_k.append(1)
else:
t_k.append(0)
#print(sum(t_k),len(t_k))
if sum(t_k)==0:
r_k = 1
else:
r_k = sum(t_k)/float(len(t_k))
#print(len(t_k),len(data_list[0]), t_k)
r_list.append(r_k)
#print(r_list,t3)
r = 1
for i in range(len(r_list)):
r *= r_list[i]
#print(r,t3)
return abs(r - t3) | 60e34efcd3ca45471acc53202d243f6e55813179 | 3,654,062 |
import statistics
def constitutive_exp_normalization_raw(gene_db,constitutive_gene_db,array_raw_group_values,exon_db,y,avg_const_exp_db):
"""normalize expression for raw expression data (only for non-baseline data)"""
#avg_true_const_exp_db[affygene] = [avg_const_exp]
temp_avg_const_exp_db={}
for probeset in array_raw_group_values:
conditions = len(array_raw_group_values[probeset][y]); break #number of raw expresson values to normalize
for affygene in gene_db:
###This is blank when there are no constitutive or the above condition is implemented
if affygene in constitutive_gene_db:
probeset_list = constitutive_gene_db[affygene]
z = 1
else: ###so we can analyze splicing independent of gene expression even if no 'gene' feature is present
probeset_list = gene_db[affygene]
z = 0
x = 0
while x < conditions:
### average all exp values for constitutive probesets for each conditionF
exp_list=[]
for probeset in probeset_list:
try: exp_val = array_raw_group_values[probeset][y][x] ### try statement is used for constitutive probes that were deleted due to filtering in performExpressionAnalysis
except KeyError: continue
exp_list.append(exp_val)
try: avg_const_exp = statistics.avg(exp_list)
except Exception: avg_const_exp = 'null'
if only_include_constitutive_containing_genes == 'yes' and avg_const_exp != 'null':
if z == 1:
try: avg_const_exp_db[affygene].append(avg_const_exp)
except KeyError: avg_const_exp_db[affygene] = [avg_const_exp]
try: temp_avg_const_exp_db[affygene].append(avg_const_exp)
except KeyError: temp_avg_const_exp_db[affygene] = [avg_const_exp]
elif avg_const_exp != 'null': ###***
try: avg_const_exp_db[affygene].append(avg_const_exp)
except KeyError: avg_const_exp_db[affygene] = [avg_const_exp]
try: temp_avg_const_exp_db[affygene].append(avg_const_exp)
except KeyError: temp_avg_const_exp_db[affygene] = [avg_const_exp]
x += 1
if analysis_method == 'ANOVA':
global normalized_raw_exp_ratios; normalized_raw_exp_ratios = {}
for affygene in gene_db:
probeset_list = gene_db[affygene]
for probeset in probeset_list:
while x < group_size:
new_ratios = [] ### Calculate expression ratios relative to constitutive expression
exp_val = array_raw_group_values[probeset][y][x]
const_exp_val = temp_avg_const_exp_db[affygene][x]
###Since the above dictionary is agglomerating all constitutive expression values for permutation,
###we need an unbiased way to grab just those relevant const. exp. vals. (hence the temp dictionary)
#non_log_exp_val = statistics.log_fold_conversion_fraction(exp_val)
#non_log_const_exp_val = statistics.log_fold_conversion_fraction(const_exp_val)
#non_log_exp_ratio = non_log_exp_val/non_log_const_exp_val
log_exp_ratio = exp_val - const_exp_val
try: normalized_raw_exp_ratios[probeset].append(log_exp_ratio)
except KeyError: normalized_raw_exp_ratios[probeset] = [log_exp_ratio]
return avg_const_exp_db | 38d5d39cb6a5532b84f08ddd0fbb27335e45897b | 3,654,063 |
def parse_rummager_topics(results):
"""
Parse topics from rummager results
"""
pages = []
for result in results:
pages.append(
Topic(
name=result['title'],
base_path=result['slug'],
document_type=DocumentType[result['format']]
)
)
return pages | d88355014c4a74e1ca7ca2ca1389850cba550612 | 3,654,064 |
def format_last_online(last_online):
"""
Return the upper limit in seconds that a profile may have been
online. If last_online is an int, return that int. Otherwise if
last_online is a str, convert the string into an int.
Returns
----------
int
"""
if isinstance(last_online, str):
if last_online.lower() in ('day', 'today'):
last_online_int = 86400 # 3600 * 24
elif last_online.lower() == 'week':
last_online_int = 604800 # 3600 * 24 * 7
elif last_online.lower() == 'month':
last_online_int = 2678400 # 3600 * 24 * 31
elif last_online.lower() == 'year':
last_online_int = 31536000 # 3600 * 365
elif last_online.lower() == 'decade':
last_online_int = 315360000 # 3600 * 365 * 10
else: # Defaults any other strings to last hour
last_online_int = 3600
else:
last_online_int = last_online
return last_online_int | 335ed9a37062964b785c75246c9f23f678b4a90e | 3,654,065 |
from datetime import datetime
import pkg_resources
import requests
import json
def get_currency_cross_historical_data(currency_cross, from_date, to_date, as_json=False, order='ascending', interval='Daily'):
"""
This function retrieves recent historical data from the introduced `currency_cross` from Investing
via Web Scraping. The resulting data can it either be stored in a :obj:`pandas.DataFrame` or in a
:obj:`json` file, with `ascending` or `descending` order.
Args:
currency_cross (:obj:`str`): name of the currency cross to retrieve recent historical data from.
from_date (:obj:`str`): date as `str` formatted as `dd/mm/yyyy`, from where data is going to be retrieved.
to_date (:obj:`str`): date as `str` formatted as `dd/mm/yyyy`, until where data is going to be retrieved.
as_json (:obj:`bool`, optional):
optional argument to determine the format of the output data (:obj:`pandas.DataFrame` or :obj:`json`).
order (:obj:`str`, optional):
optional argument to define the order of the retrieved data (`ascending`, `asc` or `descending`, `desc`).
interval (:obj:`str`, optional):
value to define the historical data interval to retrieve, by default `Daily`, but it can also be `Weekly` or `Monthly`.
