text
stringlengths
56
1.16k
[2023-09-02 10:13:19,884::train::INFO] [train] Iter 08787 | loss 2.4579 | loss(rot) 1.7496 | loss(pos) 0.4637 | loss(seq) 0.2445 | grad 9.2293 | lr 0.0010 | time_forward 3.7180 | time_backward 5.0700
[2023-09-02 10:13:29,813::train::INFO] [train] Iter 08788 | loss 2.2588 | loss(rot) 1.3195 | loss(pos) 0.4753 | loss(seq) 0.4640 | grad 5.2366 | lr 0.0010 | time_forward 3.9840 | time_backward 5.9420
[2023-09-02 10:13:37,167::train::INFO] [train] Iter 08789 | loss 1.9808 | loss(rot) 1.5536 | loss(pos) 0.1787 | loss(seq) 0.2486 | grad 4.2849 | lr 0.0010 | time_forward 3.1700 | time_backward 4.1820
[2023-09-02 10:13:40,544::train::INFO] [train] Iter 08790 | loss 1.7294 | loss(rot) 1.5497 | loss(pos) 0.1553 | loss(seq) 0.0244 | grad 4.7628 | lr 0.0010 | time_forward 1.5650 | time_backward 1.8090
[2023-09-02 10:13:50,390::train::INFO] [train] Iter 08791 | loss 1.6252 | loss(rot) 1.4957 | loss(pos) 0.1231 | loss(seq) 0.0064 | grad 5.0918 | lr 0.0010 | time_forward 3.9460 | time_backward 5.8970
[2023-09-02 10:14:00,098::train::INFO] [train] Iter 08792 | loss 2.7595 | loss(rot) 2.2042 | loss(pos) 0.2252 | loss(seq) 0.3301 | grad 4.0672 | lr 0.0010 | time_forward 4.0260 | time_backward 5.6660
[2023-09-02 10:14:02,776::train::INFO] [train] Iter 08793 | loss 2.3551 | loss(rot) 1.8687 | loss(pos) 0.1178 | loss(seq) 0.3686 | grad 3.7856 | lr 0.0010 | time_forward 1.2660 | time_backward 1.4080
[2023-09-02 10:14:11,112::train::INFO] [train] Iter 08794 | loss 2.5252 | loss(rot) 0.0372 | loss(pos) 2.4880 | loss(seq) 0.0000 | grad 8.0885 | lr 0.0010 | time_forward 3.5210 | time_backward 4.8120
[2023-09-02 10:14:20,568::train::INFO] [train] Iter 08795 | loss 1.6411 | loss(rot) 0.5971 | loss(pos) 0.6225 | loss(seq) 0.4216 | grad 5.7617 | lr 0.0010 | time_forward 4.1010 | time_backward 5.3520
[2023-09-02 10:14:23,239::train::INFO] [train] Iter 08796 | loss 2.3879 | loss(rot) 1.6664 | loss(pos) 0.2762 | loss(seq) 0.4454 | grad 5.9663 | lr 0.0010 | time_forward 1.2460 | time_backward 1.4200
[2023-09-02 10:14:32,007::train::INFO] [train] Iter 08797 | loss 1.6581 | loss(rot) 0.5522 | loss(pos) 0.6393 | loss(seq) 0.4666 | grad 4.9190 | lr 0.0010 | time_forward 3.6850 | time_backward 5.0550
[2023-09-02 10:14:42,033::train::INFO] [train] Iter 08798 | loss 2.1417 | loss(rot) 0.9549 | loss(pos) 0.6600 | loss(seq) 0.5268 | grad 6.6081 | lr 0.0010 | time_forward 4.2060 | time_backward 5.8170
[2023-09-02 10:14:51,711::train::INFO] [train] Iter 08799 | loss 0.8978 | loss(rot) 0.4632 | loss(pos) 0.3121 | loss(seq) 0.1225 | grad 3.2149 | lr 0.0010 | time_forward 4.0750 | time_backward 5.5990
[2023-09-02 10:15:01,408::train::INFO] [train] Iter 08800 | loss 1.4084 | loss(rot) 1.1404 | loss(pos) 0.2660 | loss(seq) 0.0019 | grad 5.8783 | lr 0.0010 | time_forward 3.9900 | time_backward 5.6800
