content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def scorer(func): """This function is a decorator for a scoring function. This is hack a to get around self being passed as the first argument to the scoring function.""" def wrapped(a, b=None): if b is not None: return func(b) return func(a) return wrapped
39ec390982d26d10a6ce827800df654ff6c4ab42
3,654,700
def print_stats(yards): """ This function prints the final stats after a skier has crashed. """ print print "You skied a total of", yards, "yards!" #print "Want to take another shot?" print return 0
72b56bf8cfb0691636e41ccfcfe9b3893ab870eb
3,654,701
def _calculate_risk_reduction(module): """ Function to calculate the risk reduction due to testing. The algorithms used are based on the methodology presented in RL-TR-92-52, "SOFTWARE RELIABILITY, MEASUREMENT, AND TESTING Guidebook for Software Reliability Measurement and Testing." Rather than attempting to estimate the software failure rate, RTK provides a risk index for the software based on the same factors used in RL-TR-92-52 for estimating software failure rates. RTK also provides test planning guidance in the same manner as RL-TR-92-52. :param module: the :py:class:`rtk.software.CSCI.Model` or :py:class:`rtk.software.Unit.Model` data model to calculate. :return: _error_code :rtype: int """ # WARNING: Refactor _calculate_risk_reduction; current McCabe Complexity metric = 13. _error_code = 0 # Calculate the risk reduction due to the test effort. try: if module.test_effort == 1: # Labor hours _test_ratio = float(module.labor_hours_test) / \ float(module.labor_hours_dev) elif module.test_effort == 2: # Budget _test_ratio = float(module.budget_test) / \ float(module.budget_dev) elif module.test_effort == 3: # Schedule _test_ratio = float(module.schedule_test) / \ float(module.schedule_dev) else: _test_ratio = 1.0 except ZeroDivisionError: _error_code = 10 _test_ratio = 0.0 module.te = 1.0 if _test_ratio > 0.4: module.te = 0.9 # Calculate the risk reduction due to test methods used. module.tm = 1.0 module.tu = sum([_tu[0] for _tu in module.lst_test_selection]) module.tt = sum([_tt[1] for _tt in module.lst_test_selection]) try: if module.tu / module.tt > 0.75: module.tm = 0.9 elif module.tu / module.tt < 0.5: module.tm = 1.1 except ZeroDivisionError: _error_code = 10 # Calculate the risk reduction due to test coverage. try: if module.level_id == 2: # Module _VS = ((float(module.nm_test) / float(module.nm)) + (float(module.interfaces_test) / float(module.interfaces))) / 2.0 elif module.level_id == 3: # Unit _VS = ((float(module.branches_test) / float(module.branches)) + (float(module.inputs_test) / float(module.inputs))) / 2.0 else: _VS = 1.0 except ZeroDivisionError: _error_code = 10 _VS = 1.0 module.tc = 1.0 / _VS module.t_risk = module.te * module.tm * module.tc return _error_code
c8876bc247243f13572d49c07063a063ba4eb42a
3,654,702
def run_metarl(env, test_env, seed, log_dir): """Create metarl model and training.""" deterministic.set_seed(seed) snapshot_config = SnapshotConfig(snapshot_dir=log_dir, snapshot_mode='gap', snapshot_gap=10) runner = LocalRunner(snapshot_config) obs_dim = int(np.prod(env[0]().observation_space.shape)) action_dim = int(np.prod(env[0]().action_space.shape)) reward_dim = 1 # instantiate networks encoder_in_dim = obs_dim + action_dim + reward_dim encoder_out_dim = params['latent_size'] * 2 net_size = params['net_size'] context_encoder = MLPEncoder(input_dim=encoder_in_dim, output_dim=encoder_out_dim, hidden_sizes=[200, 200, 200]) space_a = akro.Box(low=-1, high=1, shape=(obs_dim + params['latent_size'], ), dtype=np.float32) space_b = akro.Box(low=-1, high=1, shape=(action_dim, ), dtype=np.float32) augmented_env = EnvSpec(space_a, space_b) qf1 = ContinuousMLPQFunction(env_spec=augmented_env, hidden_sizes=[net_size, net_size, net_size]) qf2 = ContinuousMLPQFunction(env_spec=augmented_env, hidden_sizes=[net_size, net_size, net_size]) obs_space = akro.Box(low=-1, high=1, shape=(obs_dim, ), dtype=np.float32) action_space = akro.Box(low=-1, high=1, shape=(params['latent_size'], ), dtype=np.float32) vf_env = EnvSpec(obs_space, action_space) vf = ContinuousMLPQFunction(env_spec=vf_env, hidden_sizes=[net_size, net_size, net_size]) policy = TanhGaussianMLPPolicy2( env_spec=augmented_env, hidden_sizes=[net_size, net_size, net_size]) context_conditioned_policy = ContextConditionedPolicy( latent_dim=params['latent_size'], context_encoder=context_encoder, policy=policy, use_ib=params['use_information_bottleneck'], use_next_obs=params['use_next_obs_in_context'], ) train_task_names = ML10.get_train_tasks()._task_names test_task_names = ML10.get_test_tasks()._task_names pearlsac = PEARLSAC( env=env, test_env=test_env, policy=context_conditioned_policy, qf1=qf1, qf2=qf2, vf=vf, num_train_tasks=params['num_train_tasks'], num_test_tasks=params['num_test_tasks'], latent_dim=params['latent_size'], meta_batch_size=params['meta_batch_size'], num_steps_per_epoch=params['num_steps_per_epoch'], num_initial_steps=params['num_initial_steps'], num_tasks_sample=params['num_tasks_sample'], num_steps_prior=params['num_steps_prior'], num_extra_rl_steps_posterior=params['num_extra_rl_steps_posterior'], num_evals=params['num_evals'], num_steps_per_eval=params['num_steps_per_eval'], batch_size=params['batch_size'], embedding_batch_size=params['embedding_batch_size'], embedding_mini_batch_size=params['embedding_mini_batch_size'], max_path_length=params['max_path_length'], reward_scale=params['reward_scale'], train_task_names=train_task_names, test_task_names=test_task_names, ) tu.set_gpu_mode(params['use_gpu'], gpu_id=0) if params['use_gpu']: pearlsac.to() tabular_log_file = osp.join(log_dir, 'progress.csv') tensorboard_log_dir = osp.join(log_dir) dowel_logger.add_output(dowel.StdOutput()) dowel_logger.add_output(dowel.CsvOutput(tabular_log_file)) dowel_logger.add_output(dowel.TensorBoardOutput(tensorboard_log_dir)) runner.setup(algo=pearlsac, env=env, sampler_cls=PEARLSampler, sampler_args=dict(max_path_length=params['max_path_length'])) runner.train(n_epochs=params['num_epochs'], batch_size=params['batch_size']) dowel_logger.remove_all() return tabular_log_file
adc4041539d55d9cddba69a44a0d0fcfbbc1c16e
3,654,703
from ..nn.nn_modifiers import get_single_nn_mutation_op def get_default_mutation_op(dom): """ Returns the default mutation operator for the domain. """ if dom.get_type() == 'euclidean': return lambda x: euclidean_gauss_mutation(x, dom.bounds) elif dom.get_type() == 'integral': return lambda x: integral_gauss_mutation(x, dom.bounds) elif dom.get_type() == 'discrete': return lambda x: discrete_random_mutation(x, dom.list_of_items) elif dom.get_type() == 'prod_discrete': return lambda x: prod_discrete_random_mutation(x, dom.list_of_list_of_items) elif dom.get_type() == 'discrete_numeric': return lambda x: discrete_numeric_exp_mutation(x, dom.list_of_items) elif dom.get_type() == 'prod_discrete_numeric': return lambda x: prod_discrete_numeric_exp_mutation(x, dom.list_of_list_of_items) elif dom.get_type() == 'discrete_euclidean': return lambda x: discrete_euclidean_mutation(x, dom.list_of_items) elif dom.get_type() == 'neural_network': return get_single_nn_mutation_op(dom, [0.5, 0.25, 0.125, 0.075, 0.05]) else: raise ValueError('No default mutation implemented for domain type %s.'%( dom.get_type()))
8e9455ca96dac89b11bebcc3e4f779f62111a010
3,654,704
import itertools def chunked(src, size, count=None, **kw): """Returns a list of *count* chunks, each with *size* elements, generated from iterable *src*. If *src* is not evenly divisible by *size*, the final chunk will have fewer than *size* elements. Provide the *fill* keyword argument to provide a pad value and enable padding, otherwise no padding will take place. >>> chunked(range(10), 3) [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]] >>> chunked(range(10), 3, fill=None) [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, None, None]] >>> chunked(range(10), 3, count=2) [[0, 1, 2], [3, 4, 5]] See :func:`chunked_iter` for more info. """ chunk_iter = chunked_iter(src, size, **kw) if count is None: return list(chunk_iter) else: return list(itertools.islice(chunk_iter, count))
6f35735d9294f4c245643609641fb86b0f988fb1
3,654,705
def doc_to_schema_fields(doc, schema_file_name='_schema.yaml'): """Parse a doc to retrieve the schema file.""" return doc_to_schema(doc, schema_file_name=schema_file_name)[ 'schema_fields']
b9d88f52ff49e43cae0ad5373a8d841f0236bb50
3,654,706
from typing import Tuple from typing import OrderedDict from typing import Counter import tqdm def cluster(df: pd.DataFrame, k: int, knn: int = 10, m: int = 30, alpha: float = 2.0, verbose0: bool = False, verbose1: bool = False, verbose2: bool = True, plot: bool = True) -> Tuple[pd.DataFrame, OrderedDict]: """ Chameleon clustering: build the K-NN graph, partition it into m clusters :param df: input dataframe. :param k: desired number of clusters. :param knn: parameter k of K-nearest_neighbors. :param m: number of clusters to reach in the initial clustering phase. :param alpha: exponent of relative closeness; the larger, the more important relative closeness is than relative interconnectivity. :param verbose0: if True, print general infos. :param verbose1: if True, print infos about the prepartitioning phase. :param verbose2: if True, print labels of merging clusters and their scores in the merging phase. :param plot: if True, show plots. :return: dataframe with cluster labels and dictionary of merging scores (similarities). """ if k is None: k = 1 if verbose0: print(f"Building kNN graph (k = {knn})...") graph = knn_graph(df=df, k=knn, symmetrical=False, verbose=verbose1) if plot is True: plot2d_graph(graph, print_clust=False) graph = pre_part_graph(graph, m, df, verbose1, plotting=plot) # to account for cases where initial_clust is too big or k is already reached before the merging phase cl_dict = OrderedDict({ list(graph.nodes)[i]: graph.nodes[i]["cluster"] for i in range(len(graph)) }) m = len(Counter(cl_dict.values())) if verbose0: print(f"actual init_clust: {m}") merging_similarities = OrderedDict({}) iterm = (tqdm(enumerate(range(m - k)), total=m - k) if verbose1 else enumerate(range(m - k))) for i, _ in iterm: df, ms, ci = merge_best(graph, df, alpha, k, False, verbose2) if ms == 0: break merging_similarities[m - (i + 1)] = ms if plot: plot2d_data(df, ci) res = rebuild_labels(df) return res, merging_similarities
2363df84104da1f182c63faaac21006033e23083
3,654,707
def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=1000): """ Load the CIFAR-10 dataset from disk and perform preprocessing to prepare it for the two-layer neural net classifier. These are the same steps as we used for the SVM, but condensed to a single function. """ # Load the raw CIFAR-10 data cifar10_dir = "C:\Users\Pomodori\workspace\cifar-10-batches-py" X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir) # Subsample the data mask = range(num_training, num_training + num_validation) X_val = X_train[mask] y_val = y_train[mask] mask = range(num_training) X_train = X_train[mask] y_train = y_train[mask] mask = range(num_test) X_test = X_test[mask] y_test = y_test[mask] # Normalize the data: subtract the mean image mean_image = np.mean(X_train, axis=0) X_train -= mean_image X_val -= mean_image X_test -= mean_image # Reshape data to rows X_train = X_train.reshape(num_training, -1) X_val = X_val.reshape(num_validation, -1) X_test = X_test.reshape(num_test, -1) return X_train, y_train, X_val, y_val, X_test, y_test
515777ca498ae9a234a1503660f2cde40f0b0244
3,654,708
def timeframe_int_to_str(timeframe: int) -> str: """ Convert timeframe from integer to string :param timeframe: minutes per candle (240) :return: string representation for API (4h) """ if timeframe < 60: return f"{timeframe}m" elif timeframe < 1440: return f"{int(timeframe / 60)}h" else: return f"{int(timeframe / 1440)}d"