Returns:
:obj:`pandas.DataFrame` or :obj:`json`:
The function returns a either a :obj:`pandas.DataFrame` or a :obj:`json` file containing the retrieved
recent data from the specified currency_cross via argument. The dataset contains the open, high, low, close and
volume values for the selected currency_cross on market days.
The return data is case we use default arguments will look like::
Date || Open | High | Low | Close | Currency
-----||------|------|-----|-------|---------
xxxx || xxxx | xxxx | xxx | xxxxx | xxxxxxxx
but if we define `as_json=True`, then the output will be::
{
name: name,
recent: [
dd/mm/yyyy: {
'open': x,
'high': x,
'low': x,
'close': x,
'currency' : x
},
...
]
}
Raises:
ValueError: argument error.
IOError: stocks object/file not found or unable to retrieve.
RuntimeError: introduced currency_cross does not match any of the indexed ones.
ConnectionError: if GET requests does not return 200 status code.
IndexError: if currency_cross information was unavailable or not found.
Examples:
>>> investpy.get_currency_cross_historical_data(currency_cross='EUR/USD', from_date='01/01/2018', to_date='01/01/2019')
Open High Low Close Currency
Date
2018-01-01 1.2003 1.2014 1.1995 1.2010 USD
2018-01-02 1.2013 1.2084 1.2003 1.2059 USD
2018-01-03 1.2058 1.2070 1.2001 1.2014 USD
2018-01-04 1.2015 1.2090 1.2004 1.2068 USD
2018-01-05 1.2068 1.2085 1.2021 1.2030 USD
"""
if not currency_cross:
raise ValueError("ERR#0052: currency_cross param is mandatory and should be a str.")
if not isinstance(currency_cross, str):
raise ValueError("ERR#0052: currency_cross param is mandatory and should be a str.")
try:
datetime.strptime(from_date, '%d/%m/%Y')
except ValueError:
raise ValueError("ERR#0011: incorrect data format, it should be 'dd/mm/yyyy'.")
try:
datetime.strptime(to_date, '%d/%m/%Y')
except ValueError:
raise ValueError("ERR#0011: incorrect data format, it should be 'dd/mm/yyyy'.")
start_date = datetime.strptime(from_date, '%d/%m/%Y')
end_date = datetime.strptime(to_date, '%d/%m/%Y')
if start_date >= end_date:
raise ValueError("ERR#0032: to_date should be greater than from_date, both formatted as 'dd/mm/yyyy'.")
if not isinstance(as_json, bool):
raise ValueError("ERR#0002: as_json argument can just be True or False, bool type.")
if order not in ['ascending', 'asc', 'descending', 'desc']:
raise ValueError("ERR#0003: order argument can just be ascending (asc) or descending (desc), str type.")
if not interval:
raise ValueError("ERR#0073: interval value should be a str type and it can just be either 'Daily', 'Weekly' or 'Monthly'.")
if not isinstance(interval, str):
raise ValueError("ERR#0073: interval value should be a str type and it can just be either 'Daily', 'Weekly' or 'Monthly'.")
if interval not in ['Daily', 'Weekly', 'Monthly']:
raise ValueError("ERR#0073: interval value should be a str type and it can just be either 'Daily', 'Weekly' or 'Monthly'.")
date_interval = {
'intervals': [],
}
flag = True
while flag is True:
diff = end_date.year - start_date.year
if diff > 20:
obj = {
'start': start_date.strftime('%m/%d/%Y'),
'end': start_date.replace(year=start_date.year + 20).strftime('%m/%d/%Y'),
}
date_interval['intervals'].append(obj)
start_date = start_date.replace(year=start_date.year + 20)
else:
obj = {
'start': start_date.strftime('%m/%d/%Y'),
'end': end_date.strftime('%m/%d/%Y'),
}
date_interval['intervals'].append(obj)
flag = False
interval_limit = len(date_interval['intervals'])
interval_counter = 0
data_flag = False
resource_package = 'investpy'
resource_path = '/'.join(('resources', 'currency_crosses', 'currency_crosses.csv'))
if pkg_resources.resource_exists(resource_package, resource_path):
currency_crosses = pd.read_csv(pkg_resources.resource_filename(resource_package, resource_path))
else:
raise FileNotFoundError("ERR#0060: currency_crosses file not found or errored.")
if currency_crosses is None:
raise IOError("ERR#0050: currency_crosses not found or unable to retrieve.")
currency_cross = currency_cross.strip()
currency_cross = currency_cross.lower()
if unidecode.unidecode(currency_cross) not in [unidecode.unidecode(value.lower()) for value in currency_crosses['name'].tolist()]:
raise RuntimeError("ERR#0054: the introduced currency_cross " + str(currency_cross) + " does not exists.")
id_ = currency_crosses.loc[(currency_crosses['name'].str.lower() == currency_cross).idxmax(), 'id']
name = currency_crosses.loc[(currency_crosses['name'].str.lower() == currency_cross).idxmax(), 'name']
currency = currency_crosses.loc[(currency_crosses['name'].str.lower() == currency_cross).idxmax(), 'second']
final = list()
header = name + ' Historical Data'
for index in range(len(date_interval['intervals'])):
interval_counter += 1
params = {
"curr_id": id_,
"smlID": str(randint(1000000, 99999999)),
"header": header,
"st_date": date_interval['intervals'][index]['start'],
"end_date": date_interval['intervals'][index]['end'],
"interval_sec": interval,
"sort_col": "date",
"sort_ord": "DESC",
"action": "historical_data"
}
head = {
"User-Agent": get_random(),
"X-Requested-With": "XMLHttpRequest",
"Accept": "text/html",
"Accept-Encoding": "gzip, deflate, br",
"Connection": "keep-alive",
}
url = "https://www.investing.com/instruments/HistoricalDataAjax"
req = requests.post(url, headers=head, data=params)
if req.status_code != 200:
raise ConnectionError("ERR#0015: error " + str(req.status_code) + ", try again later.")
