text
stringlengths 56
1.16k
|
---|
[2023-09-02 10:00:39,526::train::INFO] [train] Iter 08687 | loss 2.4812 | loss(rot) 1.9042 | loss(pos) 0.3255 | loss(seq) 0.2515 | grad 6.9005 | lr 0.0010 | time_forward 3.5650 | time_backward 4.9280 |
[2023-09-02 10:00:48,787::train::INFO] [train] Iter 08688 | loss 2.3958 | loss(rot) 2.1957 | loss(pos) 0.2000 | loss(seq) 0.0000 | grad 4.5225 | lr 0.0010 | time_forward 3.8720 | time_backward 5.3870 |
[2023-09-02 10:00:56,883::train::INFO] [train] Iter 08689 | loss 2.3849 | loss(rot) 1.8157 | loss(pos) 0.1136 | loss(seq) 0.4556 | grad 5.3736 | lr 0.0010 | time_forward 3.4250 | time_backward 4.6680 |
[2023-09-02 10:01:07,195::train::INFO] [train] Iter 08690 | loss 1.6662 | loss(rot) 1.5562 | loss(pos) 0.1094 | loss(seq) 0.0006 | grad 5.1777 | lr 0.0010 | time_forward 4.4390 | time_backward 5.8690 |
[2023-09-02 10:01:17,235::train::INFO] [train] Iter 08691 | loss 1.3014 | loss(rot) 0.2071 | loss(pos) 0.7776 | loss(seq) 0.3166 | grad 3.8747 | lr 0.0010 | time_forward 4.1160 | time_backward 5.9210 |
[2023-09-02 10:01:19,716::train::INFO] [train] Iter 08692 | loss 1.5724 | loss(rot) 0.1022 | loss(pos) 1.2054 | loss(seq) 0.2647 | grad 5.1253 | lr 0.0010 | time_forward 1.1980 | time_backward 1.2790 |
[2023-09-02 10:01:29,730::train::INFO] [train] Iter 08693 | loss 2.7738 | loss(rot) 2.3917 | loss(pos) 0.1475 | loss(seq) 0.2346 | grad 3.3244 | lr 0.0010 | time_forward 4.2110 | time_backward 5.7990 |
[2023-09-02 10:01:39,770::train::INFO] [train] Iter 08694 | loss 2.1170 | loss(rot) 1.5709 | loss(pos) 0.1545 | loss(seq) 0.3916 | grad 3.7555 | lr 0.0010 | time_forward 4.0400 | time_backward 5.9960 |
[2023-09-02 10:01:48,945::train::INFO] [train] Iter 08695 | loss 1.7207 | loss(rot) 1.3803 | loss(pos) 0.1156 | loss(seq) 0.2247 | grad 6.8071 | lr 0.0010 | time_forward 3.8980 | time_backward 5.2730 |
[2023-09-02 10:01:51,737::train::INFO] [train] Iter 08696 | loss 0.7863 | loss(rot) 0.3980 | loss(pos) 0.3085 | loss(seq) 0.0797 | grad 4.4045 | lr 0.0010 | time_forward 1.3520 | time_backward 1.4360 |
[2023-09-02 10:01:54,541::train::INFO] [train] Iter 08697 | loss 1.5074 | loss(rot) 0.8001 | loss(pos) 0.3410 | loss(seq) 0.3662 | grad 10.8628 | lr 0.0010 | time_forward 1.3450 | time_backward 1.4560 |
[2023-09-02 10:02:04,584::train::INFO] [train] Iter 08698 | loss 0.6828 | loss(rot) 0.2020 | loss(pos) 0.2610 | loss(seq) 0.2198 | grad 3.5195 | lr 0.0010 | time_forward 4.1930 | time_backward 5.8460 |
[2023-09-02 10:02:13,832::train::INFO] [train] Iter 08699 | loss 2.6032 | loss(rot) 1.8738 | loss(pos) 0.2240 | loss(seq) 0.5053 | grad 3.0659 | lr 0.0010 | time_forward 3.8980 | time_backward 5.3470 |
[2023-09-02 10:02:21,252::train::INFO] [train] Iter 08700 | loss 1.2141 | loss(rot) 0.4756 | loss(pos) 0.2452 | loss(seq) 0.4933 | grad 3.9805 | lr 0.0010 | time_forward 3.2160 | time_backward 4.2010 |