75778742dea8204c74a47bfe92c25aef43ebbad8
3,654,709
def FIT(individual): """Sphere test objective function. F(x) = sum_{i=1}^d xi^2 d=1,2,3,... Range: [-100,100] Minima: 0 """ y=sum(x**2 for x in individual) return y
d6aadf620f85bd9cb27cef661e2ec664a4eb43b1
3,654,710
def update_range(value): """ For user selections, return the relevant range """ global df min, max = df.timestamp.iloc[value[0]], df.timestamp.iloc[value[-1]] return 'timestamp slider: {} | {}'.format(min, max)
c4819b46cdd78be3c86fc503791a7a0ff9cd96b3
3,654,711
def simplify(tile): """ :param tile: 34 tile format :return: tile: 0-8 presentation """ return tile - 9 * (tile // 9)
c8543d73e37d4fa1d665d3d28277ff99095e0635
3,654,712
def vep(dataset, config, block_size=1000, name='vep', csq=False) -> MatrixTable: """Annotate variants with VEP. .. include:: ../_templates/req_tvariant.rst :func:`.vep` runs `Variant Effect Predictor <http://www.ensembl.org/info/docs/tools/vep/index.html>`__ with the `LOFTEE plugin <https://github.com/konradjk/loftee>`__ on the current dataset and adds the result as a row field. Examples -------- Add VEP annotations to the dataset: >>> result = hl.vep(dataset, "data/vep.properties") # doctest: +SKIP Notes ----- **Configuration** :func:`.vep` needs a configuration file to tell it how to run VEP. The format is a `.properties file <https://en.wikipedia.org/wiki/.properties>`__. Roughly, each line defines a property as a key-value pair of the form `key = value`. :func:`.vep` supports the following properties: - **hail.vep.perl** -- Location of Perl. Optional, default: perl. - **hail.vep.perl5lib** -- Value for the PERL5LIB environment variable when invoking VEP. Optional, by default PERL5LIB is not set. - **hail.vep.path** -- Value of the PATH environment variable when invoking VEP. Optional, by default PATH is not set. - **hail.vep.location** -- Location of the VEP Perl script. Required. - **hail.vep.cache_dir** -- Location of the VEP cache dir, passed to VEP with the ``--dir`` option. Required. - **hail.vep.fasta** -- Location of the FASTA file to use to look up the reference sequence, passed to VEP with the `--fasta` option. Required. - **hail.vep.assembly** -- Genome assembly version to use. Optional, default: GRCh37 - **hail.vep.plugin** -- VEP plugin, passed to VEP with the `--plugin` option. Optional. Overrides `hail.vep.lof.human_ancestor` and `hail.vep.lof.conservation_file`. - **hail.vep.lof.human_ancestor** -- Location of the human ancestor file for the LOFTEE plugin. Ignored if `hail.vep.plugin` is set. Required otherwise. - **hail.vep.lof.conservation_file** -- Location of the conservation file for the LOFTEE plugin. Ignored if `hail.vep.plugin` is set. Required otherwise. Here is an example ``vep.properties`` configuration file .. code-block:: text hail.vep.perl = /usr/bin/perl hail.vep.path = /usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin hail.vep.location = /path/to/vep/ensembl-tools-release-81/scripts/variant_effect_predictor/variant_effect_predictor.pl hail.vep.cache_dir = /path/to/vep hail.vep.lof.human_ancestor = /path/to/loftee_data/human_ancestor.fa.gz hail.vep.lof.conservation_file = /path/to/loftee_data/phylocsf.sql **VEP Invocation** .. code-block:: text <hail.vep.perl> <hail.vep.location> --format vcf --json --everything --allele_number --no_stats --cache --offline --dir <hail.vep.cache_dir> --fasta <hail.vep.fasta> --minimal --assembly <hail.vep.assembly> --plugin LoF,\ human_ancestor_fa:$<hail.vep.lof.human_ancestor>,\ filter_position:0.05,\ min_intron_size:15,\ conservation_file:<hail.vep.lof.conservation_file> -o STDOUT **Annotations** A new row field is added in the location specified by `name` with the following schema: .. code-block:: text struct { assembly_name: str, allele_string: str, ancestral: str, colocated_variants: array<struct { aa_allele: str, aa_maf: float64, afr_allele: str, afr_maf: float64, allele_string: str, amr_allele: str, amr_maf: float64, clin_sig: array<str>, end: int32, eas_allele: str, eas_maf: float64, ea_allele: str, ea_maf: float64, eur_allele: str, eur_maf: float64, exac_adj_allele: str, exac_adj_maf: float64, exac_allele: str, exac_afr_allele: str, exac_afr_maf: float64, exac_amr_allele: str, exac_amr_maf: float64, exac_eas_allele: str, exac_eas_maf: float64, exac_fin_allele: str, exac_fin_maf: float64, exac_maf: float64, exac_nfe_allele: str, exac_nfe_maf: float64, exac_oth_allele: str, exac_oth_maf: float64, exac_sas_allele: str, exac_sas_maf: float64, id: str, minor_allele: str, minor_allele_freq: float64, phenotype_or_disease: int32, pubmed: array<int32>, sas_allele: str, sas_maf: float64, somatic: int32, start: int32, strand: int32 }>, context: str, end: int32, id: str, input: str, intergenic_consequences: array<struct { allele_num: int32, consequence_terms: array<str>, impact: str, minimised: int32, variant_allele: str }>, most_severe_consequence: str, motif_feature_consequences: array<struct { allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, minimised: int32, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, strand: int32, variant_allele: str }>, regulatory_feature_consequences: array<struct { allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, minimised: int32, regulatory_feature_id: str, variant_allele: str }>, seq_region_name: str, start: int32, strand: int32, transcript_consequences: array<struct { allele_num: int32, amino_acids: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct { db: str, name: str }>, exon: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, minimised: int32, polyphen_prediction: str, polyphen_score: float64, protein_end: int32, protein_start: int32, protein_id: str, sift_prediction: str, sift_score: float64, strand: int32, swissprot: str, transcript_id: str, trembl: str, uniparc: str, variant_allele: str }>, variant_class: str } Parameters ---------- dataset : :class:`.MatrixTable` Dataset. config : :obj:`str` Path to VEP configuration file. block_size : :obj:`int` Number of rows to process per VEP invocation. name : :obj:`str` Name for resulting row field. csq : :obj:`bool` If ``True``, annotates VCF CSQ field as a :py:data:`.tstr`. If ``False``, annotates with the full nested struct schema. Returns ------- :class:`.MatrixTable` Dataset with new row-indexed field `name` containing VEP annotations. """ require_row_key_variant(dataset, 'vep') mt = MatrixTable(Env.hail().methods.VEP.apply(dataset._jvds, config, 'va.`{}`'.format(name), csq, block_size)) return mt.annotate_rows(vep=mt['vep']['vep'])
e9433db17e82d00aba275066026a301a9b97e5e0
3,654,713
def __get_ll_type__(ll_type): """ Given an lltype value, retrieve its definition. """ res = [llt for llt in __LL_TYPES__ if llt[1] == ll_type] assert len(res) < 2, 'Duplicate linklayer types.' if res: return res[0] else: return None
f2e86ddd027ec26546a4be8ff8060c1cd8c64aca
3,654,714
import os import logging def is_cloaked(path, names): """ Return True if this is likely to be a cloaked encrypted post """ fname = unicoder(os.path.split(path)[1]).lower() fname = os.path.splitext(fname)[0] for name in names: name = os.path.split(name.lower())[1] name, ext = os.path.splitext(unicoder(name)) if ext == u'.rar' and fname.startswith(name) and (len(fname) - len(name)) < 8 and len(names) < 3 and not RE_SUBS.search(fname): logging.debug('File %s is probably encrypted due to RAR with same name inside this RAR', fname) return True elif 'password' in name: logging.debug('RAR %s is probably encrypted: "password" in filename %s', fname, name) return True return False
69a6ccacd9a26adcba64fa84ede25074594a27bc
3,654,715
def slice_node(node, split): """Splits a node up into two sides. For text nodes, this will return two text nodes. For text elements, this will return two of the source nodes with children distributed on either side. Children that live on the split will be split further. Parameters ---------- node : docutils.nodes.Text or docutils.nodes.TextElement split : int Location of the represented text to split at. Returns ------- (left, right) : (type(node), type(node)) """ if isinstance(node, Text): return Text(node[:split]), Text(node[split:]) elif isinstance(node, docutils.nodes.TextElement): if split < 0: split = len(node.astext())+split right = node.deepcopy() left = node.deepcopy() left.clear() offset = 0 while offset < split: try: child = right.pop(0) except IndexError: break child_strlen = len(child.astext()) if offset+child_strlen < split: left.append(child) offset += child_strlen continue elif offset+child_strlen != split: child_left, child_right = slice_node(child, split-offset) left.append(child_left) right.insert(0, child_right) offset += child_strlen return left, right else: raise ValueError('Cannot split {}'.format(repr(node)))
5958afbb61160f7e00c42e80c4c69aa7f8644925
3,654,716
def k_radius(x,centroids): """ Maximal distance between centroids and corresponding samples in partition """ labels = partition_labels(x,centroids) radii = [] for idx in range(centroids.shape[0]): mask = labels == idx radii.append( np.max( np.linalg.norm(x[mask]-centroids[idx],axis=-1)) ) return np.asarray(radii)
de010609e726ce250d72d773a9c1ffb772315b0c
3,654,717
def build_feature_df(data, default=True, custom_features={}): """ Computes the feature matrix for the dataset of components. Args: data (dataset): A mapping of {ic_id: IC}. Compatible with the dataset representaion produced by load_dataset(). default (bool, optional): Determines wether to compute a standard selection of features for the dataset. Defaults to True. custom_features (dict, optional): A mapping of custom features that will be computed for the dataset. The format is {feature_name: compute_feature} where compute_feature is a function with the only argument IC. Defaults to {}. Returns: pd.Dataframe: The feature matrix for the dataset. """ feature_df = pd.DataFrame(index=data.keys()) def get_iter(): if default: return default_features.items() else: return chain(default_features.items(), custom_features.items()) features = [feature_name for feature_name, _ in get_iter()] idx = [] rows = [] for ic_id, ic in data.items(): row = [] idx.append(ic_id) for feature_name, compute_feature in get_iter(): row.append(compute_feature(ic)) rows.append(row) feature_df = pd.DataFrame(rows, index=idx, columns=features) return feature_df
bbd2543a5043ae11305fe86449778a74f7e7ceb3
3,654,718
def update_uid_digests_cache(uid, digest): """ Updates uid_digest cache, also updates rd_digest and rd_digest_dict cache also. """ debug = False try: if debug: print '\n debug -- Entered update_uid_digests_cache...' dump_dict(digest, debug) # Get the cache; If cache exists, update the 'uid_digests' cache. uid_digests = cache.get('uid_digests') if uid_digests and uid_digests is not None: if uid in uid_digests: if debug: print '\n debug -- uid (%s) in uid_digests...' % uid uid_digests[uid] = digest uid_digests_cache_update(uid_digests) # Update rd_digests and rd_digests dict cache. if not update_rd_digests_cache(uid): message = '********* Failed to update rd_digests cache **********' current_app.logger.info(message) return except Exception as err: message = str(err) current_app.logger.info(message) return None
841d1b2517594175867b970e0e1af4631d97d9c7
3,654,719