root_ = fromstring(req.text)
path_ = root_.xpath(".//table[@id='curr_table']/tbody/tr")
result = list()
if path_:
for elements_ in path_:
info = []
for nested_ in elements_.xpath(".//td"):
info.append(nested_.get('data-real-value'))
if elements_.xpath(".//td")[0].text_content() == 'No results found':
if interval_counter < interval_limit:
data_flag = False
else:
raise IndexError("ERR#0055: currency_cross information unavailable or not found.")
else:
data_flag = True
if data_flag is True:
currency_cross_date = datetime.fromtimestamp(int(info[0]))
currency_cross_date = date(currency_cross_date.year, currency_cross_date.month, currency_cross_date.day)
currency_cross_close = float(info[1].replace(',', ''))
currency_cross_open = float(info[2].replace(',', ''))
currency_cross_high = float(info[3].replace(',', ''))
currency_cross_low = float(info[4].replace(',', ''))
result.insert(len(result),
Data(currency_cross_date, currency_cross_open, currency_cross_high, currency_cross_low,
currency_cross_close, None, currency))
if data_flag is True:
if order in ['ascending', 'asc']:
result = result[::-1]
elif order in ['descending', 'desc']:
result = result
if as_json is True:
json_ = {'name': name,
'historical':
[value.currency_cross_as_json() for value in result]
}
final.append(json_)
elif as_json is False:
df = pd.DataFrame.from_records([value.currency_cross_to_dict() for value in result])
df.set_index('Date', inplace=True)
final.append(df)
else:
raise RuntimeError("ERR#0004: data retrieval error while scraping.")
if as_json is True:
return json.dumps(final[0], sort_keys=False)
elif as_json is False:
return pd.concat(final) | 6a01f89b128842497e76d0a3497b204ac6641080 | 3,654,066 |
def load_target(target_name, base_dir, cloud=False):
"""load_target load target from local or cloud
Parameters
----------
target_name : str
target name
base_dir : str
project base directory
cloud : bool, optional
load from GCS, by default False
Returns
-------
y_train: pd.DataFrame
target data
"""
if cloud:
y_train = load_cloud_target(target_name, base_dir)
else:
y_train = load_local_target(target_name, base_dir)
return y_train | 2ea76be87afdf524b45f26e9f8271ec973e0951a | 3,654,067 |
def gradient(pixmap, ca, cb, eff, ncols):
""" Returns a gradient width the start and end colors.
eff should be Gradient.Vertical or Gradient.Horizontal
"""
x=0
y=0
rca = ca.red()
rDiff = cb.red() - rca
gca = ca.green()
gDiff = cb.green() - gca
bca = ca.blue()
bDiff = cb.blue() - bca
rl = rca << 16
gl = gca << 16
bl = bca << 16
if eff == Gradient.Vertical:
rcdelta = (1<<16) / (pixmap.height() * rDiff)
gcdelta = (1<<16) / (pixmap.height() * gDiff)
bcdelta = (1<<16) / (pixmap.height() * bDiff)
else:
print (1<<16) ,pixmap.width() * rDiff
rcdelta = (1<<16) / (pixmap.width() * rDiff)
gcdelta = (1<<16) / (pixmap.width() * gDiff)
bcdelta = (1<<16) / (pixmap.width() * bDiff)
p = QPainter(pixmap)
# these for-loops could be merged, but the if's in the inner loop
# would make it slow
if eff == Gradient.Vertical:
for y in range(pixmap.height()):
rl += rcdelta
gl += gcdelta
bl += bcdelta
p.setPen(QColor(rl>>16, gl>>16, bl>>16))
p.drawLine(0, y, pixmap.width()-1, y)
else:
for x in pixmap.width():
rl += rcdelta
gl += gcdelta
bl += bcdelta
p.setPen(QColor(rl>>16, gl>>16, bl>>16))
p.drawLine(x, 0, x, pixmap.height()-1)
return pixmap | 63406959617a7192c35e05b8efc81dcedfa7d54a | 3,654,068 |
def option_to_text(option):
"""Converts, for example, 'no_override' to 'no override'."""
return option.replace('_', ' ') | 4b7febe0c4500aa23c368f83bbb18902057dc378 | 3,654,069 |
def login(email, password):
"""
:desc: Logs a user in.
:param: email - Email of the user - required
password - Password of the user - required
:return: `dict`
"""
if email == '' or password == '':
return {'success': False, 'message': 'Email/Password field left blank.'}
resp = {'success': False}
data = {'email': email, 'password': password}
session = get_session()
session.cookies = LWPCookieJar(filename=COOKIES_FILE_PATH)
resp_obj = session.post(LOGIN_URL, data=data)
if resp_obj.status_code == 200:
if resp_obj.url == BASE_URL:
session.cookies.save(ignore_expires=True, ignore_discard=True)
resp['success'] = True
resp['message'] = 'Successfully Logged In!'
else:
resp['message'] = 'Incorrect credentials'
else:
resp['message'] = 'Stackoverflow is probably down. Please try again.'