[2023-09-02 10:02:30,345::train::INFO] [train] Iter 08701 | loss 2.9360 | loss(rot) 2.1862 | loss(pos) 0.2950 | loss(seq) 0.4547 | grad 5.8485 | lr 0.0010 | time_forward 3.9240 | time_backward 5.1650 |
[2023-09-02 10:02:38,902::train::INFO] [train] Iter 08702 | loss 0.9671 | loss(rot) 0.5263 | loss(pos) 0.0631 | loss(seq) 0.3777 | grad 5.3963 | lr 0.0010 | time_forward 3.6790 | time_backward 4.8750 |
[2023-09-02 10:02:40,554::train::INFO] [train] Iter 08703 | loss 2.2307 | loss(rot) 1.6755 | loss(pos) 0.4796 | loss(seq) 0.0756 | grad 10.5821 | lr 0.0010 | time_forward 0.7330 | time_backward 0.9160 |
[2023-09-02 10:02:50,417::train::INFO] [train] Iter 08704 | loss 2.1773 | loss(rot) 1.7107 | loss(pos) 0.1526 | loss(seq) 0.3140 | grad 6.0350 | lr 0.0010 | time_forward 4.0600 | time_backward 5.7990 |
[2023-09-02 10:02:56,223::train::INFO] [train] Iter 08705 | loss 2.3867 | loss(rot) 2.1535 | loss(pos) 0.0997 | loss(seq) 0.1336 | grad 3.8842 | lr 0.0010 | time_forward 2.5160 | time_backward 3.2860 |
[2023-09-02 10:02:59,013::train::INFO] [train] Iter 08706 | loss 1.9837 | loss(rot) 1.6450 | loss(pos) 0.1341 | loss(seq) 0.2047 | grad 4.5944 | lr 0.0010 | time_forward 1.2680 | time_backward 1.5180 |
[2023-09-02 10:03:06,483::train::INFO] [train] Iter 08707 | loss 1.1049 | loss(rot) 0.3511 | loss(pos) 0.6546 | loss(seq) 0.0992 | grad 5.6703 | lr 0.0010 | time_forward 3.0800 | time_backward 4.3730 |
[2023-09-02 10:03:09,134::train::INFO] [train] Iter 08708 | loss 0.7820 | loss(rot) 0.1374 | loss(pos) 0.4974 | loss(seq) 0.1473 | grad 4.2307 | lr 0.0010 | time_forward 1.2900 | time_backward 1.3570 |
[2023-09-02 10:03:17,825::train::INFO] [train] Iter 08709 | loss 1.3528 | loss(rot) 0.6542 | loss(pos) 0.4641 | loss(seq) 0.2344 | grad 4.2840 | lr 0.0010 | time_forward 3.6710 | time_backward 5.0010 |
[2023-09-02 10:03:23,535::train::INFO] [train] Iter 08710 | loss 0.6286 | loss(rot) 0.3981 | loss(pos) 0.0570 | loss(seq) 0.1735 | grad 5.1069 | lr 0.0010 | time_forward 2.4040 | time_backward 3.3030 |
[2023-09-02 10:03:31,639::train::INFO] [train] Iter 08711 | loss 2.4717 | loss(rot) 2.3328 | loss(pos) 0.0957 | loss(seq) 0.0432 | grad 5.0007 | lr 0.0010 | time_forward 3.4130 | time_backward 4.6870 |
[2023-09-02 10:03:41,576::train::INFO] [train] Iter 08712 | loss 2.4994 | loss(rot) 0.8391 | loss(pos) 1.1376 | loss(seq) 0.5227 | grad 7.0142 | lr 0.0010 | time_forward 4.0650 | time_backward 5.8690 |
[2023-09-02 10:03:49,160::train::INFO] [train] Iter 08713 | loss 1.4771 | loss(rot) 1.2871 | loss(pos) 0.1158 | loss(seq) 0.0742 | grad 5.3758 | lr 0.0010 | time_forward 3.1620 | time_backward 4.4140 |
[2023-09-02 10:03:59,276::train::INFO] [train] Iter 08714 | loss 0.6453 | loss(rot) 0.0856 | loss(pos) 0.5349 | loss(seq) 0.0248 | grad 5.0142 | lr 0.0010 | time_forward 4.0860 | time_backward 6.0140 |
[2023-09-02 10:04:01,540::train::INFO] [train] Iter 08715 | loss 0.3824 | loss(rot) 0.0455 | loss(pos) 0.2905 | loss(seq) 0.0464 | grad 2.8101 | lr 0.0010 | time_forward 1.0460 | time_backward 1.2130 |