[2023-09-02 10:15:10,655::train::INFO] [train] Iter 08801 | loss 1.5185 | loss(rot) 1.0107 | loss(pos) 0.1121 | loss(seq) 0.3957 | grad 4.1782 | lr 0.0010 | time_forward 3.9070 | time_backward 5.3380
[2023-09-02 10:15:18,746::train::INFO] [train] Iter 08802 | loss 1.0111 | loss(rot) 0.1434 | loss(pos) 0.8353 | loss(seq) 0.0325 | grad 5.4093 | lr 0.0010 | time_forward 3.3950 | time_backward 4.6930
[2023-09-02 10:15:27,489::train::INFO] [train] Iter 08803 | loss 2.9343 | loss(rot) 0.0177 | loss(pos) 2.9160 | loss(seq) 0.0006 | grad 7.3071 | lr 0.0010 | time_forward 3.6700 | time_backward 5.0690
[2023-09-02 10:15:36,791::train::INFO] [train] Iter 08804 | loss 2.4553 | loss(rot) 2.0055 | loss(pos) 0.1542 | loss(seq) 0.2956 | grad 3.6619 | lr 0.0010 | time_forward 3.8990 | time_backward 5.4000
[2023-09-02 10:15:43,967::train::INFO] [train] Iter 08805 | loss 0.9183 | loss(rot) 0.4751 | loss(pos) 0.1211 | loss(seq) 0.3221 | grad 4.0555 | lr 0.0010 | time_forward 2.9900 | time_backward 4.1820
[2023-09-02 10:15:54,019::train::INFO] [train] Iter 08806 | loss 2.1113 | loss(rot) 1.6680 | loss(pos) 0.1659 | loss(seq) 0.2774 | grad 4.6096 | lr 0.0010 | time_forward 4.0450 | time_backward 6.0030
[2023-09-02 10:15:56,680::train::INFO] [train] Iter 08807 | loss 2.4031 | loss(rot) 2.2735 | loss(pos) 0.1296 | loss(seq) 0.0000 | grad 5.6406 | lr 0.0010 | time_forward 1.2170 | time_backward 1.4410
[2023-09-02 10:16:06,505::train::INFO] [train] Iter 08808 | loss 1.9530 | loss(rot) 1.1583 | loss(pos) 0.2330 | loss(seq) 0.5617 | grad 4.0503 | lr 0.0010 | time_forward 4.1010 | time_backward 5.7200
[2023-09-02 10:16:09,215::train::INFO] [train] Iter 08809 | loss 1.2670 | loss(rot) 0.5146 | loss(pos) 0.3946 | loss(seq) 0.3578 | grad 5.8832 | lr 0.0010 | time_forward 1.2760 | time_backward 1.4310
[2023-09-02 10:16:12,031::train::INFO] [train] Iter 08810 | loss 2.0015 | loss(rot) 1.7804 | loss(pos) 0.1615 | loss(seq) 0.0595 | grad 5.2609 | lr 0.0010 | time_forward 1.3820 | time_backward 1.4300
[2023-09-02 10:16:21,304::train::INFO] [train] Iter 08811 | loss 1.0737 | loss(rot) 0.2338 | loss(pos) 0.6633 | loss(seq) 0.1767 | grad 3.6844 | lr 0.0010 | time_forward 3.9530 | time_backward 5.2730
[2023-09-02 10:16:24,494::train::INFO] [train] Iter 08812 | loss 1.8469 | loss(rot) 0.9208 | loss(pos) 0.4653 | loss(seq) 0.4608 | grad 5.7194 | lr 0.0010 | time_forward 1.7750 | time_backward 1.4120
[2023-09-02 10:16:27,173::train::INFO] [train] Iter 08813 | loss 2.0024 | loss(rot) 1.3416 | loss(pos) 0.1716 | loss(seq) 0.4892 | grad 3.7350 | lr 0.0010 | time_forward 1.2650 | time_backward 1.4110
[2023-09-02 10:16:37,024::train::INFO] [train] Iter 08814 | loss 1.7053 | loss(rot) 0.8346 | loss(pos) 0.3217 | loss(seq) 0.5490 | grad 5.5456 | lr 0.0010 | time_forward 4.0950 | time_backward 5.7510