return resp | 3ea350984d2c4206d66136e283b4784e08606352 | 3,654,070 |
def _cons8_89(m8, L88, L89, d_gap, k, Cp, h_gap):
"""dz constrant for edge gap sc touching edge, corner gap sc"""
term1 = 2 * h_gap * L88 / m8 / Cp # conv to inner/outer ducts
term2 = k * d_gap / m8 / Cp / L88 # cond to adj bypass edge
term3 = k * d_gap / m8 / Cp / L89 # cond to adj bypass corner
return 1 / (term1 + term2 + term3) | b6e8b6331be394e9a10659029143997b097fae86 | 3,654,071 |
def categories_split(df):
""" Separate the categories in their own columns. """
ohe_categories = pd.DataFrame(df.categories.str.split(';').apply(
lambda x: {e.split('-')[0]: int(e.split('-')[1]) for e in x}).tolist())
return df.join(ohe_categories).drop('categories', axis=1) | 93e6b1dc384162b63fbf5775d168c0e693829f97 | 3,654,072 |
def build_received_request(qparams, variant_id=None, individual_id=None, biosample_id=None):
""""Fills the `receivedRequest` part with the request data"""
request = {
'meta': {
'requestedSchemas' : build_requested_schemas(qparams),
'apiVersion' : qparams.apiVersion,
},
'query': build_received_query(qparams, variant_id, individual_id, biosample_id),
}
return request | bfb0131f3ead563ffd1840119b6f7297a466d4dc | 3,654,073 |
def is_router_bgp_configured_with_four_octet(
device, neighbor_address, vrf, max_time=35, check_interval=10
):
""" Verifies that router bgp has been enabled with four
octet capability and is in the established state
Args:
device('obj'): device to check
vrf('vrf'): vrf to check under
neighbor_address('str'): neighbor address to match
max_time('int'): maximum time to wait
check_interval('int'): how often to check
Returns:
True
False
Raise:
None
"""
log.info(
"Verifying {} has bgp configured with four octet capability".format(
device.hostname
)
)
timeout = Timeout(max_time, check_interval)
while timeout.iterate():
out = device.parse("show ip bgp neighbors")
if out:
if vrf in out.get("vrf", {}):
for neighbor in out["vrf"][vrf].get("neighbor", {}):
if neighbor_address in neighbor:
neighbor_dict = out["vrf"][vrf]["neighbor"][neighbor]
if (
"established"
in neighbor_dict.get("session_state", "").lower()
):
if "bgp_negotiated_capabilities" in neighbor_dict and "advertised and received" in neighbor_dict[
"bgp_negotiated_capabilities"
].get(
"four_octets_asn", ""
):
return True
timeout.sleep()
return False | 870600a1a5c68d5a4080d8a18966ddc107ae8a72 | 3,654,074 |
import os
import pickle
def validate(i):
"""
Input: {
model_name - model name:
earth
lm
nnet
party
randomforest
rpart
svm
model_file - file with model (object) code
features_table - features table (in experiment module format)
(keep_temp_files) - if 'yes', keep temp files
}
Output: {
return - return code = 0, if successful
> 0, if error
(error) - error text if return > 0
prediction_table - experiment table with predictions
}
"""
mn=i['model_name']
mf=i['model_file']
mf1=i['model_file']+'.model.obj'
mf7=i['model_file']+'.model.decision_tree.json'
ftable=i['features_table']
ktf=i.get('keep_temp_files','')
lftable=len(ftable)
# Convert categorical features to floats
r=convert_categories_to_floats({'table':ftable})
if r['return']>0: return r
fconv=r['conv']
fconv1=r['conv1']
ftable1=r['table']
lt=[]
# Load model object
f=open(mf1, 'rb')
clf=pickle.load(f)
f.close()
sx=''
#############################################################
if mn=='dtc' or mn=='dtr':
pr=clf.predict(ftable1)
# Check if CK decision tree file exists
if os.path.isfile(mf7):
r=ck.load_json_file({'json_file':mf7})
if r['return']>0: return r
labels=r['dict']
prx=[]
q=-1
for ft in ftable1:
q+=1
found=False
value=False
for label in labels:
p=labels[label]
dd=p['decision']
dv=p['value']
skip=False
for k in range(0,len(dd),2):
x=dd[k]
y=dd[k+1]
yc=y['comparison']
yf=int(y['feature'])
yv=float(y['value'])
if yc!='<=': return {'return':1, 'error':'not yet supported condition '+yc+' in decision tree'}
if x=='':
if not ft[yf]<=yv: skip=True
else:
if ft[yf]<=yv: skip=True
if skip: break
if not skip:
found=True
if dv=='true': value=True
else: value=False
break
if not found:
return {'return':1, 'error':'decision tree is incomplete'}
lt.append(label)
# print '**********'
# for z in range(0, len(ftable1[q])):
# zx=ftable1[q][z]
# print 'X['+str(z)+']='+str(zx)
else:
return {'return':1, 'error':'model name '+mn+' is not found in module model.sklearn'}
pr1=[]
for q in pr:
pr1.append([q])
lt1=[]
for q in lt:
lt1.append([q])
return {'return':0, 'prediction_table':pr1, 'label_table':lt1} | 733de640d864d1484753e459eb3c352201546dd4 | 3,654,075 |
import six
def cluster_absent(
name='localhost',
quiet=None):
"""
Machine is not running as a cluster node
quiet:
execute the command in quiet mode (no output)
"""
ret = {'name': name,
'changes': {},
'result': False,
'comment': ''}
if __salt__['crm.status']():
ret['result'] = True
ret['comment'] = 'Cluster is already not running'
return ret
if __opts__['test']:
ret['result'] = None
ret['comment'] = 'Cluster node {} would be removed'.format(name)
ret['changes']['name'] = name
return ret
try:
# Here starts the actual process
result = __salt__['crm.cluster_remove'](
host=name,
force=True,
quiet=quiet)
if result:
ret['changes']['name'] = name
ret['comment'] = 'Error removing cluster node'
ret['result'] = False
return ret
ret['changes']['name'] = name
ret['comment'] = 'Cluster node removed'
ret['result'] = True
return ret
except exceptions.CommandExecutionError as err:
ret['comment'] = six.text_type(err)
return ret | f19c4c18cd0812ee2f4426a458cfb49e4faba5e0 | 3,654,076 |
def link_symbols_in_code_blocks(path, blocks, symbols):
"""Link symbols appearing a sequence of blocks."""
return [link_symbols_in_code_block(path, block, symbols)
for block in blocks] | 4185e9a1c9b0c8ff2748e80390763b089e9f8831 | 3,654,077 |
def cem_model_factory(
env, network=mlp, network_params={},
input_shape=None,
min_std=1e-6, init_std=1.0, adaptive_std=False,
model_file_path=None, name='cem'):
"""
Model for gradient method
"""
def build_graph(model, network=network,
input_shape=input_shape,
network_params=network_params):
policy = make_policy(
env, 'pi', model, network_params=network_params,
input_shape=input_shape,
init_std=init_std, adaptive_std=adaptive_std,
min_std=min_std, network=network)
model['policy'] = policy
model.add_output_node(policy.distribution.output_node)
var_list = policy.get_trainable_variables()
shapes = map(tf_utils.var_shape, var_list)
total_size = sum(np.prod(shape) for shape in shapes)
model['theta'] = tf.placeholder(tf.float32, [total_size])
var_list = policy.get_trainable_variables()
model['gf'] = tf_utils.flatten_vars(var_list)
model['sff'] = tf_utils.setfromflat(var_list, model['theta'])
if model_file_path is not None:
return Model.load(model_file_path, name)
return Model(env, build_graph,
empty_feed_dict, name=name) | e9327a4f3711e19e71cc16658d6e93acba29da47 | 3,654,078 |
def get_job(job_id: UUID) -> Job:
"""
Get job by ID.
