text
stringlengths
56
1.16k
[2023-09-02 09:49:31,914::train::INFO] [train] Iter 08587 | loss 2.5493 | loss(rot) 2.2740 | loss(pos) 0.2272 | loss(seq) 0.0481 | grad 8.4717 | lr 0.0010 | time_forward 2.1490 | time_backward 2.6420
[2023-09-02 09:49:40,704::train::INFO] [train] Iter 08588 | loss 0.7689 | loss(rot) 0.2176 | loss(pos) 0.3000 | loss(seq) 0.2513 | grad 4.0200 | lr 0.0010 | time_forward 3.6530 | time_backward 5.1330
[2023-09-02 09:49:47,940::train::INFO] [train] Iter 08589 | loss 2.2822 | loss(rot) 1.3952 | loss(pos) 0.3308 | loss(seq) 0.5562 | grad 6.3509 | lr 0.0010 | time_forward 3.1250 | time_backward 4.1070
[2023-09-02 09:49:50,610::train::INFO] [train] Iter 08590 | loss 2.6854 | loss(rot) 2.3709 | loss(pos) 0.2728 | loss(seq) 0.0417 | grad 5.6177 | lr 0.0010 | time_forward 1.2790 | time_backward 1.3870
[2023-09-02 09:50:00,495::train::INFO] [train] Iter 08591 | loss 1.7118 | loss(rot) 0.9871 | loss(pos) 0.2492 | loss(seq) 0.4755 | grad 5.2751 | lr 0.0010 | time_forward 4.1020 | time_backward 5.7800
[2023-09-02 09:50:08,598::train::INFO] [train] Iter 08592 | loss 1.7096 | loss(rot) 1.1110 | loss(pos) 0.3266 | loss(seq) 0.2720 | grad 4.9216 | lr 0.0010 | time_forward 3.4070 | time_backward 4.6930
[2023-09-02 09:50:18,614::train::INFO] [train] Iter 08593 | loss 2.4155 | loss(rot) 2.2339 | loss(pos) 0.1748 | loss(seq) 0.0067 | grad 4.1807 | lr 0.0010 | time_forward 4.0550 | time_backward 5.9580
[2023-09-02 09:50:28,665::train::INFO] [train] Iter 08594 | loss 2.0028 | loss(rot) 0.9932 | loss(pos) 0.3372 | loss(seq) 0.6724 | grad 3.8230 | lr 0.0010 | time_forward 4.2890 | time_backward 5.7590
[2023-09-02 09:50:31,380::train::INFO] [train] Iter 08595 | loss 1.2500 | loss(rot) 1.0544 | loss(pos) 0.0945 | loss(seq) 0.1011 | grad 4.3195 | lr 0.0010 | time_forward 1.2950 | time_backward 1.4150
[2023-09-02 09:50:40,437::train::INFO] [train] Iter 08596 | loss 2.6112 | loss(rot) 2.3410 | loss(pos) 0.2479 | loss(seq) 0.0223 | grad 3.5744 | lr 0.0010 | time_forward 3.8520 | time_backward 5.2010
[2023-09-02 09:50:43,143::train::INFO] [train] Iter 08597 | loss 2.4041 | loss(rot) 2.3016 | loss(pos) 0.1025 | loss(seq) 0.0000 | grad 7.6021 | lr 0.0010 | time_forward 1.3000 | time_backward 1.4030
[2023-09-02 09:50:45,831::train::INFO] [train] Iter 08598 | loss 0.7444 | loss(rot) 0.1091 | loss(pos) 0.6138 | loss(seq) 0.0215 | grad 5.8992 | lr 0.0010 | time_forward 1.2840 | time_backward 1.4010
[2023-09-02 09:50:48,599::train::INFO] [train] Iter 08599 | loss 1.0980 | loss(rot) 0.4098 | loss(pos) 0.3255 | loss(seq) 0.3627 | grad 3.7654 | lr 0.0010 | time_forward 1.3270 | time_backward 1.4370
[2023-09-02 09:50:58,764::train::INFO] [train] Iter 08600 | loss 2.5463 | loss(rot) 0.0481 | loss(pos) 2.4982 | loss(seq) 0.0000 | grad 6.5619 | lr 0.0010 | time_forward 4.3600 | time_backward 5.8010