def decode_complex(data, complex_names=(None, None)): """ Decodes possibly complex data read from an HDF5 file. Decodes possibly complex datasets read from an HDF5 file. HDF5 doesn't have a native complex type, so they are stored as H5T_COMPOUND types with fields such as 'r' and 'i' for the real and imaginary parts. As there is no standardization for field names, the field names have to be given explicitly, or the fieldnames in `data` analyzed for proper decoding to figure out the names. A variety of reasonably expected combinations of field names are checked and used if available to decode. If decoding is not possible, it is returned as is. Parameters ---------- data : arraylike The data read from an HDF5 file, that might be complex, to decode into the proper Numpy complex type. complex_names : tuple of 2 str and/or Nones, optional ``tuple`` of the names to use (in order) for the real and imaginary fields. A ``None`` indicates that various common field names should be tried. Returns ------- c : decoded data or data If `data` can be decoded into a complex type, the decoded complex version is returned. Otherwise, `data` is returned unchanged. See Also -------- encode_complex Notes ----- Currently looks for real field names of ``('r', 're', 'real')`` and imaginary field names of ``('i', 'im', 'imag', 'imaginary')`` ignoring case. """ # Now, complex types are stored in HDF5 files as an H5T_COMPOUND type # with fields along the lines of ('r', 're', 'real') and ('i', 'im', # 'imag', 'imaginary') for the real and imaginary parts, which most # likely won't be properly extracted back into making a Python # complex type unless the proper h5py configuration is set. Since we # can't depend on it being set and adjusting it is hazardous (the # setting is global), it is best to just decode it manually. These # fields are obtained from the fields of its dtype. Obviously, if # there are no fields, then there is nothing to do. if data.dtype.fields is None: return data fields = list(data.dtype.fields) # If there aren't exactly two fields, then it can't be complex. if len(fields) != 2: return data # We need to grab the field names for the real and imaginary # parts. This will be done by seeing which list, if any, each field # is and setting variables to the proper name if it is in it (they # are initialized to None so that we know if one isn't found). real_fields = ['r', 're', 'real'] imag_fields = ['i', 'im', 'imag', 'imaginary'] cnames = list(complex_names) for s in fields: if s.lower() in real_fields: cnames[0] = s elif s.lower() in imag_fields: cnames[1] = s # If the real and imaginary fields were found, construct the complex # form from the fields. This is done by finding the complex type # that they cast to, making an array, and then setting the # parts. Otherwise, return what we were given because it isn't in # the right form. if cnames[0] is not None and cnames[1] is not None: cdata = np.result_type(data[cnames[0]].dtype, \ data[cnames[1]].dtype, 'complex64').type(data[cnames[0]]) cdata.imag = data[cnames[1]] return cdata else: return data
4c2fad09751ddfe4c5623d47a187f710ab62532f
3,654,720
def CLYH( directed = False, preprocess = "auto", load_nodes = True, load_node_types = True, load_edge_weights = True, auto_enable_tradeoffs = True, sort_tmp_dir = None, verbose = 2, cache = True, cache_path = None, cache_sys_var = "GRAPH_CACHE_DIR", version = "2020-05-29", **kwargs ) -> Graph: """Return CLYH graph Parameters ---------- directed = False preprocess = "auto" Preprocess for optimal load time & memory peak. Will preprocess in Linux/macOS but not Windows. load_nodes = True Load node names or use numeric range auto_enable_tradeoffs = True Enable when graph has < 50M edges cache_path = None Path to store graphs Defaults either to `GRAPH_CACHE_DIR` sys var or `graphs` cache_sys_var = "GRAPH_CACHE_DIR" version = "2020-05-29" Version to retrieve The available versions are: - 2020-05-29 """ return AutomaticallyRetrievedGraph( "CLYH", version, "kgobo", directed, preprocess, load_nodes, load_node_types, load_edge_weights, auto_enable_tradeoffs, sort_tmp_dir, verbose, cache, cache_path, cache_sys_var, kwargs )()
6dcddfff1411ea71d1743fabde782066c41ace9f
3,654,721
def tif_to_array( filename, image_descriptions=False, verbose=False, ): """Load a tif into memory and return it as a numpy array. This is primarily a tool we use to interact with ImageJ, so that's the only case it's really been debugged for. I bet somebody made nice python bindings for LibTIFF, if you want a more general purpose reader. """ ifds, endian = parse_tif(filename, verbose) """ Ensure that the various IFD's are consistent: same length, width, bit depth, data format, etc. Also check that our assumptions about other tags are true. """ width = ifds[0]['ImageWidth'] length = ifds[0]['ImageLength'] bit_depth = ifds[0]['BitsPerSample'] data_format = ifds[0].get('SampleFormat', 1) #Default to unsigned int for d in ifds: try: assert width == d['ImageWidth'] assert length == d['ImageLength'] assert bit_depth == d['BitsPerSample'] assert data_format == d.get('SampleFormat', 1) except AssertionError: print("To load a TIF as a numpy array, the IFDs all have to match.") print("IFD A:", ifds[0]) print("IFD B:", d) raise UserWarning("The TIF we're trying to load has mismatched IFD's") try: assert d.get('SamplesPerPixel', 1) == 1 assert d.get('NewSubFileType', 0) == 0 assert d.get('Compression', 1) == 1 assert d.get('PhotometricInterpretation', 0) in (0, 1) except AssertionError: print("Offending IFD:", d) raise UserWarning( "The TIF we're trying to load" + " uses options that np_tif doesn't support.") """ Collect the strip offsets and the strip byte counts """ strip_offsets = [] strip_byte_counts = [] for d in ifds: try: #Just one strip per IFD strip_offsets.append(int(d['StripOffsets'])) strip_byte_counts.append(int(d['StripByteCounts'])) except TypeError: #Many strips per IFD strip_offsets.extend(int(x) for x in d['StripOffsets']) strip_byte_counts.extend(int(x) for x in d['StripByteCounts']) assert len(strip_offsets) == len(strip_byte_counts) """ Allocate our numpy array, and load data into our array from disk, one strip at a time. """ data = np.zeros(sum(strip_byte_counts), dtype=np.ubyte) data_offset = 0 with open(filename, 'rb') as f: for i in range(len(strip_offsets)): file_offset = strip_offsets[i] num_bytes = strip_byte_counts[i] data[data_offset:data_offset + num_bytes] = np.frombuffer( get_bytes_from_file(f, file_offset, num_bytes), dtype=np.ubyte) data_offset += num_bytes """ Determine the numpy data type from the TIF bit depth and data format, and reshape based on width, height, and number of ifd's: """ data_type = { 1: 'uint', 2: 'int', 3: 'float', 4: 'undefined', }[data_format] + ascii(bit_depth) try: data_type = getattr(np, data_type) except AttributeError: raise UserWarning("Unsupported data format: " + data_type) data = data.view(data_type) if endian == 'big': data = data.byteswap() data = data.reshape(len(ifds), length, width) """ Optionally, return the image descriptions. """ if image_descriptions: image_descriptions = [d.get('ImageDescription', '') for d in ifds] for desc in image_descriptions: if desc != image_descriptions[0]: break else: image_descriptions = image_descriptions[0:1] return data, image_descriptions return data
db81009b9a3ccc6238bf605a56247e38586fc134
3,654,722
def lineParPlot(parDict, FigAx=None, **kwargs): """ Plot the results of lineParameters(). Parameters ---------- parDict : dict The relevant parameters: xPerc : tuple, (xPerc1, xPerc2) Left and right x-axis values of the line profile at perc% of the peak flux. Xc : float The center of x-axis value calculated at perc% of the peak flux. Fperc : float Fpeak * perc / 100. FigAx : tuple (optional) The tuple of (fig, ax) of the figure. **kwargs : dict The keywords for the plotting. Returns ------- FigAx : tuple The tuple of (fig, ax) of the figure. """ if FigAx is None: fig = plt.figure(figsize=(8, 4)) ax = plt.gca() else: fig, ax = FigAx x1, x2 = parDict["xPerc"] xc = parDict["Xc"] yperc = parDict["Fperc"] ax.axvline(x=x1, **kwargs) kwargs["label"] = None ax.axvline(x=x2, **kwargs) ax.axhline(y=yperc, **kwargs) kwargs["ls"] = "-" ax.axvline(x=xc, **kwargs) return (fig, ax)
4767446fb983902ea0a3ce631420c61f032970f9
3,654,723
def prepare_data_arrays(tr_df, te_df, target): """ tr_df: train dataset made by "prepare_dataset" function te_df: test dataset made by "prepare_dataset" function target: name of target y return: (numpy array of train dataset), (numpy array of test dataset: y will be filled with NaN), (column ID of y) """ col_to_id = {k: v for v, k in enumerate(tr_df.columns)} train_array = np.array(tr_df) test_array = np.array(te_df) target_id = col_to_id[target] # fill target values with nan test_array[:, target_id] = np.nan return train_array, test_array, target_id
097f376263dfeecffaf201f4ea1cd29980d88746
3,654,724
import tempfile import os def download_git_repo(repo: str): """ Download remote git repo """ local_filename = repo.split('/')[-1] class CloneProgress(RemoteProgress): def update(self, op_code, cur_count, max_count=None, message=''): if message: print(message) td = tempfile.mkdtemp() repo_local_path = os.path.join(td, local_filename) git.Repo.clone_from(repo, repo_local_path, branch='master', progress=CloneProgress(), depth=1) return repo_local_path
7d2b6b1bcadb9d0a8ed8baae9ec4576c67b9099a
3,654,725
def plot(model_set, actual_mdot=True, qnuc=0.0, verbose=True, ls='-', offset=True, bprops=('rate', 'fluence', 'peak'), display=True, grid_version=0): """Plot predefined set of mesa model comparisons model_set : int ID for set of models (defined below) """ mesa_info = get_mesa_set(model_set) if actual_mdot: mdots = mesa_info['mdots_actual'] else: mdots = mesa_info['mdots'] mesa_info['params']['qnuc'] = qnuc fig, ax = plot_compare(mesa_runs=mesa_info['runs'], display=display, mesa_mdots=mdots, bprops=bprops, params=mesa_info['params'], verbose=verbose, grid_version=grid_version, ls=ls, offset=offset) return fig, ax
2ceec63d162fe07dd4a00a508657095528243421
3,654,726
import os import shutil def main(): """Main documentation builder script.""" parser = ArgumentParser( description="build GGRC documentation", ) parser.add_argument( '-c', '--clean', action='store_true', default=False, help='clean cache before build', dest='clean', ) parser.add_argument( '-s', '--strict', action='store_true', default=False, help='treat warnings as errors', dest='strict', ) args = parser.parse_args() docs_src = os.path.join(DOCS_DIR, 'source') docs_build = os.path.join(DOCS_DIR, 'build') builder.build('API', os.path.join(docs_src, 'api')) if args.clean: shutil.rmtree(docs_build, ignore_errors=True) if not os.path.isdir(docs_build): os.mkdir(docs_build) sphinx = Sphinx( srcdir=docs_src, confdir=docs_src, outdir=os.path.join(docs_build, 'html'), doctreedir=os.path.join(docs_build, 'doctrees'), buildername='html', warningiserror=args.strict, ) sphinx.build() return sphinx.statuscode
9c193e70df24c1b1431d0eea9809b3d07baf0c62
3,654,727
def preprocessing_fn(batch): """ Standardize, then normalize sound clips """ processed_batch = [] for clip in batch: signal = clip.astype(np.float64) # Signal normalization signal = signal / np.max(np.abs(signal)) # get pseudorandom chunk of fixed length (from SincNet's create_batches_rnd) signal_length = len(signal) if signal_length < WINDOW_LENGTH: signal = np.concatenate((signal, np.zeros(WINDOW_LENGTH-signal_length))) else: np.random.seed(signal_length) signal_start = np.random.randint(0, signal_length-WINDOW_LENGTH) signal_stop = signal_start + WINDOW_LENGTH signal = signal[signal_start:signal_stop] processed_batch.append(signal) return np.array(processed_batch)
d277cd95d174e1ec104a8b8a8d72e23e2dd7f991
3,654,728
def generate_random_bond_list(atom_count, bond_count, seed=0): """ Generate a random :class:`BondList`. """ np.random.seed(seed) # Create random bonds between atoms of # a potential atom array of length ATOM_COUNT bonds = np.random.randint(atom_count, size=(bond_count, 3)) # Clip bond types to allowed BondType values bonds[:, 2] %= len(struc.BondType) # Remove bonds of atoms to itself bonds = bonds[bonds[:,0] != bonds[:,1]] assert len(bonds) > 0 return struc.BondList(atom_count, bonds)