[2023-09-02 10:16:46,486::train::INFO] [train] Iter 08815 | loss 1.7579 | loss(rot) 1.6461 | loss(pos) 0.1089 | loss(seq) 0.0029 | grad 5.8017 | lr 0.0010 | time_forward 3.9500 | time_backward 5.5080
[2023-09-02 10:16:56,187::train::INFO] [train] Iter 08816 | loss 1.6597 | loss(rot) 0.3652 | loss(pos) 1.0996 | loss(seq) 0.1949 | grad 5.1711 | lr 0.0010 | time_forward 3.9410 | time_backward 5.7560
[2023-09-02 10:17:04,694::train::INFO] [train] Iter 08817 | loss 1.9832 | loss(rot) 1.6601 | loss(pos) 0.1702 | loss(seq) 0.1529 | grad 5.2663 | lr 0.0010 | time_forward 3.7240 | time_backward 4.7590
[2023-09-02 10:17:14,773::train::INFO] [train] Iter 08818 | loss 1.5335 | loss(rot) 0.7598 | loss(pos) 0.2175 | loss(seq) 0.5561 | grad 5.3278 | lr 0.0010 | time_forward 4.2090 | time_backward 5.8670
[2023-09-02 10:17:22,781::train::INFO] [train] Iter 08819 | loss 1.6953 | loss(rot) 1.4962 | loss(pos) 0.1899 | loss(seq) 0.0091 | grad 4.7109 | lr 0.0010 | time_forward 3.3460 | time_backward 4.6560
[2023-09-02 10:17:25,051::train::INFO] [train] Iter 08820 | loss 1.0328 | loss(rot) 0.3356 | loss(pos) 0.3763 | loss(seq) 0.3209 | grad 3.4357 | lr 0.0010 | time_forward 1.0620 | time_backward 1.2060
[2023-09-02 10:17:27,838::train::INFO] [train] Iter 08821 | loss 2.2024 | loss(rot) 0.0504 | loss(pos) 2.1412 | loss(seq) 0.0107 | grad 6.8916 | lr 0.0010 | time_forward 1.3010 | time_backward 1.4820
[2023-09-02 10:17:30,787::train::INFO] [train] Iter 08822 | loss 1.4336 | loss(rot) 0.7715 | loss(pos) 0.4012 | loss(seq) 0.2609 | grad 3.2744 | lr 0.0010 | time_forward 1.4360 | time_backward 1.5070
[2023-09-02 10:17:40,691::train::INFO] [train] Iter 08823 | loss 1.5729 | loss(rot) 1.3947 | loss(pos) 0.1585 | loss(seq) 0.0197 | grad 5.2819 | lr 0.0010 | time_forward 4.0520 | time_backward 5.8490
[2023-09-02 10:17:43,978::train::INFO] [train] Iter 08824 | loss 2.1275 | loss(rot) 1.7868 | loss(pos) 0.2011 | loss(seq) 0.1396 | grad 4.9254 | lr 0.0010 | time_forward 1.4250 | time_backward 1.8580
[2023-09-02 10:17:53,993::train::INFO] [train] Iter 08825 | loss 1.3179 | loss(rot) 0.5746 | loss(pos) 0.3536 | loss(seq) 0.3897 | grad 3.8179 | lr 0.0010 | time_forward 4.0090 | time_backward 6.0020
[2023-09-02 10:17:59,154::train::INFO] [train] Iter 08826 | loss 1.0592 | loss(rot) 0.0969 | loss(pos) 0.7743 | loss(seq) 0.1881 | grad 4.9290 | lr 0.0010 | time_forward 2.4410 | time_backward 2.7170
[2023-09-02 10:18:02,039::train::INFO] [train] Iter 08827 | loss 1.6518 | loss(rot) 1.3753 | loss(pos) 0.2764 | loss(seq) 0.0001 | grad 6.6965 | lr 0.0010 | time_forward 1.3590 | time_backward 1.4820
[2023-09-02 10:18:11,799::train::INFO] [train] Iter 08828 | loss 1.9236 | loss(rot) 1.6094 | loss(pos) 0.1638 | loss(seq) 0.1503 | grad 4.1268 | lr 0.0010 | time_forward 3.9580 | time_backward 5.7990
[2023-09-02 10:18:14,292::train::INFO] [train] Iter 08829 | loss 1.9195 | loss(rot) 1.0315 | loss(pos) 0.4397 | loss(seq) 0.4482 | grad 3.9256 | lr 0.0010 | time_forward 1.2690 | time_backward 1.2100