[2023-09-02 09:51:05,768::train::INFO] [train] Iter 08601 | loss 2.2685 | loss(rot) 1.0981 | loss(pos) 0.7016 | loss(seq) 0.4688 | grad 4.9816 | lr 0.0010 | time_forward 2.9790 | time_backward 4.0200
[2023-09-02 09:51:08,475::train::INFO] [train] Iter 08602 | loss 1.4048 | loss(rot) 0.5798 | loss(pos) 0.4576 | loss(seq) 0.3674 | grad 4.5919 | lr 0.0010 | time_forward 1.2900 | time_backward 1.4150
[2023-09-02 09:51:11,340::train::INFO] [train] Iter 08603 | loss 2.1458 | loss(rot) 1.6339 | loss(pos) 0.1494 | loss(seq) 0.3625 | grad 6.0855 | lr 0.0010 | time_forward 1.3720 | time_backward 1.4750
[2023-09-02 09:51:21,676::train::INFO] [train] Iter 08604 | loss 1.5049 | loss(rot) 0.4766 | loss(pos) 0.7648 | loss(seq) 0.2635 | grad 4.1566 | lr 0.0010 | time_forward 4.2630 | time_backward 6.0700
[2023-09-02 09:51:24,487::train::INFO] [train] Iter 08605 | loss 1.2514 | loss(rot) 0.3591 | loss(pos) 0.5920 | loss(seq) 0.3003 | grad 3.6113 | lr 0.0010 | time_forward 1.3400 | time_backward 1.4670
[2023-09-02 09:51:34,037::train::INFO] [train] Iter 08606 | loss 1.2878 | loss(rot) 0.4264 | loss(pos) 0.3552 | loss(seq) 0.5062 | grad 4.7507 | lr 0.0010 | time_forward 4.0860 | time_backward 5.4600
[2023-09-02 09:51:36,528::train::INFO] [train] Iter 08607 | loss 2.3478 | loss(rot) 1.8521 | loss(pos) 0.4957 | loss(seq) 0.0000 | grad 5.9009 | lr 0.0010 | time_forward 1.2080 | time_backward 1.2790
[2023-09-02 09:51:46,236::train::INFO] [train] Iter 08608 | loss 1.6315 | loss(rot) 0.9490 | loss(pos) 0.2087 | loss(seq) 0.4738 | grad 5.1980 | lr 0.0010 | time_forward 3.9910 | time_backward 5.7130
[2023-09-02 09:51:55,096::train::INFO] [train] Iter 08609 | loss 1.4242 | loss(rot) 1.3168 | loss(pos) 0.0808 | loss(seq) 0.0266 | grad 4.7910 | lr 0.0010 | time_forward 3.7710 | time_backward 5.0850
[2023-09-02 09:51:57,878::train::INFO] [train] Iter 08610 | loss 1.8459 | loss(rot) 1.1696 | loss(pos) 0.1491 | loss(seq) 0.5273 | grad 8.0773 | lr 0.0010 | time_forward 1.3210 | time_backward 1.4570
[2023-09-02 09:52:07,503::train::INFO] [train] Iter 08611 | loss 2.5875 | loss(rot) 2.2633 | loss(pos) 0.3242 | loss(seq) 0.0000 | grad 3.8560 | lr 0.0010 | time_forward 3.9490 | time_backward 5.6730
[2023-09-02 09:52:16,494::train::INFO] [train] Iter 08612 | loss 2.5966 | loss(rot) 2.3884 | loss(pos) 0.1671 | loss(seq) 0.0411 | grad 6.3400 | lr 0.0010 | time_forward 3.6950 | time_backward 5.2920
[2023-09-02 09:52:19,288::train::INFO] [train] Iter 08613 | loss 1.5110 | loss(rot) 1.3777 | loss(pos) 0.1287 | loss(seq) 0.0047 | grad 5.9276 | lr 0.0010 | time_forward 1.3210 | time_backward 1.4590
[2023-09-02 09:52:22,014::train::INFO] [train] Iter 08614 | loss 1.7754 | loss(rot) 0.6979 | loss(pos) 0.5524 | loss(seq) 0.5251 | grad 4.8749 | lr 0.0010 | time_forward 1.2810 | time_backward 1.4410
