import pydicom from PIL import Image import numpy as np import io import datasets import gdown import re import s3fs import random example_manifest_url = "https://drive.google.com/uc?id=1JBkQTXeieyN9_6BGdTF_DDlFFyZrGyU6" example_manifest_file = gdown.download(example_manifest_url, 'manifest_file.s5cmd', quiet = False) full_manifest_url = "https://drive.google.com/uc?id=1KP6qxcQoPF4MJdEPNwW7J6BlL_sUJ17j" full_manifest_file = gdown.download(full_manifest_url, 'full_manifest_file.s5cmd', quiet = False) fs = s3fs.S3FileSystem(anon=True) _DESCRIPTION = "This is the description" _HOMEPAGE = "https://imaging.datacommons.cancer.gov/" _LICENSE = "https://fairsharing.org/FAIRsharing.0b5a1d" _CITATION = "National Cancer Institute Imaging Data Commons (IDC) Collections was accessed on DATE from https://registry.opendata.aws/nci-imaging-data-commons" class ColonCancerCTDataset(datasets.GeneratorBasedBuilder): """TODO: Short description of my dataset.""" VERSION = datasets.Version("1.1.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="example", version=VERSION, description="This is a subset of the full dataset for demonstration purposes"), datasets.BuilderConfig(name="full_data", version=VERSION, description="This is the complete dataset"), ] DEFAULT_CONFIG_NAME = "example" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image": datasets.Image(), "ImageType": datasets.Sequence(datasets.Value('string')), "StudyDate": datasets.Value('string'), "SeriesDate": datasets.Value('string'), "Manufacturer": datasets.Value('string'), "StudyDescription": datasets.Value('string'), "SeriesDescription": datasets.Value('string'), "PatientSex": datasets.Value('string'), "PatientAge": datasets.Value('string'), "PregnancyStatus": datasets.Value('string'), "BodyPartExamined": datasets.Value('string'), }), homepage = _HOMEPAGE, license = _LICENSE, citation = _CITATION ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the s3_series_paths = [] s3_individual_paths = [] if self.config.name == 'example': manifest_file = example_manifest_file else: manifest_file = full_manifest_file with open(manifest_file, 'r') as file: for line in file: match = re.search(r'cp (s3://[\S]+) .', line) if match: s3_series_paths.append(match.group(1)[:-2]) # Deleting the '/*' in directories for series in s3_series_paths: for content in fs.ls(series): s3_individual_paths.append(fs.info(content)['Key']) random.shuffle(s3_individual_paths) # Define the split sizes train_size = int(0.7 * len(s3_individual_paths)) val_size = int(0.15 * len(s3_individual_paths)) # Split the paths into train, validation, and test sets train_paths = s3_individual_paths[:train_size] val_paths = s3_individual_paths[train_size:train_size + val_size] test_paths = s3_individual_paths[train_size + val_size:] return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "paths": train_paths, "split": "train" }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "paths": val_paths, "split": "dev" }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "paths": test_paths, "split": "test" }, ), ] def _generate_examples(self, paths, split): """Yields examples.""" # TODO: This method will yield examples, i.e. rows in the dataset. for path in paths: key = path with fs.open(path, 'rb') as f: dicom_data = pydicom.dcmread(f) pixel_array = dicom_data.pixel_array # Adjust for MONOCHROME1 to invert the grayscale values if dicom_data.PhotometricInterpretation == "MONOCHROME1": pixel_array = np.max(pixel_array) - pixel_array # Normalize or scale 16-bit or other depth images to 8-bit if pixel_array.dtype != np.uint8: pixel_array = (np.divide(pixel_array, np.max(pixel_array)) * 255).astype(np.uint8) # Convert to RGB if it is not already (e.g., for color images) if len(pixel_array.shape) == 2: im = Image.fromarray(pixel_array, mode="L") # L mode is for grayscale elif len(pixel_array.shape) == 3 and pixel_array.shape[2] in [3, 4]: im = Image.fromarray(pixel_array, mode="RGB") else: raise ValueError("Unsupported DICOM image format") with io.BytesIO() as output: im.save(output, format="PNG") png_image = output.getvalue() # Extracting metadata ImageType = dicom_data.get("ImageType", "") StudyDate = dicom_data.get("StudyDate", "") SeriesDate = dicom_data.get("SeriesDate", "") Manufacturer = dicom_data.get("Manufacturer", "") StudyDescription = dicom_data.get("StudyDescription", "") SeriesDescription = dicom_data.get("SeriesDescription", "") PatientSex = dicom_data.get("PatientSex", "") PatientAge = dicom_data.get("PatientAge", "") PregnancyStatus = dicom_data.get("PregnancyStatus", "") if PregnancyStatus == None: PregnancyStatus = "None" else: PregnancyStatus = "Yes" BodyPartExamined = dicom_data.get("BodyPartExamined", "") yield key, {"image": png_image, "ImageType": ImageType, "StudyDate": StudyDate, "SeriesDate": SeriesDate, "Manufacturer": Manufacturer, "StudyDescription": StudyDescription, "SeriesDescription": SeriesDescription, "PatientSex": PatientSex, "PatientAge": PatientAge, "PregnancyStatus": PregnancyStatus, "BodyPartExamined": BodyPartExamined}