[2023-09-02 10:18:24,395::train::INFO] [train] Iter 08830 | loss 1.4469 | loss(rot) 1.2910 | loss(pos) 0.0830 | loss(seq) 0.0728 | grad 4.6897 | lr 0.0010 | time_forward 4.1550 | time_backward 5.9440
[2023-09-02 10:18:32,493::train::INFO] [train] Iter 08831 | loss 1.0466 | loss(rot) 0.2453 | loss(pos) 0.4534 | loss(seq) 0.3479 | grad 3.9913 | lr 0.0010 | time_forward 3.4480 | time_backward 4.6470
[2023-09-02 10:18:40,808::train::INFO] [train] Iter 08832 | loss 1.6401 | loss(rot) 0.9581 | loss(pos) 0.2297 | loss(seq) 0.4523 | grad 4.4054 | lr 0.0010 | time_forward 3.5240 | time_backward 4.7880
[2023-09-02 10:18:43,474::train::INFO] [train] Iter 08833 | loss 1.6561 | loss(rot) 1.4362 | loss(pos) 0.1771 | loss(seq) 0.0428 | grad 8.6328 | lr 0.0010 | time_forward 1.2630 | time_backward 1.4000
[2023-09-02 10:18:53,260::train::INFO] [train] Iter 08834 | loss 1.9965 | loss(rot) 1.2756 | loss(pos) 0.1543 | loss(seq) 0.5666 | grad 3.9542 | lr 0.0010 | time_forward 4.0070 | time_backward 5.7760
[2023-09-02 10:19:03,261::train::INFO] [train] Iter 08835 | loss 1.4816 | loss(rot) 1.3598 | loss(pos) 0.1084 | loss(seq) 0.0134 | grad 3.3521 | lr 0.0010 | time_forward 4.0590 | time_backward 5.9370
[2023-09-02 10:19:14,164::train::INFO] [train] Iter 08836 | loss 2.6602 | loss(rot) 2.1349 | loss(pos) 0.2029 | loss(seq) 0.3224 | grad 3.7447 | lr 0.0010 | time_forward 4.4530 | time_backward 6.4460
[2023-09-02 10:19:23,373::train::INFO] [train] Iter 08837 | loss 1.2206 | loss(rot) 0.2978 | loss(pos) 0.5159 | loss(seq) 0.4069 | grad 4.7489 | lr 0.0010 | time_forward 3.8220 | time_backward 5.3840
[2023-09-02 10:19:32,143::train::INFO] [train] Iter 08838 | loss 2.2220 | loss(rot) 1.6126 | loss(pos) 0.2629 | loss(seq) 0.3465 | grad 4.4360 | lr 0.0010 | time_forward 3.6630 | time_backward 5.1030
[2023-09-02 10:19:40,612::train::INFO] [train] Iter 08839 | loss 1.5044 | loss(rot) 0.9643 | loss(pos) 0.5334 | loss(seq) 0.0066 | grad 6.5592 | lr 0.0010 | time_forward 3.6040 | time_backward 4.8610
[2023-09-02 10:19:43,377::train::INFO] [train] Iter 08840 | loss 1.4432 | loss(rot) 1.3224 | loss(pos) 0.1076 | loss(seq) 0.0131 | grad 4.1720 | lr 0.0010 | time_forward 1.3340 | time_backward 1.4270
[2023-09-02 10:19:52,275::train::INFO] [train] Iter 08841 | loss 2.1457 | loss(rot) 1.9084 | loss(pos) 0.2355 | loss(seq) 0.0019 | grad 5.6669 | lr 0.0010 | time_forward 3.8030 | time_backward 5.0920
[2023-09-02 10:19:58,682::train::INFO] [train] Iter 08842 | loss 1.3078 | loss(rot) 0.3268 | loss(pos) 0.7274 | loss(seq) 0.2537 | grad 4.0801 | lr 0.0010 | time_forward 2.6580 | time_backward 3.7460
[2023-09-02 10:20:01,365::train::INFO] [train] Iter 08843 | loss 1.6193 | loss(rot) 1.2449 | loss(pos) 0.3741 | loss(seq) 0.0003 | grad 6.8396 | lr 0.0010 | time_forward 1.2390 | time_backward 1.4400