[2023-09-02 09:52:24,785::train::INFO] [train] Iter 08615 | loss 2.0636 | loss(rot) 1.3472 | loss(pos) 0.2396 | loss(seq) 0.4767 | grad 4.7205 | lr 0.0010 | time_forward 1.3100 | time_backward 1.4580
[2023-09-02 09:52:35,019::train::INFO] [train] Iter 08616 | loss 2.3761 | loss(rot) 1.1776 | loss(pos) 0.5609 | loss(seq) 0.6376 | grad 5.0820 | lr 0.0010 | time_forward 4.3070 | time_backward 5.9230
[2023-09-02 09:52:43,605::train::INFO] [train] Iter 08617 | loss 2.7810 | loss(rot) 1.9799 | loss(pos) 0.2456 | loss(seq) 0.5556 | grad 4.6579 | lr 0.0010 | time_forward 3.6350 | time_backward 4.9480
[2023-09-02 09:52:51,865::train::INFO] [train] Iter 08618 | loss 0.9267 | loss(rot) 0.1246 | loss(pos) 0.5847 | loss(seq) 0.2175 | grad 3.7916 | lr 0.0010 | time_forward 3.4620 | time_backward 4.7940
[2023-09-02 09:53:01,954::train::INFO] [train] Iter 08619 | loss 1.6337 | loss(rot) 1.3272 | loss(pos) 0.3065 | loss(seq) 0.0000 | grad 4.1372 | lr 0.0010 | time_forward 4.2720 | time_backward 5.8140
[2023-09-02 09:53:05,265::train::INFO] [train] Iter 08620 | loss 1.9027 | loss(rot) 1.2463 | loss(pos) 0.2013 | loss(seq) 0.4551 | grad 3.7439 | lr 0.0010 | time_forward 1.4640 | time_backward 1.8430
[2023-09-02 09:53:11,702::train::INFO] [train] Iter 08621 | loss 0.6635 | loss(rot) 0.1813 | loss(pos) 0.4274 | loss(seq) 0.0549 | grad 4.0692 | lr 0.0010 | time_forward 2.7060 | time_backward 3.7150
[2023-09-02 09:53:21,651::train::INFO] [train] Iter 08622 | loss 1.8765 | loss(rot) 1.5858 | loss(pos) 0.2907 | loss(seq) 0.0000 | grad 5.8552 | lr 0.0010 | time_forward 4.1040 | time_backward 5.8420
[2023-09-02 09:53:24,385::train::INFO] [train] Iter 08623 | loss 2.3315 | loss(rot) 1.5231 | loss(pos) 0.2865 | loss(seq) 0.5219 | grad 5.5781 | lr 0.0010 | time_forward 1.2860 | time_backward 1.4450
[2023-09-02 09:53:34,600::train::INFO] [train] Iter 08624 | loss 1.5279 | loss(rot) 1.2400 | loss(pos) 0.1697 | loss(seq) 0.1182 | grad 5.3974 | lr 0.0010 | time_forward 4.1320 | time_backward 6.0790
[2023-09-02 09:53:42,931::train::INFO] [train] Iter 08625 | loss 2.7178 | loss(rot) 0.0223 | loss(pos) 2.6934 | loss(seq) 0.0021 | grad 8.4227 | lr 0.0010 | time_forward 3.4550 | time_backward 4.8720
[2023-09-02 09:53:45,718::train::INFO] [train] Iter 08626 | loss 1.7947 | loss(rot) 1.5325 | loss(pos) 0.2553 | loss(seq) 0.0068 | grad 5.3874 | lr 0.0010 | time_forward 1.3460 | time_backward 1.4370
[2023-09-02 09:53:48,009::train::INFO] [train] Iter 08627 | loss 1.7179 | loss(rot) 0.9158 | loss(pos) 0.1977 | loss(seq) 0.6043 | grad 3.0545 | lr 0.0010 | time_forward 1.0830 | time_backward 1.2040
[2023-09-02 09:53:57,666::train::INFO] [train] Iter 08628 | loss 1.4636 | loss(rot) 0.7412 | loss(pos) 0.6964 | loss(seq) 0.0260 | grad 2.9328 | lr 0.0010 | time_forward 4.1260 | time_backward 5.5270
[2023-09-02 09:54:00,416::train::INFO] [train] Iter 08629 | loss 2.4690 | loss(rot) 1.7912 | loss(pos) 0.2660 | loss(seq) 0.4119 | grad 4.8949 | lr 0.0010 | time_forward 1.3120 | time_backward 1.4340