cb7784f8561be2ea7c54d5f46c2e6e697164b1b8
3,654,729
def open_cosmos_files(): """ This function opens files related to the COSMOS field. Returns: A lot of stuff. Check the code to see what it returns """ COSMOS_mastertable = pd.read_csv('data/zfire/zfire_cosmos_master_table_dr1.1.csv',index_col='Nameobj') ZF_cat = ascii.read('data/zfourge/spitler2014/cosmos.v0.10.7.a.cat') ZF_EAZY = ascii.read('data/zfourge/spitler2014/cosmos.v0.10.7.a.zout') ZF_FAST = ascii.read('data/zfourge/spitler2014/cosmos.v0.10.7.a.fout') #load in colours using spec-z #only ZFIRE U_spec = ascii.read('data/zfourge/uvj/specz_zfire/cosmos.v0.10.7.a.153.rf') V_spec = ascii.read('data/zfourge/uvj/specz_zfire/cosmos.v0.10.7.a.155.rf') J_spec = ascii.read('data/zfourge/uvj/specz_zfire/cosmos.v0.10.7.a.161.rf') #load in colours using photo-z U_photo = ascii.read('data/zfourge/uvj/photoz/cosmos.v0.10.7.a.153.rf') V_photo = ascii.read('data/zfourge/uvj/photoz/cosmos.v0.10.7.a.155.rf') J_photo = ascii.read('data/zfourge/uvj/photoz/cosmos.v0.10.7.a.161.rf') #galaxy colours derived by Lee's catalogue #This uses the older EAZY method of fitting colours UV_lee = ascii.read('data/zfourge/spitler2014/cosmos.v0.10.7.a.153-155.rf') VJ_lee = ascii.read('data/zfourge/spitler2014/cosmos.v0.10.7.a.155-161.rf') UV_IR_SFRs = ascii.read('data/zfourge/sfrs/cosmos.sfr.v0.5.cat') MOSDEF_ZFOURGE = ascii.read('data/catalogue_crossmatch/MOSDEF_COSMOS.dat') #ZFIRE and MOSDEF colours U_ZM = ascii.read('data/zfourge/uvj/specz_zfire_mosdef/cosmos.v0.10.7.a.153.rf') V_ZM = ascii.read('data/zfourge/uvj/specz_zfire_mosdef/cosmos.v0.10.7.a.155.rf') J_ZM = ascii.read('data/zfourge/uvj/specz_zfire_mosdef/cosmos.v0.10.7.a.161.rf') VUDS_ZFOURGE = ascii.read('data/catalogue_crossmatch/VUDS_COSMOS.dat') VUDS_extra = ascii.read('data/vuds/cesam_vuds_spectra_dr1_cosmos_catalog_additional_info.txt') #ZFIRE and VUDS colours U_ZV = ascii.read('data/zfourge/uvj/specz_vuds/cosmos.v0.10.7.a.153.rf') V_ZV = ascii.read('data/zfourge/uvj/specz_vuds/cosmos.v0.10.7.a.155.rf') J_ZV = ascii.read('data/zfourge/uvj/specz_vuds/cosmos.v0.10.7.a.161.rf') return COSMOS_mastertable, ZF_cat, ZF_EAZY, ZF_FAST, U_spec, V_spec, J_spec,\ U_photo, V_photo, J_photo, UV_lee, VJ_lee, UV_IR_SFRs, MOSDEF_ZFOURGE,\ U_ZM,V_ZM, J_ZM, VUDS_ZFOURGE, VUDS_extra, U_ZV, V_ZV, J_ZV
229aa967dce5faaf42b488ebf2768b280ced9359
3,654,730
import numpy def convert_image_points_to_points(image_positions, distances): """Convert image points to 3d points. Returns: positions """ hypotenuse_small = numpy.sqrt( image_positions[:, 0]**2 + image_positions[:, 1]**2 + 1.0) ratio = distances / hypotenuse_small n = image_positions.shape[0] positions = numpy.zeros([n, 3]) positions[:, 0] = -image_positions[:, 0] * ratio positions[:, 1] = ratio positions[:, 2] = -image_positions[:, 1] * ratio return positions
3680a02997cf1109fd08f61c6642b29ea3433f1d
3,654,731
def W(i, j): """The Wilson functions. :func:`W` corresponds to formula (2) on page 16 in `the technical paper`_ defined as: .. math:: W(t, u_j)= \\ e^{-UFR\cdot (t+u_j)}\cdot \\ \left\{ \\ \\alpha\cdot\min(t, u_j) \\ -0.5\cdot e^{-\\alpha\cdot\max(t, u_j)}\cdot( \\ e^{\\alpha\cdot\min(t, u_j)} \\ -e^{-\\alpha\cdot\min(t, u_j)} \\ ) \\ \\right\} where :math:`t = u_i`. Args: i(int): Time index (1, 2, ..., :attr:`N`) j(int): Time index (1, 2, ..., :attr:`N`) """ t = u[i] uj = u[j] return exp(-UFR * (t+uj)) * ( alpha * min(t, uj) - 0.5 * exp(-alpha * max(t, uj)) * ( exp(alpha*min(t, uj)) - exp(-alpha*min(t, uj)) ))
37266db68fb51a87f15290edae06eb6397796b6f
3,654,732
from scipy.interpolate import interp1d def reddening_fm(wave, ebv=None, a_v=None, r_v=3.1, model='f99'): """Determines a Fitzpatrick & Massa reddening curve. Parameters ---------- wave: ~numpy.ndarray wavelength in Angstroms ebv: float E(B-V) differential extinction; specify either this or a_v. a_v: float A(V) extinction; specify either this or ebv. r_v: float, optional defaults to standard Milky Way average of 3.1 model: {'f99', 'fm07'}, optional * 'f99' is the default Fitzpatrick (1999) [1]_ * 'fm07' is Fitzpatrick & Massa (2007) [2]_. Currently not R dependent. Returns ------- reddening_curve: ~numpy.ndarray Multiply to deredden flux, divide to redden. Notes ----- Uses Fitzpatrick (1999) [1]_ by default, which relies on the UV parametrization of Fitzpatrick & Massa (1990) [2]_ and spline fitting in the optical and IR. This function is defined from 910 A to 6 microns, but note the claimed validity goes down only to 1150 A. The optical spline points are not taken from F99 Table 4, but rather updated versions from E. Fitzpatrick (this matches the Goddard IDL astrolib routine FM_UNRED). The fm07 model uses the Fitzpatrick & Massa (2007) [3]_ parametrization, which has a slightly different functional form. That paper claims it preferable, although it is unclear if signficantly (Gordon et al. 2009) [4]_. It is not the literature standard, so not default here. References ---------- [1] Fitzpatrick, E. L. 1999, PASP, 111, 63 [2] Fitpatrick, E. L. & Massa, D. 1990, ApJS, 72, 163 [3] Fitpatrick, E. L. & Massa, D. 2007, ApJ, 663, 320 [4] Gordon, K. D., Cartledge, S., & Clayton, G. C. 2009, ApJ, 705, 1320 """ model = model.lower() if model not in ['f99','fm07']: raise ValueError('model must be f99 or fm07') if (a_v is None) and (ebv is None): raise ValueError('Must specify either a_v or ebv') if (a_v is not None) and (ebv is not None): raise ValueError('Cannot specify both a_v and ebv') if a_v is not None: ebv = a_v / r_v if model == 'fm07': raise ValueError('TEMPORARY: fm07 currently not properly R dependent') x = 1e4 / wave # inverse microns k = np.zeros(x.size) if any(x < 0.167) or any(x > 11): raise ValueError('fm_dered valid only for wavelengths from 910 A to '+ '6 microns') # UV region uvsplit = 10000. / 2700. # Turn 2700A split into inverse microns. uv_region = (x >= uvsplit) y = x[uv_region] k_uv = np.zeros(y.size) # Fitzpatrick (1999) model if model == 'f99': x0, gamma = 4.596, 0.99 c3, c4 = 3.23, 0.41 c2 = -0.824 + 4.717 / r_v c1 = 2.030 - 3.007 * c2 D = y**2 / ((y**2-x0**2)**2 + y**2 * gamma**2) F = np.zeros(y.size) valid = (y >= 5.9) F[valid] = 0.5392 * (y[valid]-5.9)**2 + 0.05644 * (y[valid]-5.9)**3 k_uv = c1 + c2*y + c3*D + c4*F # Fitzpatrick & Massa (2007) model if model == 'fm07': x0, gamma = 4.592, 0.922 c1, c2, c3, c4, c5 = -0.175, 0.807, 2.991, 0.319, 6.097 D = y**2 / ((y**2-x0**2)**2 + y**2 * gamma**2) valid = (y <= c5) k_uv[valid] = c1 + c2*y[valid] + c3*D[valid] valid = (y > c5) k_uv[valid] = c1 + c2*y[valid] + c3*D[valid] + c4*(y[valid]-c5)**2 k[uv_region] = k_uv # Calculate values for UV spline points to anchor OIR fit x_uv_spline = 10000. / np.array([2700., 2600.]) D = x_uv_spline**2 / ((x_uv_spline**2-x0**2)**2 + x_uv_spline**2 * gamma**2) k_uv_spline = c1 + c2*x_uv_spline +c3*D # Optical / IR OIR_region = (x < uvsplit) y = x[OIR_region] k_OIR = np.zeros(y.size) # Fitzpatrick (1999) model if model == 'f99': # The OIR anchors are up from IDL astrolib, not F99. anchors_extinction = np.array([0, 0.26469*r_v/3.1, 0.82925*r_v/3.1, # IR -0.422809 + 1.00270*r_v + 2.13572e-04*r_v**2, # optical -5.13540e-02 + 1.00216*r_v - 7.35778e-05*r_v**2, 0.700127 + 1.00184*r_v - 3.32598e-05*r_v**2, (1.19456 + 1.01707*r_v - 5.46959e-03*r_v**2 + 7.97809e-04*r_v**3 + -4.45636e-05*r_v**4)]) anchors_k = np.append(anchors_extinction-r_v, k_uv_spline) # Note that interp1d requires that the input abscissa is monotonically # _increasing_. This is opposite the usual ordering of a spectrum, but # fortunately the _output_ abscissa does not have the same requirement. anchors_x = 1e4 / np.array([26500., 12200., 6000., 5470., 4670., 4110.]) anchors_x = np.append(0., anchors_x) # For well-behaved spline. anchors_x = np.append(anchors_x, x_uv_spline) OIR_spline = interp1d(anchors_x, anchors_k, kind='cubic') k_OIR = OIR_spline(y) # Fitzpatrick & Massa (2007) model if model == 'fm07': anchors_k_opt = np.array([0., 1.322, 2.055]) IR_wave = np.array([float('inf'), 4., 2., 1.333, 1.]) anchors_k_IR = (-0.83 + 0.63*r_v) * IR_wave**-1.84 - r_v anchors_k = np.append(anchors_k_IR, anchors_k_opt) anchors_k = np.append(anchors_k, k_uv_spline) anchors_x = np.array([0., 0.25, 0.50, 0.75, 1.]) # IR opt_x = 1e4 / np.array([5530., 4000., 3300.]) # optical anchors_x = np.append(anchors_x, opt_x) anchors_x = np.append(anchors_x, x_uv_spline) OIR_spline = interp1d(anchors_x, anchors_k, kind='cubic') k_OIR = OIR_spline(y) k[OIR_region] = k_OIR reddening_curve = 10**(0.4 * ebv * (k+r_v)) return reddening_curve
1f47b360044613c9bbb18bf3446bcd7e3ad20344
3,654,733
def list_registered_stateful_ops_without_inputs(): """Returns set of registered stateful ops that do not expect inputs. This list is used to identify the ops to be included in the state-graph and that are subsequently fed into the apply-graphs. Returns: A set of strings. """ return set([ name for name, op in op_def_registry.get_registered_ops().items() if op.is_stateful and not op.input_arg ])
aa089bc4157c6a3c36121c6e880ffbd546723f0e
3,654,734
def load_frame_from_video(path: str, frame_index: int) -> np.ndarray: """load a full trajectory video file and return a single frame from it""" vid = load_video(path) img = vid[frame_index] return img
7b8747df38dfcf1f2244166002126d6d25170506
3,654,735
from typing import Dict from typing import List def get_settings_patterns(project_id: int) -> Dict[str, str]: """Returning project patterns settings""" track_patterns: List[Dict[str, str]] = ProjectSettings.objects.get(project_id=project_id).trackPatterns return {pattern['pattern']: pattern['regex'] for pattern in track_patterns}
d566ad5ec2fd72e2384fea90aa9cae9d99d9f441
3,654,736
def video_to_array(filepath): """Process the video into an array.""" cap = cv2.VideoCapture(filepath) num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) channel = 3 frame_buffer = np.empty((num_frames, height, width, channel), dtype=np.float32) frame_num = 0 returned = True while (frame_num < num_frames and returned): returned, frame = cap.read() if frame is not None: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frame = frame.astype(np.float32) frame = frame / 255.0 if np.sum(frame) > 0.0: frame_buffer[frame_num] = frame frame_num += 1 cap.release() return frame_buffer
2034ce56c7ca4fe61d0e0eb443c6fa9910d8a232
3,654,737
from unittest.mock import Mock async def test_10_request(requests_mock: Mock) -> None: """Test `async request()`.""" result = {"result": "the result"} rpc = RestClient("http://test", "passkey", timeout=0.1) def response(req: PreparedRequest, ctx: object) -> bytes: # pylint: disable=W0613 assert req.body is not None _ = json_decode(req.body) return json_encode(result).encode("utf-8") requests_mock.post("/test", content=response) ret = await rpc.request("POST", "test", {}) assert requests_mock.called auth_parts = requests_mock.last_request.headers['Authorization'].split(' ', 1) assert auth_parts[0].lower() == 'bearer' assert auth_parts[1] == 'passkey' assert ret == result result2 = {"result2": "the result 2"} def response2(req: PreparedRequest, ctx: object) -> bytes: # pylint: disable=W0613 assert req.body is not None _ = json_decode(req.body) return json_encode(result2).encode("utf-8") requests_mock.post("/test2", content=response2) ret = await rpc.request("POST", "/test2") assert requests_mock.called assert ret == result2
fa9e03d5b3f5a4f594db29eae057607f790e158c
3,654,738