[2023-09-02 10:04:10,857::train::INFO] [train] Iter 08716 | loss 2.1918 | loss(rot) 2.0184 | loss(pos) 0.1215 | loss(seq) 0.0520 | grad 5.3405 | lr 0.0010 | time_forward 3.9060 | time_backward 5.4080 |
[2023-09-02 10:04:19,277::train::INFO] [train] Iter 08717 | loss 1.9294 | loss(rot) 1.4865 | loss(pos) 0.1218 | loss(seq) 0.3211 | grad 4.8449 | lr 0.0010 | time_forward 3.5130 | time_backward 4.9030 |
[2023-09-02 10:04:29,193::train::INFO] [train] Iter 08718 | loss 2.3777 | loss(rot) 2.2165 | loss(pos) 0.1612 | loss(seq) 0.0000 | grad 3.9180 | lr 0.0010 | time_forward 4.0330 | time_backward 5.8810 |
[2023-09-02 10:04:39,368::train::INFO] [train] Iter 08719 | loss 2.2570 | loss(rot) 1.8777 | loss(pos) 0.3363 | loss(seq) 0.0430 | grad 4.8101 | lr 0.0010 | time_forward 4.1870 | time_backward 5.9720 |
[2023-09-02 10:04:48,086::train::INFO] [train] Iter 08720 | loss 3.0801 | loss(rot) 2.2046 | loss(pos) 0.3202 | loss(seq) 0.5553 | grad 3.6298 | lr 0.0010 | time_forward 3.6170 | time_backward 5.0980 |
[2023-09-02 10:04:59,397::train::INFO] [train] Iter 08721 | loss 3.1125 | loss(rot) 2.9285 | loss(pos) 0.1715 | loss(seq) 0.0125 | grad 3.0796 | lr 0.0010 | time_forward 5.0230 | time_backward 6.2840 |
[2023-09-02 10:05:09,342::train::INFO] [train] Iter 08722 | loss 1.8395 | loss(rot) 0.9338 | loss(pos) 0.4546 | loss(seq) 0.4511 | grad 3.9619 | lr 0.0010 | time_forward 4.0640 | time_backward 5.8780 |
[2023-09-02 10:05:18,589::train::INFO] [train] Iter 08723 | loss 1.8799 | loss(rot) 1.1127 | loss(pos) 0.2776 | loss(seq) 0.4896 | grad 4.0796 | lr 0.0010 | time_forward 3.9630 | time_backward 5.2810 |
[2023-09-02 10:05:27,087::train::INFO] [train] Iter 08724 | loss 2.2245 | loss(rot) 1.4281 | loss(pos) 0.2258 | loss(seq) 0.5706 | grad 4.2677 | lr 0.0010 | time_forward 3.6700 | time_backward 4.8240 |
[2023-09-02 10:05:36,849::train::INFO] [train] Iter 08725 | loss 2.2091 | loss(rot) 2.1416 | loss(pos) 0.0631 | loss(seq) 0.0044 | grad 6.8704 | lr 0.0010 | time_forward 3.9560 | time_backward 5.8020 |
[2023-09-02 10:05:44,938::train::INFO] [train] Iter 08726 | loss 2.6918 | loss(rot) 2.0518 | loss(pos) 0.1668 | loss(seq) 0.4732 | grad 5.7281 | lr 0.0010 | time_forward 3.4510 | time_backward 4.6340 |
[2023-09-02 10:05:48,324::train::INFO] [train] Iter 08727 | loss 1.7385 | loss(rot) 0.8169 | loss(pos) 0.7421 | loss(seq) 0.1795 | grad 4.4377 | lr 0.0010 | time_forward 1.4330 | time_backward 1.9490 |
[2023-09-02 10:05:56,326::train::INFO] [train] Iter 08728 | loss 1.7999 | loss(rot) 1.5921 | loss(pos) 0.1721 | loss(seq) 0.0356 | grad 6.6321 | lr 0.0010 | time_forward 3.4550 | time_backward 4.5430 |
[2023-09-02 10:05:59,048::train::INFO] [train] Iter 08729 | loss 2.1090 | loss(rot) 0.1818 | loss(pos) 1.9237 | loss(seq) 0.0036 | grad 9.2674 | lr 0.0010 | time_forward 1.3000 | time_backward 1.4180 |