[2023-09-02 09:54:07,636::train::INFO] [train] Iter 08630 | loss 2.7641 | loss(rot) 2.3854 | loss(pos) 0.1000 | loss(seq) 0.2787 | grad 4.6045 | lr 0.0010 | time_forward 3.0760 | time_backward 4.1400
[2023-09-02 09:54:09,966::train::INFO] [train] Iter 08631 | loss 2.0068 | loss(rot) 1.4074 | loss(pos) 0.2750 | loss(seq) 0.3244 | grad 4.4550 | lr 0.0010 | time_forward 1.1430 | time_backward 1.1830
[2023-09-02 09:54:18,868::train::INFO] [train] Iter 08632 | loss 1.1358 | loss(rot) 0.9956 | loss(pos) 0.1150 | loss(seq) 0.0252 | grad 4.4922 | lr 0.0010 | time_forward 3.9490 | time_backward 4.9490
[2023-09-02 09:54:28,820::train::INFO] [train] Iter 08633 | loss 2.3402 | loss(rot) 1.3022 | loss(pos) 0.5258 | loss(seq) 0.5121 | grad 5.8136 | lr 0.0010 | time_forward 4.1390 | time_backward 5.8090
[2023-09-02 09:54:32,228::train::INFO] [train] Iter 08634 | loss 0.8052 | loss(rot) 0.2250 | loss(pos) 0.4700 | loss(seq) 0.1102 | grad 4.4877 | lr 0.0010 | time_forward 1.4850 | time_backward 1.9010
[2023-09-02 09:54:42,270::train::INFO] [train] Iter 08635 | loss 2.3651 | loss(rot) 2.1439 | loss(pos) 0.1465 | loss(seq) 0.0747 | grad 4.6800 | lr 0.0010 | time_forward 4.2540 | time_backward 5.7840
[2023-09-02 09:54:45,088::train::INFO] [train] Iter 08636 | loss 2.0272 | loss(rot) 1.3474 | loss(pos) 0.1571 | loss(seq) 0.5227 | grad 3.8512 | lr 0.0010 | time_forward 1.3960 | time_backward 1.4190
[2023-09-02 09:54:48,532::train::INFO] [train] Iter 08637 | loss 2.8009 | loss(rot) 2.3684 | loss(pos) 0.2326 | loss(seq) 0.1998 | grad 3.6453 | lr 0.0010 | time_forward 1.4460 | time_backward 1.9600
[2023-09-02 09:55:03,419::train::INFO] [train] Iter 08638 | loss 2.2026 | loss(rot) 1.2848 | loss(pos) 0.4416 | loss(seq) 0.4762 | grad 3.8192 | lr 0.0010 | time_forward 8.8770 | time_backward 6.0070
[2023-09-02 09:55:06,844::train::INFO] [train] Iter 08639 | loss 2.5355 | loss(rot) 1.4119 | loss(pos) 0.6484 | loss(seq) 0.4752 | grad 5.6889 | lr 0.0010 | time_forward 1.5530 | time_backward 1.8680
[2023-09-02 09:55:16,166::train::INFO] [train] Iter 08640 | loss 1.1479 | loss(rot) 0.0230 | loss(pos) 1.1228 | loss(seq) 0.0021 | grad 5.0060 | lr 0.0010 | time_forward 3.9580 | time_backward 5.3610
[2023-09-02 09:55:18,875::train::INFO] [train] Iter 08641 | loss 1.5701 | loss(rot) 0.6960 | loss(pos) 0.4060 | loss(seq) 0.4681 | grad 5.8930 | lr 0.0010 | time_forward 1.2760 | time_backward 1.4290
[2023-09-02 09:55:21,556::train::INFO] [train] Iter 08642 | loss 1.0267 | loss(rot) 0.4105 | loss(pos) 0.1052 | loss(seq) 0.5110 | grad 3.5890 | lr 0.0010 | time_forward 1.2740 | time_backward 1.4040
[2023-09-02 09:55:29,671::train::INFO] [train] Iter 08643 | loss 1.1952 | loss(rot) 1.0609 | loss(pos) 0.0856 | loss(seq) 0.0487 | grad 3.3255 | lr 0.0010 | time_forward 3.3870 | time_backward 4.7240