def entmax15(X, axis=-1, k=None): """1.5-entmax: normalizing sparse transform (a la softmax). Solves the optimization problem: max_p <x, p> - H_1.5(p) s.t. p >= 0, sum(p) == 1. where H_1.5(p) is the Tsallis alpha-entropy with alpha=1.5. Parameters ---------- X : paddle.Tensor The input tensor. axis : int must The dimension along which to apply 1.5-entmax. k : int or None number of largest elements to partial-sort over. For optimal performance, should be slightly bigger than the expected number of nonzeros in the solution. If the solution is more than k-sparse, this function is recursively called with a 2*k schedule. If `None`, full sorting is performed from the beginning. Returns ------- P : paddle tensor, same shape as X The projection result, such that P.sum(axis=axis) == 1 elementwise. """ assert axis in [-1, X.ndim - 1] return Entmax15Function.apply(X, axis, k)
08887ec5aff323077ea6ea99bf6bd2b83bb4cc19
3,654,739
def get_dependency_graph(node, targets=None): """Returns the dependent nodes and the edges for the passed in node. :param str node: The node to get dependencies for. :param list targets: A list with the modules that are used as targets. :return: The dependency graph info. :rtype: GraphInfo """ g = _make_graph() edges, direct_dependencies = _all_dependencies(node, g) if targets: targets = set(targets) affected_targets = [] if not edges: return graph_info.GraphInfo( graph=g, nodes=[], edges=[], direct_dependencies=[], affected_targets=[] ) all_nodes = set() for n1, n2 in edges: all_nodes.add(n1) all_nodes.add(n2) node_to_info = {} for index, node_name in enumerate(all_nodes): if node_name not in node_to_info: node_id = index + 1 node_to_info[node_name] = { "id": node_id, "label": "", "title": node_name, "value": 1, "color": "blue" } if targets and node_name in targets: node_to_info[node_name]["color"] = 'orange' node_to_info[node_name]["value"] = 3 affected_targets.append(node_name) node_to_info[node]['color'] = 'red' node_to_info[node]['value'] = 3 edges_representation = [] for n1, n2 in edges: index1 = node_to_info[n1]["id"] index2 = node_to_info[n2]["id"] edge_color = 'gray' value = 1 if n1 == node: node_to_info[n2]['color'] = 'green' node_to_info[n2]['value'] = 2 edge_color = 'green' value = 2 if n2 == node: node_to_info[n1]['color'] = 'green' node_to_info[n1]['value'] = 2 edge_color = 'green' value = 2 edges_representation.append( { "from": index1, "to": index2, "color": edge_color, "value": value }, ) info = graph_info.GraphInfo( graph=g, nodes=list(node_to_info.values()), edges=edges_representation, direct_dependencies=sorted(direct_dependencies), affected_targets=affected_targets ) return info
39667e034379477086062a9032f5007c12aba30e
3,654,740
from pathlib import Path def is_submodule_repo(p: Path) -> bool: """ """ if p.is_file() and '.git/modules' in p.read_text(): return True return False
26675ee25e431778325081ec80d45ff3d72c2046
3,654,741
def shift_contig(df2, remove): """ The function append shifted fragment from sort_cluster_seq function. Parameters ---------- df2 : pandas DataFrame DataFrame NRPS cluster fragment. remove : list List of cluster fragment, which should removed. Returns ------- df2 : pandas DataFrame Corrected DataFrame with NRPS meta information. """ for gen in remove: df2 = df2.append(gen) return df2
7df891785fc58d818af5b423c7fdbc3c4382951f
3,654,742
import matplotlib as mpl def get_color_cycle(n=None): """Return the matplotlib color cycle. :param Optional[int] n: if given, return a list with exactly n elements formed by repeating the color cycle as necessary. Usage:: blue, green, red = get_color_cycle(3) """ cycle = mpl.rcParams["axes.prop_cycle"].by_key()["color"] if n is None: return it.cycle(cycle) return list(it.islice(it.cycle(cycle), n))
f19393d9a5c61ab158517261c258cc46b7a9701b
3,654,743
def _bocs_consistency_mapping(x): """ This is for the comparison with BOCS implementation :param x: :return: """ horizontal_ind = [0, 2, 4, 7, 9, 11, 14, 16, 18, 21, 22, 23] vertical_ind = sorted([elm for elm in range(24) if elm not in horizontal_ind]) return x[horizontal_ind].reshape((ISING_GRID_H, ISING_GRID_W - 1)), x[vertical_ind].reshape((ISING_GRID_H - 1, ISING_GRID_W))
bd8fe5261e024f5d5cdf1a2d77229dd564d947bf
3,654,744
def get_document(name, key): """Get document from Database""" constructor = Constructor() inst_coll = constructor.factory(kind='Collection', name=name) inst_doc = Document(inst_coll) doc = inst_doc.get_document(key) return doc
acd4e8117c0002d323a4fad79704a33437481657
3,654,745
from datetime import datetime import json def predict() -> str: """predict the movie genres based on the request data""" cur = db_connection.cursor() try: input_params = __process_input(request.data) input_vec = vectorizer.transform(input_params) prediction = classifier.predict(input_vec) predictions = binarizer.inverse_transform(prediction) for count, i in enumerate(input_params): pred = ", ".join(predictions[count]) cur.execute( f"INSERT INTO prediction(input, output, time) VALUES('{i}', '{pred}', '{datetime.datetime.now()}' )" ) db_connection.commit() except Exception as e: response = app.response_class( response=json.dumps({"error": f"{e.__class__} occured"}), status=400 ) return response response = app.response_class( response=json.dumps({"predictions:": binarizer.inverse_transform(prediction)}), status=200, ) return response
0ae49a8ab05d1df1c0beb07f322262a7a7ac8ee2
3,654,746
def SignificanceWeights(serializer, decay): """Multiplies a binary mask with a symbol significance mask.""" def significance_weights(mask): # (repr,) -> (batch, length, repr) # significance = [0, 1, 2] significance = serializer.significance_map assert significance.shape[0] == mask.shape[2] # significance = batch_size * [0, 1, 2] significance = jnp.repeat( significance[np.newaxis, ...], repeats=mask.shape[0], axis=0) # significance = batch_size * [0, 1, 2] * mask.shape[1] significance = jnp.repeat( significance[..., jnp.newaxis], repeats=mask.shape[1], axis=2) # significance = batch_size * mask.shape[1] * [0, 1, 2] significance = jnp.swapaxes(significance, 1, 2) assert significance.shape == mask.shape sig_weights = mask * decay ** significance return sig_weights return tl.Fn('SignificanceWeights', significance_weights)
545ac45149b8653f502d2dd864f92a40ee5919cb
3,654,747
def check_fun_inter_allocation(fun_inter, data, **kwargs): """Check allocation rules for fun_inter then returns objects if check""" out = None check_allocation_fun_inter = get_allocation_object(data, kwargs['xml_fun_inter_list']) if check_allocation_fun_inter is None: check_fe = check_fun_elem_data_consumption( data, fun_inter, kwargs['xml_fun_elem_list'], kwargs['xml_function_list'], kwargs['xml_consumer_function_list'], kwargs['xml_producer_function_list']) if all(i for i in check_fe): out = [fun_inter, data] fun_inter.add_allocated_data(data.id) elif True in check_fe: if check_fe[0] is True: print(f"Data {data.name} has only consumer(s) " f"allocated to a functional element exposing " f"{fun_inter.name}, {data.name} not " f"allocated to {fun_inter.name}") elif check_fe[1] is True: print(f"Data {data.name} has only producer(s) " f"allocated to a functional element exposing " f"{fun_inter.name}, {data.name} not " f"allocated to {fun_inter.name}") else: print(f"Data {data.name} has no producer(s) nor " f"consumer(s) allocated to functional elements " f"exposing {fun_inter.name}, {data.name} not " f"allocated to {fun_inter.name}") return out
61f17844953f3260a23aff35a2f090a028dd9212
3,654,748
from typing import Optional def kernel_bw_lookup( compute_device: str, compute_kernel: str, caching_ratio: Optional[float] = None, ) -> Optional[float]: """ Calculates the device bandwidth based on given compute device, compute kernel, and caching ratio. Args: compute_kernel (str): compute kernel. compute_device (str): compute device. caching_ratio (Optional[float]): caching ratio used to determine device bandwidth if UVM caching is enabled. Returns: float: the device bandwidth. """ caching_ratio = caching_ratio if caching_ratio else UVM_CACHING_RATIO lookup = { # CPU ("cpu", EmbeddingComputeKernel.DENSE.value): 0.35 * DDR_MEM_BW, ("cpu", EmbeddingComputeKernel.SPARSE.value): 0.35 * DDR_MEM_BW, ("cpu", EmbeddingComputeKernel.BATCHED_DENSE.value): 0.5 * DDR_MEM_BW, ("cpu", EmbeddingComputeKernel.BATCHED_FUSED.value): 1 * DDR_MEM_BW, ("cpu", EmbeddingComputeKernel.BATCHED_QUANT.value): 1 * DDR_MEM_BW, # CUDA ("cuda", EmbeddingComputeKernel.DENSE.value): 0.35 * HBM_MEM_BW, ("cuda", EmbeddingComputeKernel.SPARSE.value): 0.35 * HBM_MEM_BW, ("cuda", EmbeddingComputeKernel.BATCHED_DENSE.value): 0.5 * HBM_MEM_BW, ("cuda", EmbeddingComputeKernel.BATCHED_FUSED.value): 1 * HBM_MEM_BW, ("cuda", EmbeddingComputeKernel.BATCHED_FUSED_UVM.value): DDR_MEM_BW / 10, ("cuda", EmbeddingComputeKernel.BATCHED_FUSED_UVM_CACHING.value): ( caching_ratio * HBM_MEM_BW + (1 - caching_ratio) * DDR_MEM_BW ) / 10, ("cuda", EmbeddingComputeKernel.BATCHED_QUANT.value): 1 * HBM_MEM_BW, ("cuda", EmbeddingComputeKernel.BATCHED_QUANT_UVM.value): DDR_MEM_BW / 10, ("cuda", EmbeddingComputeKernel.BATCHED_QUANT_UVM_CACHING.value): ( caching_ratio * HBM_MEM_BW + (1 - caching_ratio) * DDR_MEM_BW ) / 10, } return lookup.get((compute_device, compute_kernel))
efd70d5c2e5fc9295bccbfb05113474ac40ff1c9
3,654,749
import ctypes def spkltc(targ, et, ref, abcorr, stobs): """ Return the state (position and velocity) of a target body relative to an observer, optionally corrected for light time, expressed relative to an inertial reference frame. http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/spkltc_c.html :param targ: Target body. :type targ: int :param et: Observer epoch. :type et: float :param ref: Inertial reference frame of output state. :type ref: str :param abcorr: Aberration correction flag. :type abcorr: str :param stobs: State of the observer relative to the SSB. :type stobs: 6-Element Array of floats :return: One way light time between observer and target, Derivative of light time with respect to time :rtype: tuple """ assert len(stobs) == 6 targ = stypes.c_int(targ) et = ctypes.c_double(et) ref = stypes.stringToCharP(ref) abcorr = stypes.stringToCharP(abcorr) stobs = stypes.toDoubleVector(stobs) starg = stypes.emptyDoubleVector(6) lt = ctypes.c_double() dlt = ctypes.c_double() libspice.spkltc_c(targ, et, ref, abcorr, stobs, starg, ctypes.byref(lt), ctypes.byref(dlt)) return stypes.cVectorToPython(starg), lt.value, dlt.value
e3c701e7e9b2c15d5b182bd4fff395a2cbf5d849
3,654,750
def create_container( container_image: str, name: str = None, volumes: t.List[str] = None, ) -> str: """Create a new working container from provided container image. Args: container_image (str): The container image to start from. name (str, optional): The container name. volumes (t.List[str], optional): Any volumes to bind into the container. Returns: str: The container name/id used for further manipulation. """ args = [] if name: args.extend(["--name", name]) if volumes: args.extend(_unwind_list("--volume", volumes)) command = ["buildah", "from"] + args + [container_image] result = platform_utils.run_command(command, capture_stdout=True) container = result.stdout.strip() logger.success(f"Created '{container}' from image '{container_image}'") return container
be50e84169e5d3df5dfd9730493d7daa9788049b
3,654,751
def single_data_path(client, node_id): """ In order for a shrink to work, it should be on a single filesystem, as shards cannot span filesystems. Return `True` if the node has a single filesystem, and `False` otherwise. :arg client: An :class:`elasticsearch.Elasticsearch` client object :rtype: bool """ return len(client.nodes.stats()['nodes'][node_id]['fs']['data']) == 1
ae0b34f82acb6d12faf525f0270250cdf471a6f8
3,654,752
def sortorder(obj): """ Trys to smartly determine the sort order for this object ``obj`` """ if hasattr(obj, 'last'): return obj.last.timestamp() if isinstance(obj, str): # First assume pure numeric try: return float(obj) except ValueError: pass # Assume it is of the form # AB [N.M] PPP words' try: return float(obj.split('[')[1].split(']')[0]) except (IndexError, ValueError): return strip_tags(obj).strip() return None