Args:
job_id (UUID): ID of the job to be returned.
Returns:
Job
"""
return JobRepository.get_one_by_id(model_id=job_id) | 53e70843ce18e77b17e79bac83ba0225d6087e23 | 3,654,079 |
import os
def set_job_dirs():
"""Sets job directories based on env variables set by Vertex AI."""
model_dir = os.getenv('AIP_MODEL_DIR', LOCAL_MODEL_DIR)
if model_dir[0:5] == 'gs://':
model_dir = model_dir.replace('gs://', '/gcs/')
checkpoint_dir = os.getenv('AIP_CHECKPOINT_DIR', LOCAL_CHECKPOINT_DIR)
if checkpoint_dir[0:5] == 'gs://':
checkpoint_dir = checkpoint_dir.replace('gs://', '/gcs/')
return model_dir, checkpoint_dir | 93d9a648c7cc89cb5bc316e0e798e8f09ea3c8b9 | 3,654,080 |
import pytz
def localize_datetime(input_df, timezone=DEFAULT_TIMEZONE,
tms_gmt_col=DEFAULT_TMS_GMT_COL):
"""
Convert datetime column from UTC to another timezone.
"""
tmz = pytz.timezone(timezone)
df = input_df.copy()
return (df.set_index(tms_gmt_col)
.tz_localize(pytz.utc) # UTC time
.tz_convert(tmz)) | 0d6f8638199f0ccfcf61e025b38dbe84d9eab8ff | 3,654,081 |
import contextlib
import socket
def get_available_port() -> int:
"""Finds and returns an available port on the system."""
with contextlib.closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
sock.bind(('', 0))
_, port = sock.getsockname()
return int(port) | c86de127fb237662052b8ce010e99d271836e1ef | 3,654,082 |
def prettyprint_float(val, digits):
"""Print a floating-point value in a nice way."""
format_string = "%." + f"{digits:d}" + "f"
return (format_string % val).rstrip("0").rstrip(".") | ba62671d9cb8061744fbf1e070e76c31d0ba185d | 3,654,083 |
from typing import Any
from typing import Dict
def year_page(archive_id: str, year: int) -> Any:
"""
Get year page for archive.
Parameters
----------
archive : str
Must be an arXiv archive identifier.
year: int
Must be a two or four digit year.
Returns
-------
dict
Search result response data.
int
HTTP status code.
dict
Headers to add to the response.
"""
thisYear = date.today().year
if year is None:
year = thisYear
if year > thisYear:
# 307 because year might be valid in the future
return {}, status.HTTP_307_TEMPORARY_REDIRECT, {'Location': '/'}
if year < 100:
if year >= 91:
year = 1900 + year
else:
year = 2000 + year
if archive_id not in taxonomy.ARCHIVES:
raise BadRequest("Unknown archive.")
else:
archive = taxonomy.ARCHIVES[archive_id]
listing_service = get_listing_service()
month_listing = listing_service.monthly_counts(archive_id, year)
for month in month_listing['month_counts']:
month['art'] = ascii_art_month(archive_id, month) # type: ignore
month['yymm'] = f"{month['year']}-{month['month']:02}" # type: ignore
month['url'] = url_for('browse.list_articles', # type: ignore
context=archive_id,
subcontext=f"{month['year']}{month['month']:02}")
response_data: Dict[str, Any] = {
'archive_id': archive_id,
'archive': archive,
'months': month_listing['month_counts'],
'listing': month_listing,
'year': str(year),
'stats_by_year': stats_by_year(archive_id, archive, years_operating(archive), year)
}
response_headers: Dict[str, Any] = {}
response_status = status.HTTP_200_OK
return response_data, response_status, response_headers | 9bd609718d782d3cca185929ebacebd0e353bb10 | 3,654,084 |
import scipy
def vert_polyFit2(data, z, bin0, step=1, deg=2):
"""
Trying to use the vertical polynomial fit to clean up the data
not reallly sure about what im doing though
"""
data = np.squeeze(data)
z = np.squeeze(z)
dz = np.nanmean(np.gradient(np.squeeze(z)))
bin1 = int(np.ceil(bin0/dz))
fits = []
zFits = []
bins = []
for i in range(len(z)):
if 2*i+bin1 < len(z):
bins.append(np.arange(i,2*i+bin1+1))
mask = np.isfinite(data[i:2*i+bin1])
dataIn = data[i:2*i+bin1]
zIn = z[i:2*i+bin1]
dataIn = dataIn[mask]
if dataIn.size == 0:
fits.append(np.nan)
zFits.append(np.nan)
else:
zIn = zIn[mask]
zFits.append(np.nanmean(z[i:2*i+bin1]))
p = scipy.polyfit(zIn, dataIn, deg)
fits.append(np.nanmean(scipy.polyval(p, z[i:2*i+bin1][mask])))
fits = np.hstack(fits)
zFits = np.hstack(zFits)
mask2 = np.isfinite(fits)
P = scipy.interpolate.interp1d(zFits[mask2], fits[mask2], fill_value='extrapolate')
fitrev = P(z)
return fitrev | ceeeac26b9eba625164a055deb96741c6d99702e | 3,654,085 |
def is_downloadable(url):
"""
Does the url contain a downloadable resource
"""
h = requests.head(url, allow_redirects=True)
header = h.headers
content_type = header.get('content-type')
print content_type
if 'text' in content_type.lower():
return False
if 'html' in content_type.lower():
return False
return True | 74ccff9d967a3763c852a23d8775970ac9ff9e10 | 3,654,086 |
def dataframe_is_one_query_target_pair(dataframe):
"""
make sure there is only one query sequence and reference sequence in the
given dataframe. Used to check that we aren't aggregating % identity
numbers across bin alignment pairs.