[2023-09-02 09:55:39,525::train::INFO] [train] Iter 08644 | loss 1.5016 | loss(rot) 0.0842 | loss(pos) 1.3983 | loss(seq) 0.0191 | grad 6.9368 | lr 0.0010 | time_forward 4.0030 | time_backward 5.8430
[2023-09-02 09:55:41,781::train::INFO] [train] Iter 08645 | loss 1.9459 | loss(rot) 1.3012 | loss(pos) 0.2877 | loss(seq) 0.3570 | grad 4.8873 | lr 0.0010 | time_forward 1.0740 | time_backward 1.1790
[2023-09-02 09:55:44,433::train::INFO] [train] Iter 08646 | loss 1.5821 | loss(rot) 0.4837 | loss(pos) 0.5965 | loss(seq) 0.5019 | grad 3.6175 | lr 0.0010 | time_forward 1.2710 | time_backward 1.3770
[2023-09-02 09:55:47,774::train::INFO] [train] Iter 08647 | loss 2.1835 | loss(rot) 1.3895 | loss(pos) 0.3249 | loss(seq) 0.4691 | grad 3.5779 | lr 0.0010 | time_forward 1.4720 | time_backward 1.8660
[2023-09-02 09:55:58,855::train::INFO] [train] Iter 08648 | loss 2.2923 | loss(rot) 0.6967 | loss(pos) 1.0482 | loss(seq) 0.5475 | grad 4.6187 | lr 0.0010 | time_forward 4.7070 | time_backward 6.3700
[2023-09-02 09:56:09,074::train::INFO] [train] Iter 08649 | loss 1.6389 | loss(rot) 0.5202 | loss(pos) 0.6665 | loss(seq) 0.4521 | grad 4.5865 | lr 0.0010 | time_forward 4.1580 | time_backward 6.0580
[2023-09-02 09:56:18,920::train::INFO] [train] Iter 08650 | loss 1.8290 | loss(rot) 1.5403 | loss(pos) 0.1835 | loss(seq) 0.1053 | grad 5.2810 | lr 0.0010 | time_forward 4.0590 | time_backward 5.7720
[2023-09-02 09:56:28,984::train::INFO] [train] Iter 08651 | loss 2.0669 | loss(rot) 1.8112 | loss(pos) 0.1917 | loss(seq) 0.0639 | grad 4.5393 | lr 0.0010 | time_forward 4.0300 | time_backward 6.0110
[2023-09-02 09:56:38,057::train::INFO] [train] Iter 08652 | loss 2.3968 | loss(rot) 1.7681 | loss(pos) 0.2789 | loss(seq) 0.3498 | grad 5.9727 | lr 0.0010 | time_forward 3.8600 | time_backward 5.2100
[2023-09-02 09:56:40,784::train::INFO] [train] Iter 08653 | loss 1.5773 | loss(rot) 1.4117 | loss(pos) 0.1220 | loss(seq) 0.0436 | grad 5.1726 | lr 0.0010 | time_forward 1.3030 | time_backward 1.4210
[2023-09-02 09:56:43,846::train::INFO] [train] Iter 08654 | loss 2.6041 | loss(rot) 2.1392 | loss(pos) 0.4288 | loss(seq) 0.0362 | grad 4.5172 | lr 0.0010 | time_forward 1.5770 | time_backward 1.4810
[2023-09-02 09:56:52,643::train::INFO] [train] Iter 08655 | loss 1.6847 | loss(rot) 1.4949 | loss(pos) 0.1899 | loss(seq) 0.0000 | grad 6.2929 | lr 0.0010 | time_forward 3.7300 | time_backward 5.0630
[2023-09-02 09:57:02,877::train::INFO] [train] Iter 08656 | loss 1.3780 | loss(rot) 0.7245 | loss(pos) 0.3370 | loss(seq) 0.3165 | grad 3.7595 | lr 0.0010 | time_forward 4.2290 | time_backward 6.0020
[2023-09-02 09:57:05,588::train::INFO] [train] Iter 08657 | loss 2.2590 | loss(rot) 2.1290 | loss(pos) 0.0930 | loss(seq) 0.0370 | grad 4.6776 | lr 0.0010 | time_forward 1.2640 | time_backward 1.4420