674ee77a87ccd7a0bd89a88b88a2682926a1135e
3,654,753
import json import re def get_more_details_of_post(post_url: str) -> json: """ :param post_url: the url of an imgur post :return: Details like Virality-score, username etc in JSON format """ details = {} try: request = HTMLSession().get(post_url) # some times, request isn't properly made, hence call again. if len(request.html.find('script')) < 18: request = HTMLSession().get(post_url) return details # handle when its not there at all regex = 'item: ({.+} )' # regex to isolate the `item` dict. # 18th script tag has the `item` dict. this is tested on more than 1500 links. matched = re.search(regex, request.html.find( 'script')[18].text).group(0) item = json.loads(matched[5:]) details['username'] = item['account_url'] details['comment_count'] = item['comment_count'] details['downs'] = item['downs'] details['ups'] = item['ups'] details['points'] = item['points'] details['score'] = item['score'] details['timestamp'] = item['timestamp'] details['views'] = item['views'] details['favorite_count'] = item['favorite_count'] details['hot_datetime'] = item['hot_datetime'] details['nsfw'] = item['nsfw'] details['platform'] = 'Not Detected' if item['platform'] == None else item['platform'] details['virality'] = item['virality'] except Exception as e: print(e) return details
dd3d622c8a7e8f61daf24c2d0cc6752323d4693e
3,654,754
import struct import hmac import hashlib def subkey_public_pair_chain_code_pair(public_pair, chain_code_bytes, i): """ Yield info for a child node for this node. public_pair: base public pair chain_code: base chain code i: the index for this node. Returns a pair (new_public_pair, new_chain_code) """ i_as_bytes = struct.pack(">l", i) sec = public_pair_to_sec(public_pair, compressed=True) data = sec + i_as_bytes I64 = hmac.HMAC(key=chain_code_bytes, msg=data, digestmod=hashlib.sha512).digest() I_left_as_exponent = from_bytes_32(I64[:32]) x, y = public_pair the_point = I_left_as_exponent * ecdsa.generator_secp256k1 + \ ecdsa.Point(ecdsa.generator_secp256k1.curve(), x, y, ORDER) if the_point == INFINITY: logger.critical(_SUBKEY_VALIDATION_LOG_ERR_FMT) raise DerivationError('K_{} == {}'.format(i, the_point)) I_left_as_exponent = from_bytes_32(I64[:32]) if I_left_as_exponent >= ORDER: logger.critical(_SUBKEY_VALIDATION_LOG_ERR_FMT) raise DerivationError('I_L >= {}'.format(ORDER)) new_public_pair = the_point.pair() new_chain_code = I64[32:] return new_public_pair, new_chain_code
8f31eb0ae3b063964ff46bcf6c78431d39d0e2ba
3,654,755
from typing import Optional def get_registry_description(metaprefix: str) -> Optional[str]: """Get the description for the registry, if available. :param metaprefix: The metaprefix of the registry :return: The description for the registry, if available, otherwise ``None``. >>> get_registry_description('prefixcommons') 'A registry of commonly used prefixes in the life sciences and linked data' >>> get_registry_description('missing') None """ registry = get_registry(metaprefix) if registry is None: return None return registry.description
12b7aac7f880d6699ca85add1065eca49a06d278
3,654,756
import tqdm def evaluate(model, valid_exe, valid_ds, valid_prog, dev_count, metric): """evaluate """ acc_loss = 0 acc_top1 = 0 cc = 0 for feed_dict in tqdm.tqdm( multi_device(valid_ds.generator(), dev_count), desc='evaluating'): if dev_count > 1: loss, top1 = valid_exe.run( feed=feed_dict, fetch_list=[model.metrics[0].name, model.metrics[1].name]) loss = np.mean(loss) top1 = np.mean(top1) else: loss, top1 = valid_exe.run( valid_prog, feed=feed_dict, fetch_list=[model.metrics[0].name, model.metrics[1].name]) acc_loss += loss acc_top1 += top1 cc += 1 ret = {"loss": float(acc_loss / cc), "top1": float(acc_top1 / cc)} return ret
7b228e7cadd71ec1ac31436767b92c4dadb5ec53
3,654,757
def _get_rank(player): """Get the rank of a player""" cursor = _DB.cursor() try: cursor.execute("SELECT score FROM scores WHERE player = ?", (player.lower(),)) rows = cursor.fetchall() if not rows: return 0 ps = rows[0][0] cursor.execute("SELECT count(*) FROM scores WHERE score > ?", (ps,)) rows = cursor.fetchall() return 1+rows[0][0] finally: cursor.close()
e556b9fb75f6b40c8c1be8759255dfc5953a1e9a
3,654,758
import os def getDataFromFileList(filedir): """ Reads all data from each file to one big data set ordered as: [[info],[[residue],[data]]] """ data = [] filelist =os.listdir(filedir) print("Loading data from data dir\n") if len(filelist)>0: print("DataFiles included:\n ----------------------------------") else: print("No data files found\n") return data for f in filelist: if "cpmg" not in f : continue d1 ={} d1["info"]= getFileInfo(filedir+f) if not d1["info"]: return data if not d1["info"]["type"] =="fit" and not d1["info"]["type"] == "exp": #This is to avoid additional files that have the same name continue else: print("| "+f+" |") d1["resdata"]=readExpFile(filedir+f,d1["info"]["type"]) data.append(d1) print(" ----------------------------------\n") return data
7314aee3defcd72a6b7e7edbdd8be57393de39c5
3,654,759
import pydoc def spec(func): """return a string with Python function specification""" doc = pydoc.plain(pydoc.render_doc(func)) return doc.splitlines()[2]
00b96364f77141fedd7d50396946fd4e29cc5d02
3,654,760
def brm_weights(P, r, Γ, X): """Bellman-residual minimization fixed-point weights. TODO: Need to actually go through the details to make sure this is right """ assert linalg.is_stochastic(P) assert X.ndim == 2 assert len(X) == len(P) ns = len(P) Γ = as_diag(Γ, ns) Λ = as_diag(Λ, ns) # Calculate intermediate quantities I = np.eye(ns) dist = linalg.stationary(P) D = np.diag(dist) Π = X @ pinv(X.T @ D @ X) @ X.T @ D A = (X - P @ Γ @ Π @ X).T @ (X - P @ Γ @ Π @ X) b = (X - P @ Γ @ Π @ X).T @ r return pinv(A) @ b
a4392f9d33a2cdddd2af5b0002af3a750fd64ab8
3,654,761
import os import time def file_age(file_name): """ Returns the age of a file in seconds from now. -1 if the file does not exist. :param file_name: file name .. versionadded:: 9.3.1 """ if not os.path.exists(file_name): return -1 return time.time() - os.path.getmtime(file_name)
9cefc1da2f7ab1c44fbe9dc4f63a5d51bc088ab8
3,654,762
import posixpath def IsVirus(mi, log): """Test: a virus is any message with an attached executable I've also noticed the viruses come in as wav and midi attachements so I trigger on those as well. This is a very paranoid detector, since someone might send me a binary for valid reasons. I white-list everyone who's sent me email before so it doesn't affect me. """ for part in mi.msg.walk(): if part.get_main_type() == 'multipart': continue filename = part.get_filename() if filename is None: if part.get_type() in ["application/x-msdownload", "audio/x-wav", "audio/x-midi"]: # Only viruses send messages to me with these types log.pass_test(VIRUS) return ("it has a virus-like content-type (%s)" % part.get_type()) else: extensions = "bat com exe pif ref scr vbs wsh".split() base, ext = posixpath.splitext(filename) if ext[1:].lower() in extensions: log.pass_test(VIRUS) return "it has a virus-like attachment (%s)" % ext[1:] return False
e30e91951ad49395d87bef07926cfdff4d15b3e2
3,654,763
def to_curl(request, compressed=False, verify=True): """ Returns string with curl command by provided request object Parameters ---------- compressed : bool If `True` then `--compressed` argument will be added to result """ parts = [ ('curl', None), ('-X', request.method), ] for k, v in sorted(request.headers.items()): parts += [('-H', '{0}: {1}'.format(k, v))] if request.body: body = request.body if isinstance(body, bytes): body = body.decode('utf-8') parts += [('-d', body)] if compressed: parts += [('--compressed', None)] if not verify: parts += [('--insecure', None)] parts += [(None, request.url)] flat_parts = [] for k, v in parts: if k: flat_parts.append(quote(k)) if v: flat_parts.append(quote(v).replace("\n", "\\n")) return ' '.join(flat_parts)
b462f62031f4fe757bb7a45b50ced9bc2ea6a9b5
3,654,764
def prox_trace_indicator(a, lamda): """Time-varying latent variable graphical lasso prox.""" es, Q = np.linalg.eigh(a) xi = np.maximum(es - lamda, 0) return np.linalg.multi_dot((Q, np.diag(xi), Q.T))
85d6cb26c7a35dbab771e0a9f9c8979fba90e680
3,654,765
def get_gamma_non_jitted(esys): """Get log gamma Returns ------- float[:] """ if isinstance(esys.species[0].logc, float): v = np.empty(len(esys.species)) else: v = np.empty(len(esys.species), dtype=object) for i, sp in enumerate(esys.species): v[i] = 10.0 ** (sp.logg) return v # return np.array([10.0**(sp.logg) for sp in self.species]) # v = np.empty(len(self.species)) # for i, sp in enumerate(self.species): # v[i] = 10.0**(sp.logg) # return v
f3d7f4b96676a10b7065196aac247006019da31e
3,654,766
def active_matrices_from_extrinsic_euler_angles( basis1, basis2, basis3, e, out=None): """Compute active rotation matrices from extrinsic Euler angles. Parameters ---------- basis1 : int Basis vector of first rotation. 0 corresponds to x axis, 1 to y axis, and 2 to z axis. basis2 : int Basis vector of second rotation. 0 corresponds to x axis, 1 to y axis, and 2 to z axis. basis3 : int Basis vector of third rotation. 0 corresponds to x axis, 1 to y axis, and 2 to z axis. e : array-like, shape (..., 3) Euler angles out : array, shape (..., 3, 3), optional (default: new array) Output array to which we write the result Returns ------- Rs : array, shape (..., 3, 3) Rotation matrices """ e = np.asarray(e) R_shape = e.shape + (3,) R_alpha = active_matrices_from_angles(basis1, e[..., 0].flat) R_beta = active_matrices_from_angles(basis2, e[..., 1].flat) R_gamma = active_matrices_from_angles(basis3, e[..., 2].flat) if out is None: out = np.empty(R_shape) out[:] = np.einsum( "nij,njk->nik", np.einsum("nij,njk->nik", R_gamma, R_beta), R_alpha).reshape(R_shape) return out
50218d9ce2296e3c4952cc77fe64e30c19e03f77
3,654,767
import sys import logging import traceback def save(image, parent=None): """ Save an image with appropriate dialogs (file selector) Return the chosen save path or None parent : parent wx Window for dialogs """ dialog = ImageFileDialog(parent, style=wx.FD_SAVE|wx.FD_OVERWRITE_PROMPT) if dialog.ShowModal() != wx.ID_OK : return None path = dialog.GetPath() if isinstance(image, list) : periodic_progress_dialog = PeriodicProgressDialog(0.2, "Saving files", "Saving ...") worker_thread = WorkerThread(periodic_progress_dialog,target=medipy.io.save_serie, args=(image,path,)) worker_thread.start() periodic_progress_dialog.start() worker_thread.join() periodic_progress_dialog.Destroy() else : try : medipy.io.save(image, path) return path except : # Try by adding a ".nii" suffix try : path += ".nii" medipy.io.save(image, path) return path except : exc_info = sys.exc_info() logging.error("".join(traceback.format_exception(*exc_info))) wx.MessageBox("Could not save image to %s: %s"%(path, exc_info[1]), "Could not save image", wx.OK|wx.ICON_ERROR)
83bc917f8fe21442712b0a8979bb9e8ddfdd80a7
3,654,768
def runQuery(scenarioID): """ Run a query that aquires the data from the lrs for one specific dialoguetrainer scenario \n :param scenarioID: The id of the scenario to request the data from \t :type scenarioID: int \n :returns: The data for that scenario or error \t :rtype: [Dict<string, mixed>] | {error} \n """ return ( lrs.Query() .where(lrs.Attr.ACTIVITY, lrs.IS, f"https://en.dialoguetrainer.app/scenario/play/{scenarioID}") .where(lrs.Attr.VERB, lrs.IS, "https://adlnet.gov/expapi/verbs/completed") .select(lrs.Attr.ACTOR, lrs.Attr.RESULT) .execute() )
0f57a4468354680b315a65263593979149bdb186
3,654,769