[2023-09-02 10:06:08,801::train::INFO] [train] Iter 08730 | loss 2.5265 | loss(rot) 2.2872 | loss(pos) 0.1541 | loss(seq) 0.0853 | grad 4.2105 | lr 0.0010 | time_forward 4.0530 | time_backward 5.6960 |
[2023-09-02 10:06:17,408::train::INFO] [train] Iter 08731 | loss 1.3653 | loss(rot) 1.2651 | loss(pos) 0.0734 | loss(seq) 0.0269 | grad 5.0840 | lr 0.0010 | time_forward 3.6640 | time_backward 4.9390 |
[2023-09-02 10:06:27,497::train::INFO] [train] Iter 08732 | loss 2.0117 | loss(rot) 1.8186 | loss(pos) 0.0581 | loss(seq) 0.1349 | grad 10.8182 | lr 0.0010 | time_forward 4.0920 | time_backward 5.9930 |
[2023-09-02 10:06:36,260::train::INFO] [train] Iter 08733 | loss 2.2527 | loss(rot) 1.9887 | loss(pos) 0.1878 | loss(seq) 0.0762 | grad 4.2734 | lr 0.0010 | time_forward 3.6830 | time_backward 5.0760 |
[2023-09-02 10:06:44,752::train::INFO] [train] Iter 08734 | loss 1.3661 | loss(rot) 0.6334 | loss(pos) 0.6561 | loss(seq) 0.0765 | grad 5.7004 | lr 0.0010 | time_forward 3.6840 | time_backward 4.8040 |
[2023-09-02 10:06:54,677::train::INFO] [train] Iter 08735 | loss 2.4111 | loss(rot) 2.2214 | loss(pos) 0.1865 | loss(seq) 0.0031 | grad 3.6987 | lr 0.0010 | time_forward 4.2650 | time_backward 5.6560 |
[2023-09-02 10:07:04,256::train::INFO] [train] Iter 08736 | loss 2.3968 | loss(rot) 1.5593 | loss(pos) 0.2547 | loss(seq) 0.5828 | grad 4.1265 | lr 0.0010 | time_forward 4.0340 | time_backward 5.5430 |
[2023-09-02 10:07:12,650::train::INFO] [train] Iter 08737 | loss 1.0285 | loss(rot) 0.3422 | loss(pos) 0.1932 | loss(seq) 0.4932 | grad 4.2367 | lr 0.0010 | time_forward 3.5780 | time_backward 4.8120 |
[2023-09-02 10:07:22,511::train::INFO] [train] Iter 08738 | loss 2.5824 | loss(rot) 1.7415 | loss(pos) 0.3517 | loss(seq) 0.4892 | grad 3.9918 | lr 0.0010 | time_forward 4.1410 | time_backward 5.7170 |
[2023-09-02 10:07:31,118::train::INFO] [train] Iter 08739 | loss 2.4005 | loss(rot) 2.2584 | loss(pos) 0.1421 | loss(seq) 0.0000 | grad 8.2504 | lr 0.0010 | time_forward 3.6650 | time_backward 4.9380 |
[2023-09-02 10:07:40,916::train::INFO] [train] Iter 08740 | loss 2.0933 | loss(rot) 1.8341 | loss(pos) 0.2560 | loss(seq) 0.0031 | grad 6.6650 | lr 0.0010 | time_forward 3.9500 | time_backward 5.8450 |
[2023-09-02 10:07:43,608::train::INFO] [train] Iter 08741 | loss 2.7160 | loss(rot) 1.5740 | loss(pos) 0.4452 | loss(seq) 0.6968 | grad 4.8623 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4390 |
[2023-09-02 10:07:52,644::train::INFO] [train] Iter 08742 | loss 1.1671 | loss(rot) 0.2189 | loss(pos) 0.8802 | loss(seq) 0.0680 | grad 5.7790 | lr 0.0010 | time_forward 3.8420 | time_backward 5.1900 |
[2023-09-02 10:08:02,408::train::INFO] [train] Iter 08743 | loss 1.4833 | loss(rot) 0.5185 | loss(pos) 0.5527 | loss(seq) 0.4121 | grad 4.5746 | lr 0.0010 | time_forward 4.0810 | time_backward 5.6790 |