[2023-09-02 09:57:08,931::train::INFO] [train] Iter 08658 | loss 1.8768 | loss(rot) 1.1023 | loss(pos) 0.2815 | loss(seq) 0.4930 | grad 4.6336 | lr 0.0010 | time_forward 1.4550 | time_backward 1.8670
[2023-09-02 09:57:14,616::train::INFO] [train] Iter 08659 | loss 1.8155 | loss(rot) 1.1677 | loss(pos) 0.3140 | loss(seq) 0.3338 | grad 6.2971 | lr 0.0010 | time_forward 2.4150 | time_backward 3.2660
[2023-09-02 09:57:22,997::train::INFO] [train] Iter 08660 | loss 1.2046 | loss(rot) 0.1681 | loss(pos) 0.6774 | loss(seq) 0.3590 | grad 5.1953 | lr 0.0010 | time_forward 3.5460 | time_backward 4.8310
[2023-09-02 09:57:33,157::train::INFO] [train] Iter 08661 | loss 0.7842 | loss(rot) 0.0835 | loss(pos) 0.6829 | loss(seq) 0.0178 | grad 4.3865 | lr 0.0010 | time_forward 4.1940 | time_backward 5.9620
[2023-09-02 09:57:42,572::train::INFO] [train] Iter 08662 | loss 2.4020 | loss(rot) 2.1582 | loss(pos) 0.2426 | loss(seq) 0.0012 | grad 5.7515 | lr 0.0010 | time_forward 3.9620 | time_backward 5.4500
[2023-09-02 09:57:51,020::train::INFO] [train] Iter 08663 | loss 1.2716 | loss(rot) 0.7104 | loss(pos) 0.1470 | loss(seq) 0.4142 | grad 4.9177 | lr 0.0010 | time_forward 3.5160 | time_backward 4.9290
[2023-09-02 09:58:00,005::train::INFO] [train] Iter 08664 | loss 2.3987 | loss(rot) 0.0100 | loss(pos) 2.3877 | loss(seq) 0.0009 | grad 4.7575 | lr 0.0010 | time_forward 3.8280 | time_backward 5.1520
[2023-09-02 09:58:10,003::train::INFO] [train] Iter 08665 | loss 2.3341 | loss(rot) 1.5620 | loss(pos) 0.2934 | loss(seq) 0.4787 | grad 4.0374 | lr 0.0010 | time_forward 4.0530 | time_backward 5.9400
[2023-09-02 09:58:12,776::train::INFO] [train] Iter 08666 | loss 1.3811 | loss(rot) 0.5138 | loss(pos) 0.3449 | loss(seq) 0.5224 | grad 4.5874 | lr 0.0010 | time_forward 1.2680 | time_backward 1.4830
[2023-09-02 09:58:15,338::train::INFO] [train] Iter 08667 | loss 1.2333 | loss(rot) 0.5906 | loss(pos) 0.3802 | loss(seq) 0.2625 | grad 5.7992 | lr 0.0010 | time_forward 1.2260 | time_backward 1.3320
[2023-09-02 09:58:23,953::train::INFO] [train] Iter 08668 | loss 2.8928 | loss(rot) 0.0107 | loss(pos) 2.8808 | loss(seq) 0.0012 | grad 8.3515 | lr 0.0010 | time_forward 3.7120 | time_backward 4.8630
[2023-09-02 09:58:33,737::train::INFO] [train] Iter 08669 | loss 2.8322 | loss(rot) 2.6277 | loss(pos) 0.1941 | loss(seq) 0.0104 | grad 3.9278 | lr 0.0010 | time_forward 4.1320 | time_backward 5.6480
[2023-09-02 09:58:40,797::train::INFO] [train] Iter 08670 | loss 1.9891 | loss(rot) 1.3931 | loss(pos) 0.1798 | loss(seq) 0.4163 | grad 4.9261 | lr 0.0010 | time_forward 3.0210 | time_backward 4.0350
[2023-09-02 09:58:50,689::train::INFO] [train] Iter 08671 | loss 1.1305 | loss(rot) 0.1247 | loss(pos) 0.9829 | loss(seq) 0.0229 | grad 5.9319 | lr 0.0010 | time_forward 3.9520 | time_backward 5.9360
[2023-09-02 09:59:05,045::train::INFO] [train] Iter 08672 | loss 1.0493 | loss(rot) 0.4176 | loss(pos) 0.4423 | loss(seq) 0.1894 | grad 4.3188 | lr 0.0010 | time_forward 8.5920 | time_backward 5.7600