def is_spaceafter_yes(line): """ SpaceAfter="Yes" extracted from line """ if line[-1] == "_": return False for ddd in line[MISC].split("|"): kkk, vvv = ddd.split("=") if kkk == "SpaceAfter": return vvv == "Yes" raise ValueError
5693c8874ec9676bf19d9b1cb7ead5c1772a3f0b
3,654,770
def linear_scheduler(optimizer, warmup_steps, training_steps, last_epoch=-1): """linear_scheduler with warmup from huggingface""" def lr_lambda(current_step): if current_step < warmup_steps: return float(current_step) / float(max(1, warmup_steps)) return max( 0.0, float(training_steps - current_step) / float(max(1, training_steps - warmup_steps)), ) return LambdaLR(optimizer, lr_lambda, last_epoch)
d9446ede5be0ed981ae00b0bccd494017057d834
3,654,771
from functools import reduce import operator from re import X def MajorityVoteN(qubits, nrounds, prep=[], meas_delay=1e-6, add_cals=False, calRepeats=2): """ Majority vote across multiple measurement results (same or different qubits) Parameters ---------- qubits : Channels.LogicalChannel tuple A hashable (immutable) tuple of qubits for majority vote nrounds: int Number of consecutive measurements prep : boolean iterable, optional Array of binary values mapping X(q) pulses to the list of qubits proivided. Ex: (q1,q2), prep=(1,0) -> would apply a pi pulse to q1 before the majority vote measurement. Default = [] measDelay : int/float, optional Delay between syndrome check rounds (seconds) add_cals : boolean, optional Whether to append calibration pulses to the end of the sequence calRepeats : int, optional How many times to repeat calibration scalings (default 2) Returns ------- metafile : string Path to a json metafile with details about the sequences and paths to compiled machine files Examples -------- >>> mf = MajorityVoteN((q1, q2, q3), 10); Compiled 1 sequences. o INVALIDATE(channel=None, addr=0x1, mask=0x0) o WRITEADDR(channel=None, addr=0x1, value=0xfffff) MAJORITYMASK(in_addr=1, out_addr=0) o INVALIDATE(channel=None, addr=0xa, mask=0xfffff) o INVALIDATE(channel=None, addr=0xb, mask=0x1) MAJORITY(in_addr=a, out_addr=b) >>> mf '/path/to/exp/exp-meta.json' """ nqubits = len(qubits) seqs = [MajorityMask(1, 0, nrounds*nqubits), Invalidate(10, nrounds*nqubits), Invalidate(11, 1)] if prep: seqs += [reduce(operator.mul, [X(q) for n,q in enumerate(qubits) if prep[n]])] for n in range(nrounds): seqs += [reduce(operator.mul, [MEASA(q, (10, nqubits*n+m)) for m,q in enumerate(qubits)]), Id(qubits[0],meas_delay)] seqs+=MajorityVote(10,11, nrounds*nqubits) seqs+=qwait("RAM", 11) seqs+=[Id(qubits[0],100e-9)] seqs+=qif(1,[X(qubits[0])]) # placeholder for any conditional operation seqs=[seqs] if add_cals: seqs += create_cal_seqs(qubits, calRepeats) metafile = compile_to_hardware(seqs, 'MajorityVote/MajorityVote', tdm_seq=True) return metafile
7bc3b6161d5224ed7adf9248b32b0bd283f50c70
3,654,772
def getRatios(vect1, vect2): """Assumes: vect1 and vect2 are equal length lists of numbers Returns: a list containing the meaningful values of vect1[i]/vect2[i]""" ratios = [] for index in range(len(vect1)): try: ratios.append(vect1[index]/vect2[index]) except ZeroDivisionError: ratios.append(float('nan')) #nan = Not a Number except: raise ValueError('getRatios called with bad arguments') return ratios
e28f871986ab2b1b87cc3671b1c27ad14a0aadf8
3,654,773
def sampleset(): """Return list with 50 positive and 10 negative samples""" pos = [(0, i) for i in range(50)] neg = [(1, i) for i in range(10)] return pos + neg
77e5a0ca3ad8757f0ded2aec9d73312a66ac9044
3,654,774
def recognize_emotion(name, mode, dataset): """ The main program for building the system. And we support following kinds of model: 1. Convolutional Neural Network (CNN) 2. Support Vector Machine (SVM) 3. Adaboost 4. Multilayer Perceptron (MLP) Args: name: path of the photo for recognizing mode: mode used for face detection, 'auto' or 'manual dataset: dataset used for face recognition, 'CK+48' or 'fer2013' Returns: predicted: emotion prediction (numerical) of detected faces using cnn and fisherfaces recognition: emotion recognition (categorical) of detected faces using cnn and fisherfaces Note: result will be printed to standard output, accuracy needs to be improved. """ # Load the dataset into a shuffled list of tuples dataset_tuple_list = dp.load_dataset(dataset) # Split the dataset into train, test, validation and their corresponding labels img_train, img_train_label, img_validation, img_validation_label, img_test, img_test_label, le = \ dp.split_data(dataset_tuple_list) # Fisherfaces: Get the fisherfaces_train and fisherfaces_test feature vectors for further training and predicting fisher_train, fisher_test, fisher_validation, pca, lda = fe.fisherfaces(img_train, img_test, img_validation, img_train_label, le) # Construct and train the selected model with the input train and validation datasets model_trained = mc.train_model('cnn', fisher_train, img_train_label, fisher_validation, img_validation_label, 'fisherfaces') # detect faces in photo and get coordinates of them face_coordinates, resized_list = fd.detect_face(name, mode) # project faces to fisherfaces face_column_matrix = fe.constructRowMatrix(np.array(resized_list)) pca_face = pca.transform(face_column_matrix) fisherfaces_face = lda.transform(pca_face) # use trained cnn to recognize emotions fisherfaces_face = fisherfaces_face.reshape(-1, 1, 6) prediction = model_trained.predict(fisherfaces_face) recognized = np.argmax(prediction, axis=1) print(f'\nprediction:\n{prediction}\nrecognized:\n{recognized}') return prediction, recognized
eae092866f5190a637bbdb08c4ad7188b9cb88f3
3,654,775
def feedback(request): """ Feedback page. Here one can send feedback to improve the website further. """ return render(request, "groundfloor/common/feedback.html", context = None)
8dd9f8ae57ca49629820c58b54c7d98d705597bb
3,654,776
from typing import Tuple def fill_nodata_image(dataset: xr.Dataset) -> Tuple[np.ndarray, np.ndarray]: """ Interpolate no data values in image. If no mask was given, create all valid masks :param dataset: Dataset image :type dataset: xarray.Dataset containing : - im : 2D (row, col) xarray.DataArray :return: a Tuple that contains the filled image and mask :rtype: Tuple of np.ndarray """ if 'msk' in dataset: img, msk = interpolate_nodata_sgm(dataset['im'].data, dataset['msk'].data) else: msk = np.full((dataset['im'].data.shape[0], dataset['im'].data.shape[1]), int(dataset.attrs['valid_pixels'])) img = dataset['im'].data return img, msk
c245f0cbfbb79737fb85b9b8fb8381aad6373926
3,654,777
def find(value, a_list): """ TestCase for find >>> find(26, [12,14]) True >>> find(40, [14, 15, 16, 4, 6, 5]) False >>> find(1, [1]) False >>> find(1, []) False >>> find(4, [2, 3, 2]) True """ # 现将列表变为<value, index>字典 if a_list is None or len(a_list) < 2: return False d = {} for i in range(len(a_list)): if d.has_key(a_list[i]): d[a_list[i]] = d[a_list[i]] + 1 else: d[a_list[i]] = 1 # 第二次遍历 for i in a_list: if d.has_key(value-i): # 排除自己本身 x = value == i*2 if(not (x and d[i] == 1)): return True return False
dd466a8ffa0c760ed0af9ad109b5f4e3b85a62db
3,654,778
def transform_bbox( bbox, source_epsg_code, target_epsg_code, all_coords=False ): """ Transform bbox from source_epsg_code to target_epsg_code, if necessary :returns np.array of shape 4 which represent the two coordinates: left, bottom and right, top. When `all_coords` is set to `True`, a np.array of shape 8 is given which represents coords of the bbox in the following order: left top, right top, right bottom, left bottom """ if source_epsg_code != target_epsg_code: # XXX: Not entirely sure whether transformations between two projected # coordinate systems always do retain the rectangular shape of a bbox. # Transformations between an unprojected system (e.g. WGS84) and a # projected system (e.g. RDNEW) will experience distortion: the # resulting shape cannot be accurately represented by top left # and bottom right. source_srs = get_spatial_reference(source_epsg_code) target_srs = get_spatial_reference(target_epsg_code) if source_srs.IsProjected() != target_srs.IsProjected(): msg = "Transforming a bbox from %s to %s is inaccurate." logger.warning(msg, source_epsg_code, target_epsg_code) # Transform to [[left, right],[top, bottom]] input_x = [bbox[BBOX_LEFT], bbox[BBOX_RIGHT]] input_y = [bbox[BBOX_TOP], bbox[BBOX_BOTTOM]] if all_coords: input_x += [bbox[BBOX_RIGHT], bbox[BBOX_LEFT]] input_y += [bbox[BBOX_TOP], bbox[BBOX_BOTTOM]] bbox_trans = np.array( transform_xys( np.array(input_x), np.array(input_y), source_epsg_code, target_epsg_code ) ) if all_coords: bbox = np.array([ bbox_trans[0][0], bbox_trans[1][0], # left_top bbox_trans[0][2], bbox_trans[1][2], # right_top bbox_trans[0][1], bbox_trans[1][1], # right_bottom bbox_trans[0][3], bbox_trans[1][3] # left_bottom ]) else: # Transform back to [left,bottom,right,top] bbox = np.array( [min(bbox_trans[0]), min(bbox_trans[1]), # left_bottom max(bbox_trans[0]), max(bbox_trans[1]) # right_top ] ) return bbox
cd6938b2dfcc02fe9c2a323e2b60339de216dd26
3,654,779
def distance_metric(vector1, vector2): """ Returns a score value using Jaccard distance Args: vector1 (np.array): first vector with minHash values vector2 (np.array): second vector with minHash values Returns: float: Jaccard similarity """ return distance.pdist(np.array([vector1,vector2]), 'jaccard').sum()
e1acbc9eff7ee8bc78be0307acacbca9e9d69265
3,654,780
from datetime import datetime def update_calendar(request): """ to update an entry to the academic calendar to be updated. @param: request - contains metadata about the requested page. @variables: from_date - The starting date for the academic calendar event. to_date - The ending date for the academic caldendar event. desc - Description for the academic calendar event. prev_desc - Description for the previous event which is to be updated. get_calendar_details = Get the object of the calendar instance from the database for the previous Description. """ if user_check(request): return HttpResponseRedirect('/academic-procedures/') calendar = Calendar.objects.all() context= { 'academic_calendar' :calendar, 'tab_id' :['4','1'] } if request.method == "POST": try: from_date = request.POST.getlist('from_date') to_date = request.POST.getlist('to_date') desc = request.POST.getlist('description')[0] prev_desc = request.POST.getlist('prev_desc')[0] from_date = from_date[0].split('-') from_date = [int(i) for i in from_date] from_date = datetime.datetime(*from_date).date() to_date = to_date[0].split('-') to_date = [int(i) for i in to_date] to_date = datetime.datetime(*to_date).date() get_calendar_details = Calendar.objects.all().filter(description=prev_desc).first() get_calendar_details.description = desc get_calendar_details.from_date = from_date get_calendar_details.to_date = to_date get_calendar_details.save() except Exception as e: from_date="" to_date="" desc="" return render(request, "ais/ais.html", context) return render(request, "ais/ais.html", context)
804f3f0443d192c0c18a501c40808f2406596491
3,654,781
def get_section(entry: LogEntry) -> str: """returns the section of the request (/twiki/bin/edit/Main -> /twiki)""" section = entry.request.split('/')[:2] return '/'.join(section)
dee463b5a662846da01fc2ef8d1c72c5b582e7e5
3,654,782
def reverse_lookup(d, v): """ Reverse lookup all corresponding keys of a given value. Return a lisy containing all the keys. Raise and exception if the list is empty. """ l = [] for k in d: if d[k] == v: l.append(k) if l == []: raise ValueError else: return l
d68f437aec47df964905779f99d58be84515fb72
3,654,783