:param dataframe:
:return:
"""
num_query_bins = len(dataframe['query bin'].unique())
num_ref_bins = len(dataframe['ref bin'].unique())
if not num_query_bins == 1:
"Dataframe has a mix of {} query bins: {}".format(
num_query_bins, dataframe['query bin'].unique())
if not num_ref_bins == 1:
"Dataframe has a mix of {} reference bins: {}".format(
num_query_bins, dataframe['ref bin'].unique())
if (num_query_bins == 1) & (num_ref_bins == 1):
return True
else:
return False | 8a8aba9f4b2eaaca6971bf5c158d043a033d0ec8 | 3,654,087 |
def update_api_key(
self,
name: str,
permission: str,
expiration: int,
active: bool,
key: str = None,
description: str = None,
ip_list: str = None,
) -> bool:
"""Update existing API key on Orchestrator
.. list-table::
:header-rows: 1
* - Swagger Section
- Method
- Endpoint
* - apiKey
- PUT
- /apiKey/{name}
:param name: API Key Name
:type name: str
:param permission: API Key privileges. Allowed values are
'net_read_write' for RW and 'net_read" for RO
:type permission: str
:param expiration: API Key expiration in UNIX timestamp. Key will
automatically become inactive on expiration date.
:type expiration: int
:param active: API Key state is active (True) or inactive (False).
Inactive keys cannot be used to make requests.
:type active: bool
:param key: API Key value, defaults to None
:type key: str, optional
:param description: API Key description, defaults to None
:type description: str, optional
:param ip_list: List of allowed IP's to make requests with this API
Key. Leave blank to allow all IP's. OptionalAPI Key state is
active (True) or inactive (False). Inactive keys cannot be used
to make requests, defaults to None
:type ip_list: str
:return: Returns True/False based on successful call
:rtype: bool
"""
api_key_entry = {
"name": name,
"permission": permission,
"expiration": expiration,
"active": active,
}
if key is not None:
api_key_entry["key"] = key
if description is not None:
api_key_entry["description"] = description
if ip_list is not None:
api_key_entry["ip_list"] = ip_list
return self._put(
"/apiKey/{}".format(name),
data=api_key_entry,
expected_status=[204],
return_type="bool",
) | 9e37062475c3b83ab86c51355442cf6de0df1c34 | 3,654,088 |
def cleanGender(x):
"""
This is a helper funciton that will help cleanup the gender variable.
"""
if x in ['female', 'mostly_female']:
return 'female'
if x in ['male', 'mostly_male']:
return 'male'
if x in ['couple'] :
return 'couple'
else:
return 'unknownGender' | 23d71f2307aa829312f4a1d2a002ae2b55556050 | 3,654,089 |
def get_servers():
"""
Retrieve all the discord servers in the database
:return: List of servers
"""
session = Session()
servers = session.query(Server).all()
return servers | 3953867d18c2e282ee11190a3ee1303126b2394e | 3,654,090 |
def wait_till_postgres_responsive(url):
"""Check if something responds to ``url`` """
engine = sa.create_engine(url)
conn = engine.connect()
conn.close()
return True | 645c98799fa7d0347fc52850b7f3813fec74968c | 3,654,091 |
def get_string_display(attr1, attr2, helper1, helper2, attribute_mode):
"""
get the attribute mode for string
attribute mode can be:
'base', 'full', 'partial', 'masked'
Note that some attribute does not have partial mode, in this case, partial mode will return masked mode
Remeber to call has_partial_mode function to check if it actually has partial mode!
Example:
Input:
attr1: '1000151475'
attr2: '1000151575'
helper1: '*******4**'
helper2: '*******5**'
attribute_mode: 'partial'
Output:
['*******<span style="color:red">4</span>**', '*******<span style="color:red">5</span>**']
"""
if attribute_mode == 'base':
attr1_display = attr1
attr2_display = attr2
return [attr1_display, attr2_display]
elif attribute_mode == 'full':
if not attr1 or not attr2:
if not attr1:
attr1_display = '<img src="../static/images/site/missing.png" alt="missing" class="missing_icon">'
else:
attr1_display = attr1
if not attr2:
attr2_display = '<img src="../static/images/site/missing.png" alt="missing" class="missing_icon">'
else:
attr2_display = attr2
else:
if '*' not in helper1 and '*' not in helper2:
attr1_display = attr1
attr2_display = attr2
else:
attr1_display = ''
attr2_display = ''
i = 0
j = 0
k = 0
while k < len(helper1):
if helper1[k] == '*':
attr1_display += attr1[i]
attr2_display += attr2[j]
k += 1
i += 1
j += 1
elif k+1 < len(helper1) and i+1 < len(attr1) and j+1 < len(attr2) and \
helper1[k] not in ['*', '_', '?'] and helper1[k+1] not in ['*', '_', '?'] and attr1[i] == attr2[j+1] and attr1[i+1] == attr2[j]:
attr1_display += '<span class="transpose_text">' + attr1[i] + attr1[i+1] + '</span>'
attr2_display += '<span class="transpose_text">' + attr2[j] + attr2[j+1] + '</span>'
k += 2
i += 2
j += 2
elif helper1[k] == '_' or helper1[k] == '?':
attr2_display += '<span class="indel_text">' + attr2[j] + '</span>'
k += 1
j += 1
elif helper2[k] == '_' or helper2[k] == '?':
attr1_display += '<span class="indel_text">' + attr1[i] + '</span>'
k += 1
i += 1
else:
attr1_display += '<span class="replace_text">' + attr1[i] + '</span>'