[2023-09-02 10:20:04,108::train::INFO] [train] Iter 08844 | loss 2.1305 | loss(rot) 1.9091 | loss(pos) 0.2183 | loss(seq) 0.0031 | grad 6.0896 | lr 0.0010 | time_forward 1.2890 | time_backward 1.4500
[2023-09-02 10:20:13,958::train::INFO] [train] Iter 08845 | loss 2.3073 | loss(rot) 1.6113 | loss(pos) 0.2889 | loss(seq) 0.4072 | grad 4.8507 | lr 0.0010 | time_forward 4.0290 | time_backward 5.8160
[2023-09-02 10:20:22,285::train::INFO] [train] Iter 08846 | loss 3.1332 | loss(rot) 0.0439 | loss(pos) 3.0894 | loss(seq) 0.0000 | grad 5.7696 | lr 0.0010 | time_forward 3.4700 | time_backward 4.8540
[2023-09-02 10:20:32,573::train::INFO] [train] Iter 08847 | loss 1.3710 | loss(rot) 0.6383 | loss(pos) 0.4006 | loss(seq) 0.3321 | grad 3.7138 | lr 0.0010 | time_forward 4.2600 | time_backward 6.0240
[2023-09-02 10:20:40,665::train::INFO] [train] Iter 08848 | loss 2.7952 | loss(rot) 2.4363 | loss(pos) 0.3589 | loss(seq) 0.0000 | grad 9.0146 | lr 0.0010 | time_forward 3.3980 | time_backward 4.6920
[2023-09-02 10:20:50,581::train::INFO] [train] Iter 08849 | loss 1.0594 | loss(rot) 0.3035 | loss(pos) 0.5098 | loss(seq) 0.2461 | grad 3.2454 | lr 0.0010 | time_forward 4.0230 | time_backward 5.8900
[2023-09-02 10:20:57,784::train::INFO] [train] Iter 08850 | loss 2.4000 | loss(rot) 2.0958 | loss(pos) 0.1901 | loss(seq) 0.1141 | grad 4.6165 | lr 0.0010 | time_forward 3.0560 | time_backward 4.1430
[2023-09-02 10:21:05,384::train::INFO] [train] Iter 08851 | loss 2.0672 | loss(rot) 0.7181 | loss(pos) 0.5625 | loss(seq) 0.7867 | grad 5.6498 | lr 0.0010 | time_forward 3.1420 | time_backward 4.4540
[2023-09-02 10:21:08,240::train::INFO] [train] Iter 08852 | loss 1.5600 | loss(rot) 0.8644 | loss(pos) 0.1538 | loss(seq) 0.5418 | grad 4.0032 | lr 0.0010 | time_forward 1.4070 | time_backward 1.4450
[2023-09-02 10:21:17,314::train::INFO] [train] Iter 08853 | loss 1.4801 | loss(rot) 1.3261 | loss(pos) 0.0924 | loss(seq) 0.0617 | grad 4.1534 | lr 0.0010 | time_forward 3.9130 | time_backward 5.1570
[2023-09-02 10:21:20,807::train::INFO] [train] Iter 08854 | loss 2.6639 | loss(rot) 2.2708 | loss(pos) 0.1921 | loss(seq) 0.2010 | grad 3.7307 | lr 0.0010 | time_forward 1.5480 | time_backward 1.9420
[2023-09-02 10:21:28,162::train::INFO] [train] Iter 08855 | loss 2.2314 | loss(rot) 1.8421 | loss(pos) 0.0903 | loss(seq) 0.2990 | grad 5.4873 | lr 0.0010 | time_forward 3.0610 | time_backward 4.2900
[2023-09-02 10:21:30,749::train::INFO] [train] Iter 08856 | loss 0.9378 | loss(rot) 0.2578 | loss(pos) 0.3159 | loss(seq) 0.3642 | grad 3.1492 | lr 0.0010 | time_forward 1.2120 | time_backward 1.3710
[2023-09-02 10:21:39,554::train::INFO] [train] Iter 08857 | loss 1.3897 | loss(rot) 0.4936 | loss(pos) 0.7795 | loss(seq) 0.1166 | grad 4.4368 | lr 0.0010 | time_forward 3.6890 | time_backward 5.1120