def compile_channels_table(*, channels_meta, sources, detectors, wavelengths): """Compiles a NIRSChannelsTable given the details about the channels, sources, detectors, and wavelengths. """ table = NIRSChannelsTable() for channel_id, channel in channels_meta.items(): source_label = sources.label[channel["source_idx"]] detector_label = detectors.label[channel["detector_idx"]] source_wavelength = wavelengths[channel["wavelength_idx"]] table.add_row( label=f"{source_label}_{detector_label} {source_wavelength:.0f}", source=channel["source_idx"], detector=channel["detector_idx"], source_wavelength=source_wavelength, ) table.source.table = sources table.detector.table = detectors return table
ac3099ef0440962b3fbfeec36f01ae92061b5693
3,654,784
from pathlib import Path def cpe2pkg_tool(): """Unsupported ecosystem CVE fixture.""" bin = Path(__file__).parent.parent / Path('tools/bin/cpe2pkg.jar') if bin.exists(): return str(bin) else: raise RuntimeError('`cpe2pkg.jar` is not available, please run `make build-cpe2pkg once.`')
7ad5489cd560f2820a5e77c46964514a5a34edc9
3,654,785
import threading def spawn_thread(func, *args, **kwds): """ Utility function for creating and starting a daemonic thread. """ thr = threading.Thread(target=func, args=args, kwargs=kwds) thr.setDaemon(True) thr.start() return thr
afaace7e02870390acb297106ac9d35c9a931a59
3,654,786
import sys def decision(question): """Asks user for a question returning True/False answed""" if sys.version_info[0] < 3: if raw_input("\n%s [Y/n] " % question) in ["", "y", "Y"]: return True else: if input("\n%s [Y/n] " % question) in ["", "y", "Y"]: return True return False
8d31e2f11ad9aa2d0d35f35078ffb46ca0718f09
3,654,787
import uuid def get_thread_replies(parent_id): """ Get all replies to a thread If the thread does not exist, return an empty list :param parent_id: Thread ID :return: replies to thread """ assert type(parent_id) is uuid.UUID, """parent_id is not correct type""" reply_query = Query() results = db.search(reply_query.parent == str(parent_id)) return results
1b167dcc4ab09d50cda9feb478c8f1a4d0399e96
3,654,788
import torch def compute_acc(pred, labels): """ Compute the accuracy of prediction given the labels. """ return (torch.argmax(pred, dim=1) == labels).float().sum() / len(pred)
1b1ad83b9b4ae06f2bc80209e4e7339a421a39f3
3,654,789
async def read_update_status() -> str: """Read update status.""" return ( await cache.get(Config.update_status_id()) if await cache.exists(Config.update_status_id()) else "ready_to_update" )
0e80f7065665dbe1a41e59fe7c65904e58bb6d8f
3,654,790
def _login_and_select_first_active_device(api): """Login Erie Connect and select first active device""" # These do i/o _LOGGER.debug(f'{DOMAIN}: erie_connect.login()') api.login() _LOGGER.debug(f'{DOMAIN}: erie_connect.select_first_active_device()') api.select_first_active_device() if ( api.device is None or api.auth is None ): raise InvalidData return api.device.id
1733db73978b8a2c92400946b6c044ab3bb4ab23
3,654,791
def PCopy (inFA, err): """ Make copy an GPUFArray returns copy * inFA = input Python GPUFArray * err = Python Obit Error/message stack """ ################################################################ # Checks if not PIsA(inFA): print("Actually ",inFA.__class__) raise TypeError("inFA MUST be a Python Obit GPUFArray") outFA = GPUFArray("None") outFA.me = Obit.GPUFArrayCopy (inFA.me, outFA.me, err.me); if err.isErr: OErr.printErrMsg(err, "Error copying GPUFArray") return outFA # end PCopy
df1047dc143fb5f8d8f4fd88a2b1ebc0904620a2
3,654,792
def _get_statuses(policy_type_id, policy_instance_id): """ shared helper to get statuses for an instance """ _instance_is_valid(policy_type_id, policy_instance_id) prefixes_for_handler = "{0}{1}.{2}.".format(HANDLER_PREFIX, policy_type_id, policy_instance_id) return list(SDL.find_and_get(A1NS, prefixes_for_handler).values())
fdddc26d3c2b65834d4b047a5565894b0d965f9d
3,654,793
def phase_lines(graph): """ Determines the phase lines of a graph. :param graph: Graph :return: dictionary with node id : phase in cut. """ if has_cycles(graph): raise ValueError("a cyclic graph will not have phaselines.") phases = {n: 0 for n in graph.nodes()} q = graph.nodes(in_degree=0) while q: n = q.pop(0) level = phases[n] children = graph.nodes(from_node=n) for c in children: if phases[c] <= level: phases[c] = level + 1 q.append(c) return phases
9f1aab9e487bd258c88b0f149bcf613341945879
3,654,794
import os import webbrowser import requests def creds() -> Account: """Load or obtain credentials for user.""" credentials = "8da780f3-5ea0-4d97-ab13-9e7976370624" protocol = MSGraphProtocol(timezone="Europe/Stockholm") scopes = protocol.get_scopes_for(SCOPES) token_backend = FileSystemTokenBackend( token_path=os.path.dirname(__file__), token_filename="o365_token.txt" ) connection = Connection( credentials, auth_flow_type="public", token_backend=token_backend ) account = Account( credentials, auth_flow_type="public", protocol=protocol, token_backend=token_backend, ) if ( not os.path.exists("kronoxToGCalendar/logic/o365_token.txt") and not account.is_authenticated ): print("AUTH TRIGGERED") auth_url = connection.get_authorization_url( requested_scopes=scopes, redirect_uri="https://kronox-client-api.herokuapp.com/return_token_url", ) webbrowser.open_new(auth_url[0]) token_req = lambda: requests.get( "https://kronox-client-api.herokuapp.com/get_token_url" ) while token_req().text == "None": continue token_res_arr = token_req().text.split("&") print(token_res_arr) token_code = token_res_arr[0].split("?")[1][5:] token_state = token_res_arr[1][6:] token_url = ( "https://login.microsoftonline.com/common/oauth2/nativeclient?code=" + token_code + "&state=" + token_state ) connection.request_token(token_url) print("AUTH PASSED") account.is_authenticated return account
d8e1e547d1db443723a58bb583584ede03fe4bd5
3,654,795
import base64 def b64decode_str(b64string): """ Decodes an arbitrary string from a base 64 ASCII string """ output = base64.b64decode(b64string).decode("UTF-8") logger.debug("Decoded %s as %s", b64string, output) return output
26475a5380e0a535a9ec12146d0f6e4236d20495
3,654,796
def BCELossConfig(argument_parser): """ Set CLI arguments :param argument_parser: argument parser :type argument_parser: ```ArgumentParser``` :returns: argument_parser :rtype: ```ArgumentParser``` """ argument_parser.description = """Creates a criterion that measures the Binary Cross Entropy between the target and the output: The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as: .. math:: \\ell(x, y) = L = \\{l_1,\\dots,l_N\\}^\\top, \\quad l_n = - w_n \\left[ y_n \\cdot \\log x_n + (1 - y_n) \\cdot \\log (1 - x_n) \\right], where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'`` (default ``'mean'``), then .. math:: \\ell(x, y) = \\begin{cases} \\operatorname{mean}(L), & \\text{if reduction} = \\text{`mean';}\\\\ \\operatorname{sum}(L), & \\text{if reduction} = \\text{`sum'.} \\end{cases} This is used for measuring the error of a reconstruction in for example an auto-encoder. Note that the targets :math:`y` should be numbers between 0 and 1. Notice that if :math:`x_n` is either 0 or 1, one of the log terms would be mathematically undefined in the above loss equation. PyTorch chooses to set :math:`\\log (0) = -\\infty`, since :math:`\\lim_{x\\to 0} \\log (x) = -\\infty`. However, an infinite term in the loss equation is not desirable for several reasons. For one, if either :math:`y_n = 0` or :math:`(1 - y_n) = 0`, then we would be multiplying 0 with infinity. Secondly, if we have an infinite loss value, then we would also have an infinite term in our gradient, since :math:`\\lim_{x\\to 0} \\frac{d}{dx} \\log (x) = \\infty`. This would make BCELoss's backward method nonlinear with respect to :math:`x_n`, and using it for things like linear regression would not be straight-forward. Our solution is that BCELoss clamps its log function outputs to be greater than or equal to -100. This way, we can always have a finite loss value and a linear backward method. Shape: - Input: :math:`(N, *)` where :math:`*` means, any number of additional dimensions - Target: :math:`(N, *)`, same shape as the input - Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(N, *)`, same shape as input. Examples:: >>> m = nn.Sigmoid() >>> loss = nn.BCELoss() >>> input = torch.randn(3, requires_grad=True) >>> target = torch.empty(3).random_(2) >>> output = loss(m(input), target) >>> output.backward()""" argument_parser.add_argument( "--weight", help="""a manual rescaling weight given to the loss of each batch element. If given, has to be a Tensor of size `nbatch`.""", required=True, ) argument_parser.add_argument( "--size_average", type=bool, help="""Deprecated (see :attr:`reduction`). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there are multiple elements per sample. If the field :attr:`size_average` is set to ``False``, the losses are instead summed for each minibatch. Ignored when :attr:`reduce` is ``False``.""", default=True, ) argument_parser.add_argument( "--reduce", type=bool, help="""Deprecated (see :attr:`reduction`). By default, the losses are averaged or summed over observations for each minibatch depending on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per batch element instead and ignores :attr:`size_average`.""", default=True, ) argument_parser.add_argument( "--reduction", help="""Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, ``'mean'``: the sum of the output will be divided by the number of elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average` and :attr:`reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override :attr:`reduction`.""", required=True, default="mean", ) argument_parser.add_argument( "--__constants__", type=str, action="append", required=True, default="reduction" ) return argument_parser
d0108459bdad9b2f6fad438bff542624b482ef7d
3,654,797
def gen_cities_avg(climate, multi_cities, years): """ Compute the average annual temperature over multiple cities. Args: climate: instance of Climate multi_cities: the names of cities we want to average over (list of str) years: the range of years of the yearly averaged temperature (list of int) Returns: a pylab 1-d array of floats with length = len(years). Each element in this array corresponds to the average annual temperature over the given cities for a given year. """ # MY_CODE return np.array([np.mean([np.mean(climate.get_yearly_temp(city, year)) for city in multi_cities]) for year in years])
9609add6a1514d09b42e2494e56c84522d3cb364
3,654,798
def tangentVectorsOnSphere( points, northPole = np.array([0.0,0.0,1.0]) ): """ Acquire a basis for the tangent space at given points on the surface of the unit sphere. :param points: N x 3 array of N points at which to acquire basis of tangent space. :param northPole: 3 array of point corresponding to the north pole. :return A N x 3 x 3 array. Each point has three orthogonal tangent vectors of unit length. They are constructed such as the first vector is pointing towards the 'northPole'. The second vector is orthogonal to both the first vector and the vector from the origin to the point of interest. The third vector is equal to the vector between the origin and the point of interest. The last dimension represent the elements of the vectors. The next to last dimension indices the vectors """ vectors = np.zeros( (points.shape[0], 3,3) ) # Get third vector vectors[:, 2, :] = points / np.linalg.norm(points, axis= 1).reshape((-1,1)) # Get second vector vectors[:, 1, :] = np.cross( northPole.reshape( (1,3) ), vectors[:,2,:] ) # Get first vector vectors[:, 0, :] = np.cross( vectors[:,2,:], vectors[:,1,:] ) # Normalize vectors lengths = np.linalg.norm( vectors, axis=2 ).reshape((-1, 3)) inds = np.any( lengths == 0.0, axis=1 ) vectors[inds, :, : ] = np.nan vectors[~inds, :, :] = vectors[~inds, :, :] / lengths[~inds, :].reshape( (-1,3,1) ) return vectors
bfa23a393ac4d1b38c6c2b19207520db1bd83e03
3,654,799