attr2_display += '<span class="replace_text">' + attr2[j] + '</span>'
k += 1
i += 1
j += 1
return [attr1_display, attr2_display]
elif attribute_mode == 'partial':
if not attr1 or not attr2:
if not attr1:
attr1_display = '<img src="../static/images/site/missing.png" alt="missing" class="missing_icon">'
else:
attr1_display = '*'*len(attr1)
if not attr2:
attr2_display = '<img src="../static/images/site/missing.png" alt="missing" class="missing_icon">'
else:
attr2_display = '*'*len(attr2)
else:
if '*' not in helper1 and '*' not in helper2:
attr1_display = len(attr1)*'@'
attr2_display = len(attr2)*'&'
elif helper1 == helper2:
attr1_display = '<img src="../static/images/site/checkmark.png" alt="checkmark" class="freq_icon">'
attr2_display = '<img src="../static/images/site/checkmark.png" alt="checkmark" class="freq_icon">'
else:
attr1_display = ''
attr2_display = ''
i = 0
j = 0
k = 0
while k < len(helper1):
if helper1[k] == '*':
attr1_display += '*'
attr2_display += '*'
k += 1
i += 1
j += 1
elif k+1 < len(helper1) and i+1 < len(attr1) and j+1 < len(attr2) and \
helper1[k] not in ['*', '_', '?'] and helper1[k+1] not in ['*', '_', '?'] and attr1[i] == attr2[j+1] and attr1[i+1] == attr2[j]:
attr1_display += '<span class="transpose_text">' + attr1[i] + attr1[i+1] + '</span>'
attr2_display += '<span class="transpose_text">' + attr2[j] + attr2[j+1] + '</span>'
k += 2
i += 2
j += 2
elif helper1[k] == '_' or helper1[k] == '?':
attr2_display += '<span class="indel_text">' + attr2[j] + '</span>'
k += 1
j += 1
elif helper2[k] == '_' or helper2[k] == '?':
attr1_display += '<span class="indel_text">' + attr1[i] + '</span>'
k += 1
i += 1
else:
attr1_display += '<span class="replace_text">' + attr1[i] + '</span>'
attr2_display += '<span class="replace_text">' + attr2[j] + '</span>'
k += 1
i += 1
j += 1
return [attr1_display, attr2_display]
elif attribute_mode == 'masked':
if not attr1 or not attr2:
if not attr1:
attr1_display = '<img src="../static/images/site/missing.png" alt="missing" class="missing_icon">'
else:
attr1_display = '*'*len(attr1)
if not attr2:
attr2_display = '<img src="../static/images/site/missing.png" alt="missing" class="missing_icon">'
else:
attr2_display = '*'*len(attr2)
else:
if '*' not in helper1 and '*' not in helper2:
attr1_display = len(attr1)*'@'
attr2_display = len(attr2)*'&'
elif helper1 == helper2:
attr1_display = '<img src="../static/images/site/checkmark.png" alt="checkmark" class="freq_icon">'
attr2_display = '<img src="../static/images/site/checkmark.png" alt="checkmark" class="freq_icon">'
else:
attr1_display = ''
attr2_display = ''
i = 0
j = 0
k = 0
while k < len(helper1):
if helper1[k] == '*':
attr1_display += '*'
attr2_display += '*'
k += 1
i += 1
j += 1
elif k+1 < len(helper1) and i+1 < len(attr1) and j+1 < len(attr2) and \
helper1[k] not in ['*', '_', '?'] and helper1[k+1] not in ['*', '_', '?'] and attr1[i] == attr2[j+1] and attr1[i+1] == attr2[j]:
attr1_display += '<span class="transpose_text">' + '@&' + '</span>'
attr2_display += '<span class="transpose_text">' + '&@' + '</span>'
k += 2
i += 2
j += 2
elif helper1[k] == '_' or helper1[k] == '?':
attr2_display += '<span class="indel_text">' + '&' + '</span>'
k += 1
j += 1
elif helper2[k] == '_' or helper2[k] == '?':
attr1_display += '<span class="indel_text">' + '@' + '</span>'
k += 1
i += 1
else:
attr1_display += '<span class="replace_text">' + '@' + '</span>'
attr2_display += '<span class="replace_text">' + '&' + '</span>'
k += 1
i += 1
j += 1
return [attr1_display, attr2_display] | fa61332f82310ece349309f378126a4b3179483f | 3,654,092 |
import re
def is_doi(identifier: str) -> bool:
"""Validates if identifier is a valid DOI
Args:
identifier (str): potential doi string
Returns:
bool: true if identifier is a valid DOI
"""
doi_patterns = [
r"(10[.][0-9]{4,}(?:[.][0-9]+)*/(?:(?![\"&\'])\S)+)",
r"(10.\d{4,9}/[-._;()/:A-Z0-9]+)",
r"(10.\d{4}/\d+-\d+X?(\d+)\d+<[\d\w]+:[\d\w]*>\d+.\d+.\w+;\d)",
r"(10.1021/\w\w\d+)",
r"(10.1207/[\w\d]+\&\d+_\d+)",
]
for pattern in doi_patterns:
match = bool(re.match(pattern, identifier))
if match:
return True
return False | 5c0bfe0527adbf53e89d302ee05feb80d285db64 | 3,654,093 |
def meshgrid_flatten(*X):
"""
Functionally same as numpy.meshgrid() with different output
format. Function np.meshgrid() takes n 1d ndarrays of size
N_1,...,N_n, and returns X_1,...,X_n n-dimensional arrays of shape
(N_1, N_2,... N_n). This returns instead a 2d array of shape
(N_1*...*N_n, n).
"""
if len(X) == 1: # Because np.meshgrid() can't handle
return np.array([X[0]]).T # less than 2 arguments
return np.vstack(
map(lambda x: x.flatten(), mylib_meshgrid.meshgrid(*X, indexing='ij'))
).T | a7136a7a4dadb6449fd5079c78f15b13da3721dd | 3,654,094 |
from typing import Union
import copy
def transform_scale(
features,
factor: float,
origin: Union[str, list] = "centroid",
mutate: bool = False,
):
"""
Scale a GeoJSON from a given
point by a factor of scaling
(ex: factor=2 would make the GeoJSON 200% larger).
If a FeatureCollection is provided, the origin
point will be calculated based on each individual Feature.