[2023-09-02 10:08:11,180::train::INFO] [train] Iter 08744 | loss 2.5585 | loss(rot) 1.4464 | loss(pos) 0.6165 | loss(seq) 0.4956 | grad 5.9995 | lr 0.0010 | time_forward 3.8490 | time_backward 4.9000 |
[2023-09-02 10:08:21,423::train::INFO] [train] Iter 08745 | loss 2.1398 | loss(rot) 2.0249 | loss(pos) 0.1137 | loss(seq) 0.0012 | grad 4.4094 | lr 0.0010 | time_forward 4.1320 | time_backward 6.1080 |
[2023-09-02 10:08:29,966::train::INFO] [train] Iter 08746 | loss 1.5167 | loss(rot) 0.8327 | loss(pos) 0.3741 | loss(seq) 0.3099 | grad 5.7643 | lr 0.0010 | time_forward 3.5440 | time_backward 4.9950 |
[2023-09-02 10:08:32,764::train::INFO] [train] Iter 08747 | loss 0.7972 | loss(rot) 0.0482 | loss(pos) 0.4277 | loss(seq) 0.3213 | grad 4.4426 | lr 0.0010 | time_forward 1.2860 | time_backward 1.5080 |
[2023-09-02 10:08:41,959::train::INFO] [train] Iter 08748 | loss 2.3433 | loss(rot) 2.1564 | loss(pos) 0.1824 | loss(seq) 0.0044 | grad 6.9095 | lr 0.0010 | time_forward 3.8550 | time_backward 5.3360 |
[2023-09-02 10:08:52,419::train::INFO] [train] Iter 08749 | loss 2.8686 | loss(rot) 2.4637 | loss(pos) 0.2154 | loss(seq) 0.1896 | grad 3.6042 | lr 0.0010 | time_forward 4.3970 | time_backward 6.0540 |
[2023-09-02 10:08:55,154::train::INFO] [train] Iter 08750 | loss 1.7911 | loss(rot) 1.3268 | loss(pos) 0.1248 | loss(seq) 0.3395 | grad 7.5817 | lr 0.0010 | time_forward 1.2970 | time_backward 1.4350 |
[2023-09-02 10:08:57,428::train::INFO] [train] Iter 08751 | loss 2.2516 | loss(rot) 1.7016 | loss(pos) 0.1797 | loss(seq) 0.3703 | grad 4.4246 | lr 0.0010 | time_forward 1.0830 | time_backward 1.1870 |
[2023-09-02 10:09:07,690::train::INFO] [train] Iter 08752 | loss 2.0400 | loss(rot) 1.4758 | loss(pos) 0.1942 | loss(seq) 0.3700 | grad 3.5005 | lr 0.0010 | time_forward 4.3850 | time_backward 5.8580 |
[2023-09-02 10:09:15,238::train::INFO] [train] Iter 08753 | loss 1.1252 | loss(rot) 0.1664 | loss(pos) 0.9127 | loss(seq) 0.0462 | grad 6.2250 | lr 0.0010 | time_forward 3.2500 | time_backward 4.2940 |
[2023-09-02 10:09:18,037::train::INFO] [train] Iter 08754 | loss 1.7715 | loss(rot) 1.6243 | loss(pos) 0.1302 | loss(seq) 0.0170 | grad 4.5474 | lr 0.0010 | time_forward 1.3650 | time_backward 1.4310 |
[2023-09-02 10:09:20,889::train::INFO] [train] Iter 08755 | loss 1.1374 | loss(rot) 0.4103 | loss(pos) 0.4277 | loss(seq) 0.2994 | grad 4.6863 | lr 0.0010 | time_forward 1.3170 | time_backward 1.5320 |
[2023-09-02 10:09:29,402::train::INFO] [train] Iter 08756 | loss 2.1117 | loss(rot) 1.6686 | loss(pos) 0.1696 | loss(seq) 0.2735 | grad 5.6089 | lr 0.0010 | time_forward 3.6230 | time_backward 4.8860 |
[2023-09-02 10:09:39,469::train::INFO] [train] Iter 08757 | loss 2.0569 | loss(rot) 1.8384 | loss(pos) 0.1025 | loss(seq) 0.1160 | grad 4.0704 | lr 0.0010 | time_forward 4.2530 | time_backward 5.8100 |
[2023-09-02 10:09:42,158::train::INFO] [train] Iter 08758 | loss 2.1193 | loss(rot) 1.3044 | loss(pos) 0.2773 | loss(seq) 0.5377 | grad 3.5676 | lr 0.0010 | time_forward 1.2430 | time_backward 1.4420 |