[2023-09-02 10:21:49,499::train::INFO] [train] Iter 08858 | loss 1.1522 | loss(rot) 0.0977 | loss(pos) 1.0437 | loss(seq) 0.0108 | grad 5.6883 | lr 0.0010 | time_forward 3.9910 | time_backward 5.9510
[2023-09-02 10:21:59,511::train::INFO] [train] Iter 08859 | loss 1.0964 | loss(rot) 0.1423 | loss(pos) 0.9353 | loss(seq) 0.0187 | grad 5.6597 | lr 0.0010 | time_forward 3.9890 | time_backward 6.0200
[2023-09-02 10:22:02,327::train::INFO] [train] Iter 08860 | loss 2.2674 | loss(rot) 1.6202 | loss(pos) 0.2091 | loss(seq) 0.4382 | grad 3.3335 | lr 0.0010 | time_forward 1.3270 | time_backward 1.4850
[2023-09-02 10:22:13,165::train::INFO] [train] Iter 08861 | loss 0.9350 | loss(rot) 0.1967 | loss(pos) 0.2593 | loss(seq) 0.4790 | grad 3.4842 | lr 0.0010 | time_forward 4.7250 | time_backward 6.0830
[2023-09-02 10:22:22,086::train::INFO] [train] Iter 08862 | loss 2.1199 | loss(rot) 1.7858 | loss(pos) 0.2839 | loss(seq) 0.0502 | grad 4.9562 | lr 0.0010 | time_forward 3.7600 | time_backward 5.1570
[2023-09-02 10:22:31,544::train::INFO] [train] Iter 08863 | loss 1.1597 | loss(rot) 0.1022 | loss(pos) 0.7168 | loss(seq) 0.3407 | grad 4.0798 | lr 0.0010 | time_forward 4.0190 | time_backward 5.4350
[2023-09-02 10:22:34,656::train::INFO] [train] Iter 08864 | loss 1.1958 | loss(rot) 0.6376 | loss(pos) 0.1125 | loss(seq) 0.4458 | grad 3.7294 | lr 0.0010 | time_forward 1.5790 | time_backward 1.5290
[2023-09-02 10:22:43,789::train::INFO] [train] Iter 08865 | loss 1.1910 | loss(rot) 0.5438 | loss(pos) 0.3094 | loss(seq) 0.3377 | grad 4.4189 | lr 0.0010 | time_forward 3.9000 | time_backward 5.2290
[2023-09-02 10:22:52,242::train::INFO] [train] Iter 08866 | loss 1.3005 | loss(rot) 1.1214 | loss(pos) 0.1789 | loss(seq) 0.0001 | grad 5.3345 | lr 0.0010 | time_forward 3.5560 | time_backward 4.8930
[2023-09-02 10:22:55,015::train::INFO] [train] Iter 08867 | loss 2.7817 | loss(rot) 2.5975 | loss(pos) 0.0920 | loss(seq) 0.0922 | grad 4.7739 | lr 0.0010 | time_forward 1.3200 | time_backward 1.4490
[2023-09-02 10:23:04,305::train::INFO] [train] Iter 08868 | loss 0.7662 | loss(rot) 0.2641 | loss(pos) 0.3503 | loss(seq) 0.1519 | grad 2.6658 | lr 0.0010 | time_forward 3.8630 | time_backward 5.4240
[2023-09-02 10:23:14,767::train::INFO] [train] Iter 08869 | loss 1.7191 | loss(rot) 1.5746 | loss(pos) 0.1439 | loss(seq) 0.0007 | grad 3.5601 | lr 0.0010 | time_forward 4.2510 | time_backward 6.2070
[2023-09-02 10:23:24,058::train::INFO] [train] Iter 08870 | loss 2.0770 | loss(rot) 1.6582 | loss(pos) 0.1235 | loss(seq) 0.2952 | grad 4.6171 | lr 0.0010 | time_forward 3.9140 | time_backward 5.3740
[2023-09-02 10:23:32,780::train::INFO] [train] Iter 08871 | loss 1.5504 | loss(rot) 0.6366 | loss(pos) 0.5126 | loss(seq) 0.4012 | grad 7.8065 | lr 0.0010 | time_forward 3.7520 | time_backward 4.9670
[2023-09-02 10:23:41,333::train::INFO] [train] Iter 08872 | loss 1.2959 | loss(rot) 0.9996 | loss(pos) 0.1879 | loss(seq) 0.1083 | grad 6.1728 | lr 0.0010 | time_forward 3.6400 | time_backward 4.9090