:param features: GeoJSON to be scaled
:param factor: of scaling, positive or negative values greater than 0
:param origin: Point from which the scaling will occur
(string options: sw/se/nw/ne/center/centroid)
:param mutate: allows GeoJSON input to be mutated
(significant performance increase if true)
:return: Scaled Geojson
Example :-
>>> from turfpy.transformation import transform_scale
>>> from geojson import Polygon, Feature
>>> f = Feature(geometry=Polygon([[[0,29],[3.5,29],[2.5,32],[0,29]]]))
>>> transform_scale(f, 3, origin=[0, 29])
"""
if not features:
raise Exception("geojson is required")
if not factor:
raise Exception("invalid factor")
if not mutate:
features = copy.deepcopy(features)
if features["type"] == "FeatureCollection":
def _callback_feature_each(feature, feature_index):
nonlocal factor, origin, features
features["features"][feature_index] = scale(feature, factor, origin)
feature_each(features, _callback_feature_each)
return features
return scale(features, factor, origin) | bacc6a365dbed0531d4516a736dd9ca2937b8cad | 3,654,095 |
import importlib
def create_agent(opt):
"""Create an agent from the options model, model_params and model_file.
The input is either of the form "parlai.agents.ir_baseline.agents/IrBaselineAgent"
(i.e. the path followed by the class name) or else just 'IrBaseline' which
assumes the path above, and a class name suffixed with 'Agent'
"""
dir_name = opt['model']
if ':' in dir_name:
s = dir_name.split(':')
module_name = s[0]
class_name = s[1]
else:
module_name = "parlai.agents.%s.agents" % (dir_name)
words = opt['model'].split('_')
class_name = ''
for w in words:
class_name += ( w[0].upper() + w[1:])
class_name += 'Agent'
print(class_name)
my_module = importlib.import_module(module_name)
model_class = getattr(my_module, class_name)
return model_class(opt) | 6f5793ee0af7ed677f47c27ba5b94ad6f80ea957 | 3,654,096 |
def check_version(actver, version, cmp_op):
"""
Check version string of an active module against a required version.
If dev/prerelease tags result in TypeError for string-number comparison,
it is assumed that the dependency is satisfied.
Users on dev branches are responsible for keeping their own packages up to
date.
Copyright (C) 2013 The IPython Development Team
Distributed under the terms of the BSD License.
"""
if isinstance(actver, tuple):
actver = '.'.join([str(i) for i in actver])
# Hacks needed so that LooseVersion understands that (for example)
# version = '3.0.0' is in fact bigger than actver = '3.0.0rc1'
if is_stable_version(version) and not is_stable_version(actver) and \
actver.startswith(version) and version != actver:
version = version + 'zz'
elif is_stable_version(actver) and not is_stable_version(version) and \
version.startswith(actver) and version != actver:
actver = actver + 'zz'
try:
if cmp_op == '>':
return LooseVersion(actver) > LooseVersion(version)
elif cmp_op == '>=':
return LooseVersion(actver) >= LooseVersion(version)
elif cmp_op == '=':
return LooseVersion(actver) == LooseVersion(version)
elif cmp_op == '<':
return LooseVersion(actver) < LooseVersion(version)
elif cmp_op == '<=':
return LooseVersion(actver) <= LooseVersion(version)
else:
return False
except TypeError:
return True | 4d2cf92c412659044ad226aeeadb9145ceb75241 | 3,654,097 |
def dfa_intersection(dfa_1: dict, dfa_2: dict) -> dict:
""" Returns a DFA accepting the intersection of the DFAs in
input.
Let :math:`A_1 = (Σ, S_1 , s_{01} , ρ_1 , F_1 )` and
:math:`A_2 = (Σ, S_2 , s_{02} , ρ_2 , F_2 )` be two DFAs.
Then there is a DFA :math:`A_∧` that runs simultaneously both
:math:`A_1` and :math:`A_2` on the input word and
accepts when both accept.
It is defined as:
:math:`A_∧ = (Σ, S_1 × S_2 , (s_{01} , s_{02} ), ρ, F_1 × F_2 )`
where
:math:`ρ((s_1 , s_2 ), a) = (s_{X1} , s_{X2} )` iff
:math:`s_{X1} = ρ_1 (s_1 , a)` and :math:`s_{X2}= ρ_2 (s_2 , a)`
Implementation proposed guarantees the resulting DFA has only
**reachable** states.
:param dict dfa_1: first input DFA;
:param dict dfa_2: second input DFA.
:return: *(dict)* representing the intersected DFA.
"""
intersection = {
'alphabet': dfa_1['alphabet'].intersection(dfa_2['alphabet']),
'states': {(dfa_1['initial_state'], dfa_2['initial_state'])},
'initial_state': (dfa_1['initial_state'], dfa_2['initial_state']),
'accepting_states': set(),
'transitions': dict()
}
boundary = set()
boundary.add(intersection['initial_state'])
while boundary:
(state_dfa_1, state_dfa_2) = boundary.pop()
if state_dfa_1 in dfa_1['accepting_states'] \
and state_dfa_2 in dfa_2['accepting_states']:
intersection['accepting_states'].add((state_dfa_1, state_dfa_2))
for a in intersection['alphabet']:
if (state_dfa_1, a) in dfa_1['transitions'] \
and (state_dfa_2, a) in dfa_2['transitions']:
next_state_1 = dfa_1['transitions'][state_dfa_1, a]
next_state_2 = dfa_2['transitions'][state_dfa_2, a]
if (next_state_1, next_state_2) not in intersection['states']:
intersection['states'].add((next_state_1, next_state_2))
boundary.add((next_state_1, next_state_2))
intersection['transitions'][(state_dfa_1, state_dfa_2), a] = \
(next_state_1, next_state_2)
return intersection | ea69f3cda2bd28f5b70d1724ffdd628daf1beffa | 3,654,098 |
def change_status(request, page_id):
"""
Switch the status of a page.
"""
perm = PagePermission(request.user).check('change', method='POST')
if perm and request.method == 'POST':
page = Page.objects.get(pk=page_id)
page.status = int(request.POST['status'])
page.invalidate()
page.save()
return HttpResponse(str(page.status))
raise Http404 | b65775d91c69cf4ac4d5a59d128581011986f1e7 | 3,654,099 |
Subsets and Splits