data pengangguran
Browse filessebuah data yang setiap umur memberitahu angka penganggurannya
README.md
CHANGED
@@ -13,24 +13,28 @@ size_categories:
|
|
13 |
---
|
14 |
license: other
|
15 |
license_name: project
|
16 |
-
license_link:
|
17 |
|
|
|
|
|
18 |
import pandas as pd
|
19 |
-
import matplotlib.pyplot as plt
|
20 |
-
import seaborn as sns
|
21 |
|
22 |
-
data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
sns.barplot(x=pengangguran_per_kategori.index, y=pengangguran_per_kategori.values)
|
30 |
-
plt.title('Persentase Pengangguran Gen Z Berdasarkan Kategori')
|
31 |
-
plt.xlabel('Kategori')
|
32 |
-
plt.ylabel('Persentase (%)')
|
33 |
-
plt.xticks(rotation=45)
|
34 |
-
plt.show()
|
35 |
|
36 |
-
|
|
|
|
13 |
---
|
14 |
license: other
|
15 |
license_name: project
|
16 |
+
license_link: LICE
|
17 |
|
18 |
+
# Data-Pengangguran-Gen-Z
|
19 |
+
#Sebuah coding tentang data pengangguran Gen Z
|
20 |
import pandas as pd
|
|
|
|
|
21 |
|
22 |
+
# Membuat DataFrame dengan data pengangguran Gen Z
|
23 |
+
data = {
|
24 |
+
'Usia': [15, 16, 17, 18, 19, 20, 21, 22, 23, 24],
|
25 |
+
'Jumlah_Pengangguran': [3600000, 400000, 500000, 600000, 700000, 800000, 900000, 1000000, 1100000, 1200000],
|
26 |
+
'Tingkat_Pengangguran': [9.37, 10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0]
|
27 |
+
}
|
28 |
+
|
29 |
+
df = pd.DataFrame(data)
|
30 |
|
31 |
+
# Menampilkan DataFrame
|
32 |
+
print("Data Pengangguran Gen Z:")
|
33 |
+
print(df)
|
34 |
|
35 |
+
# Analisis data
|
36 |
+
total_pengangguran = df['Jumlah_Pengangguran'].sum()
|
37 |
+
rata_tingkat_pengangguran = df['Tingkat_Pengangguran'].mean()
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
print("\nTotal Jumlah Pengangguran Gen Z:", total_pengangguran)
|
40 |
+
print("Rata-rata Tingkat Pengangguran Gen Z:", rata_tingkat_pengangguran)
|