[2023-09-02 10:09:50,940::train::INFO] [train] Iter 08759 | loss 1.8615 | loss(rot) 1.7401 | loss(pos) 0.0496 | loss(seq) 0.0718 | grad 5.6571 | lr 0.0010 | time_forward 3.7260 | time_backward 5.0520 |
[2023-09-02 10:09:54,211::train::INFO] [train] Iter 08760 | loss 2.3634 | loss(rot) 1.7698 | loss(pos) 0.2308 | loss(seq) 0.3628 | grad 4.0689 | lr 0.0010 | time_forward 1.4300 | time_backward 1.8370 |
[2023-09-02 10:10:05,502::train::INFO] [train] Iter 08761 | loss 1.4044 | loss(rot) 0.4502 | loss(pos) 0.9130 | loss(seq) 0.0412 | grad 5.0098 | lr 0.0010 | time_forward 4.0010 | time_backward 7.2750 |
[2023-09-02 10:10:15,424::train::INFO] [train] Iter 08762 | loss 2.1289 | loss(rot) 0.0736 | loss(pos) 2.0517 | loss(seq) 0.0036 | grad 6.4048 | lr 0.0010 | time_forward 4.0770 | time_backward 5.8420 |
[2023-09-02 10:10:25,615::train::INFO] [train] Iter 08763 | loss 1.5640 | loss(rot) 1.0508 | loss(pos) 0.1245 | loss(seq) 0.3887 | grad 7.1968 | lr 0.0010 | time_forward 4.6140 | time_backward 5.5740 |
[2023-09-02 10:10:36,148::train::INFO] [train] Iter 08764 | loss 1.5360 | loss(rot) 1.1365 | loss(pos) 0.1201 | loss(seq) 0.2795 | grad 4.3884 | lr 0.0010 | time_forward 4.3170 | time_backward 6.2120 |
[2023-09-02 10:10:44,554::train::INFO] [train] Iter 08765 | loss 2.7188 | loss(rot) 2.3352 | loss(pos) 0.2382 | loss(seq) 0.1453 | grad 3.0571 | lr 0.0010 | time_forward 3.5590 | time_backward 4.8440 |
[2023-09-02 10:10:47,279::train::INFO] [train] Iter 08766 | loss 1.6765 | loss(rot) 1.4333 | loss(pos) 0.1117 | loss(seq) 0.1315 | grad 4.5939 | lr 0.0010 | time_forward 1.2850 | time_backward 1.4360 |
[2023-09-02 10:10:54,751::train::INFO] [train] Iter 08767 | loss 1.1121 | loss(rot) 0.5287 | loss(pos) 0.4086 | loss(seq) 0.1748 | grad 4.4051 | lr 0.0010 | time_forward 3.1930 | time_backward 4.2770 |
[2023-09-02 10:11:03,021::train::INFO] [train] Iter 08768 | loss 2.0005 | loss(rot) 1.1444 | loss(pos) 0.3809 | loss(seq) 0.4752 | grad 4.5359 | lr 0.0010 | time_forward 3.4810 | time_backward 4.7860 |
[2023-09-02 10:11:13,215::train::INFO] [train] Iter 08769 | loss 1.9464 | loss(rot) 1.1600 | loss(pos) 0.3106 | loss(seq) 0.4758 | grad 3.4855 | lr 0.0010 | time_forward 4.4170 | time_backward 5.7730 |
[2023-09-02 10:11:20,514::train::INFO] [train] Iter 08770 | loss 2.5516 | loss(rot) 0.3511 | loss(pos) 2.1968 | loss(seq) 0.0036 | grad 7.4352 | lr 0.0010 | time_forward 3.0550 | time_backward 4.2400 |
[2023-09-02 10:11:30,587::train::INFO] [train] Iter 08771 | loss 1.0974 | loss(rot) 0.2289 | loss(pos) 0.6001 | loss(seq) 0.2683 | grad 4.0218 | lr 0.0010 | time_forward 4.0820 | time_backward 5.9870 |
[2023-09-02 10:11:39,369::train::INFO] [train] Iter 08772 | loss 0.9677 | loss(rot) 0.3504 | loss(pos) 0.2660 | loss(seq) 0.3513 | grad 4.9687 | lr 0.0010 | time_forward 3.7190 | time_backward 5.0600 |