[2023-09-02 10:23:49,667::train::INFO] [train] Iter 08873 | loss 1.5848 | loss(rot) 0.6805 | loss(pos) 0.5002 | loss(seq) 0.4041 | grad 4.3910 | lr 0.0010 | time_forward 3.4410 | time_backward 4.8900
[2023-09-02 10:23:58,988::train::INFO] [train] Iter 08874 | loss 0.9006 | loss(rot) 0.0945 | loss(pos) 0.7947 | loss(seq) 0.0114 | grad 5.7817 | lr 0.0010 | time_forward 3.9300 | time_backward 5.3870
[2023-09-02 10:24:09,454::train::INFO] [train] Iter 08875 | loss 1.5716 | loss(rot) 0.9701 | loss(pos) 0.1771 | loss(seq) 0.4243 | grad 5.4161 | lr 0.0010 | time_forward 5.4560 | time_backward 5.0070
[2023-09-02 10:24:17,410::train::INFO] [train] Iter 08876 | loss 1.6363 | loss(rot) 1.5674 | loss(pos) 0.0620 | loss(seq) 0.0069 | grad 5.2750 | lr 0.0010 | time_forward 3.3220 | time_backward 4.6300
[2023-09-02 10:24:25,669::train::INFO] [train] Iter 08877 | loss 1.1274 | loss(rot) 0.8875 | loss(pos) 0.0872 | loss(seq) 0.1528 | grad 4.8585 | lr 0.0010 | time_forward 3.5540 | time_backward 4.7010
[2023-09-02 10:24:31,667::train::INFO] [train] Iter 08878 | loss 1.4928 | loss(rot) 0.9559 | loss(pos) 0.1639 | loss(seq) 0.3730 | grad 4.2816 | lr 0.0010 | time_forward 2.5150 | time_backward 3.4790
[2023-09-02 10:24:41,887::train::INFO] [train] Iter 08879 | loss 1.7215 | loss(rot) 0.6946 | loss(pos) 0.4656 | loss(seq) 0.5613 | grad 5.5765 | lr 0.0010 | time_forward 4.2380 | time_backward 5.9790
[2023-09-02 10:24:52,012::train::INFO] [train] Iter 08880 | loss 2.0351 | loss(rot) 1.0843 | loss(pos) 0.3954 | loss(seq) 0.5554 | grad 5.7185 | lr 0.0010 | time_forward 4.1360 | time_backward 5.9850
[2023-09-02 10:24:54,544::train::INFO] [train] Iter 08881 | loss 2.9363 | loss(rot) 0.0056 | loss(pos) 2.9302 | loss(seq) 0.0005 | grad 6.1940 | lr 0.0010 | time_forward 1.2470 | time_backward 1.2810
[2023-09-02 10:25:02,785::train::INFO] [train] Iter 08882 | loss 1.5912 | loss(rot) 0.7541 | loss(pos) 0.1469 | loss(seq) 0.6903 | grad 5.0112 | lr 0.0010 | time_forward 3.4650 | time_backward 4.7530
[2023-09-02 10:25:05,307::train::INFO] [train] Iter 08883 | loss 2.1006 | loss(rot) 0.0545 | loss(pos) 2.0285 | loss(seq) 0.0176 | grad 7.9737 | lr 0.0010 | time_forward 1.2010 | time_backward 1.3170
[2023-09-02 10:25:15,234::train::INFO] [train] Iter 08884 | loss 1.5663 | loss(rot) 0.9298 | loss(pos) 0.2141 | loss(seq) 0.4224 | grad 5.7453 | lr 0.0010 | time_forward 4.0920 | time_backward 5.8100
[2023-09-02 10:25:23,491::train::INFO] [train] Iter 08885 | loss 0.9774 | loss(rot) 0.8007 | loss(pos) 0.1017 | loss(seq) 0.0750 | grad 4.7273 | lr 0.0010 | time_forward 3.5270 | time_backward 4.7270
[2023-09-02 10:25:31,763::train::INFO] [train] Iter 08886 | loss 1.2073 | loss(rot) 0.0260 | loss(pos) 1.1730 | loss(seq) 0.0082 | grad 6.3622 | lr 0.0010 | time_forward 3.5180 | time_backward 4.7500