[2023-09-02 09:59:07,753::train::INFO] [train] Iter 08673 | loss 2.3605 | loss(rot) 2.0686 | loss(pos) 0.0729 | loss(seq) 0.2190 | grad 5.1402 | lr 0.0010 | time_forward 1.2610 | time_backward 1.4440
[2023-09-02 09:59:16,590::train::INFO] [train] Iter 08674 | loss 1.7290 | loss(rot) 0.0261 | loss(pos) 1.6993 | loss(seq) 0.0036 | grad 8.5341 | lr 0.0010 | time_forward 3.7020 | time_backward 5.1300
[2023-09-02 09:59:19,324::train::INFO] [train] Iter 08675 | loss 1.4760 | loss(rot) 1.2730 | loss(pos) 0.1997 | loss(seq) 0.0033 | grad 5.0396 | lr 0.0010 | time_forward 1.3000 | time_backward 1.4300
[2023-09-02 09:59:22,095::train::INFO] [train] Iter 08676 | loss 1.3097 | loss(rot) 0.6227 | loss(pos) 0.1390 | loss(seq) 0.5481 | grad 4.1483 | lr 0.0010 | time_forward 1.3270 | time_backward 1.4400
[2023-09-02 09:59:30,992::train::INFO] [train] Iter 08677 | loss 1.3855 | loss(rot) 1.0127 | loss(pos) 0.1281 | loss(seq) 0.2448 | grad 4.5142 | lr 0.0010 | time_forward 3.8780 | time_backward 5.0150
[2023-09-02 09:59:33,707::train::INFO] [train] Iter 08678 | loss 1.1721 | loss(rot) 0.1714 | loss(pos) 0.7145 | loss(seq) 0.2862 | grad 5.1249 | lr 0.0010 | time_forward 1.2610 | time_backward 1.4500
[2023-09-02 09:59:42,475::train::INFO] [train] Iter 08679 | loss 0.4292 | loss(rot) 0.1376 | loss(pos) 0.2434 | loss(seq) 0.0482 | grad 3.7110 | lr 0.0010 | time_forward 3.8020 | time_backward 4.9630
[2023-09-02 09:59:45,332::train::INFO] [train] Iter 08680 | loss 1.9287 | loss(rot) 0.7573 | loss(pos) 0.7072 | loss(seq) 0.4643 | grad 6.1909 | lr 0.0010 | time_forward 1.3860 | time_backward 1.4690
[2023-09-02 09:59:47,422::train::INFO] [train] Iter 08681 | loss 1.0263 | loss(rot) 0.2594 | loss(pos) 0.4240 | loss(seq) 0.3428 | grad 4.8475 | lr 0.0010 | time_forward 0.9980 | time_backward 1.0880
[2023-09-02 09:59:55,529::train::INFO] [train] Iter 08682 | loss 1.7739 | loss(rot) 1.6220 | loss(pos) 0.0771 | loss(seq) 0.0748 | grad 4.0348 | lr 0.0010 | time_forward 3.4790 | time_backward 4.6240
[2023-09-02 10:00:03,993::train::INFO] [train] Iter 08683 | loss 3.0129 | loss(rot) 2.7452 | loss(pos) 0.2676 | loss(seq) 0.0000 | grad 4.4673 | lr 0.0010 | time_forward 3.5520 | time_backward 4.9080
[2023-09-02 10:00:14,042::train::INFO] [train] Iter 08684 | loss 2.2307 | loss(rot) 1.8023 | loss(pos) 0.0934 | loss(seq) 0.3350 | grad 3.5982 | lr 0.0010 | time_forward 4.2810 | time_backward 5.7660
[2023-09-02 10:00:22,674::train::INFO] [train] Iter 08685 | loss 1.2417 | loss(rot) 0.5631 | loss(pos) 0.1855 | loss(seq) 0.4931 | grad 4.0545 | lr 0.0010 | time_forward 3.6440 | time_backward 4.9850
[2023-09-02 10:00:31,029::train::INFO] [train] Iter 08686 | loss 1.5159 | loss(rot) 1.4633 | loss(pos) 0.0525 | loss(seq) 0.0001 | grad 5.0036 | lr 0.0010 | time_forward 3.4760 | time_backward 4.8750