[2023-09-02 10:11:41,816::train::INFO] [train] Iter 08773 | loss 2.7556 | loss(rot) 2.2832 | loss(pos) 0.3507 | loss(seq) 0.1218 | grad 7.1063 | lr 0.0010 | time_forward 1.1530 | time_backward 1.2870 |
[2023-09-02 10:11:51,827::train::INFO] [train] Iter 08774 | loss 1.6453 | loss(rot) 0.5787 | loss(pos) 0.2498 | loss(seq) 0.8168 | grad 3.1034 | lr 0.0010 | time_forward 4.0560 | time_backward 5.9520 |
[2023-09-02 10:12:00,544::train::INFO] [train] Iter 08775 | loss 1.5942 | loss(rot) 0.7386 | loss(pos) 0.4744 | loss(seq) 0.3812 | grad 3.0260 | lr 0.0010 | time_forward 3.6250 | time_backward 5.0780 |
[2023-09-02 10:12:03,413::train::INFO] [train] Iter 08776 | loss 2.3471 | loss(rot) 1.6866 | loss(pos) 0.1919 | loss(seq) 0.4687 | grad 4.7012 | lr 0.0010 | time_forward 1.4220 | time_backward 1.4440 |
[2023-09-02 10:12:13,305::train::INFO] [train] Iter 08777 | loss 2.1598 | loss(rot) 1.3068 | loss(pos) 0.3542 | loss(seq) 0.4988 | grad 3.9703 | lr 0.0010 | time_forward 4.0030 | time_backward 5.8460 |
[2023-09-02 10:12:16,211::train::INFO] [train] Iter 08778 | loss 1.9425 | loss(rot) 0.0270 | loss(pos) 1.9123 | loss(seq) 0.0033 | grad 10.9735 | lr 0.0010 | time_forward 1.4320 | time_backward 1.4710 |
[2023-09-02 10:12:25,881::train::INFO] [train] Iter 08779 | loss 1.2588 | loss(rot) 0.4838 | loss(pos) 0.3360 | loss(seq) 0.4390 | grad 4.0444 | lr 0.0010 | time_forward 4.2070 | time_backward 5.4200 |
[2023-09-02 10:12:35,933::train::INFO] [train] Iter 08780 | loss 2.6400 | loss(rot) 2.4089 | loss(pos) 0.2263 | loss(seq) 0.0048 | grad 5.5797 | lr 0.0010 | time_forward 4.2720 | time_backward 5.7760 |
[2023-09-02 10:12:38,710::train::INFO] [train] Iter 08781 | loss 2.3480 | loss(rot) 2.0365 | loss(pos) 0.3102 | loss(seq) 0.0012 | grad 5.1645 | lr 0.0010 | time_forward 1.2640 | time_backward 1.5110 |
[2023-09-02 10:12:48,821::train::INFO] [train] Iter 08782 | loss 2.0680 | loss(rot) 0.9527 | loss(pos) 0.5454 | loss(seq) 0.5698 | grad 7.7436 | lr 0.0010 | time_forward 4.0650 | time_backward 6.0430 |
[2023-09-02 10:12:57,286::train::INFO] [train] Iter 08783 | loss 1.5827 | loss(rot) 0.9410 | loss(pos) 0.2556 | loss(seq) 0.3861 | grad 4.9023 | lr 0.0010 | time_forward 3.5960 | time_backward 4.8650 |
[2023-09-02 10:12:59,957::train::INFO] [train] Iter 08784 | loss 1.5529 | loss(rot) 0.6392 | loss(pos) 0.5741 | loss(seq) 0.3396 | grad 5.7274 | lr 0.0010 | time_forward 1.2600 | time_backward 1.4080 |
[2023-09-02 10:13:07,637::train::INFO] [train] Iter 08785 | loss 1.8112 | loss(rot) 1.4573 | loss(pos) 0.3353 | loss(seq) 0.0186 | grad 5.8722 | lr 0.0010 | time_forward 3.2920 | time_backward 4.3820 |
[2023-09-02 10:13:11,092::train::INFO] [train] Iter 08786 | loss 2.1767 | loss(rot) 1.0585 | loss(pos) 0.7131 | loss(seq) 0.4051 | grad 3.8862 | lr 0.0010 | time_forward 1.5250 | time_backward 1.9260 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.