File size: 8,285 Bytes
9af7384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
from ..base import Base
import numpy as np
import multiprocessing as mp
from GPy.kern import Matern32, Matern52, RBF, ExpQuad
from scipy.optimize import least_squares


class NSGP(Base):
    """
    A class to learn Nott and Dunsmuir's non-stationary kernel. For more information, refer to
    https://academic.oup.com/biomet/article-abstract/89/4/819/242307

    Parameters
    ------------

    N : int, default=10
        Number of nearby points to learn each kernel locally

    eta : int, default=1
        A hyperparameter used in weight function

    loc_kernel : str, default='m32', ('m32', 'm52' or 'rbf')
        type of kernel to be used
    """

    def __init__(self, N=10, eta=1, kernel_name="m32", verbose=True):
        super().__init__()
        self.__N = N + 1  # Number of datapoints for local kernel learning
        self.__eta = eta  # Eta hyperparameter for weighting function
        self.__kernel_name = kernel_name
        self.__param_dict = {
            "N": self.__N,
            "eta": self.__eta,
            "kernel_name": self.__kernel_name,
        }
        self._KX_inv = None

    def get_all_params(self):
        """
        Returns class parameters
        """
        return self.__param_dict

    def get_param(self, param):
        """
        Returns the value of a parameter
        """
        return self.__param_dict[param]

    def __calculate_dmat(self):
        self.__dmat = np.zeros((self._X.shape[0], self._X.shape[0]))
        for i in range(self._X.shape[0]):
            for j in range(i, self._X.shape[0]):
                self.__dmat[i, j] = np.linalg.norm(self._X[i] - self._X[j])
                self.__dmat[j, i] = self.__dmat[i, j]

    def __get_close_locs(self):
        self.__calculate_dmat()  # Distance matrix
        return [
            self.__dmat[i].argsort()[: self.__N]
            for i in range(self._X.shape[0])
        ]

    def __weight_func(self, S):
        return np.exp(-(1 / self.__eta) * ((S - self._X) ** 2).sum(axis=1))

    def _model(self, loc):
        def __D_z(sj):
            return self._Gamma[np.ix_(sj, sj)]

        def __obfunc(x):
            kernel = kern_dict[self.__kernel_name]
            kernel.variance = x[0]
            kernel.lengthscale = x[1:]
            kern_vals = kernel.K(self._X[self.__close_locs[loc]])
            term = (__D_z(self.__close_locs[loc]) - kern_vals) / kern_vals
            return np.sum(term**2)

        # ARD can be added
        kern_dict = {
            "m32": Matern32(
                input_dim=self._X.shape[1],
                active_dims=list(range(self._X.shape[1])),
                ARD=True,
            ),
            "m52": Matern52(
                input_dim=self._X.shape[1],
                active_dims=list(range(self._X.shape[1])),
                ARD=True,
            ),
            "rbf": RBF(
                input_dim=self._X.shape[1],
                active_dims=list(range(self._X.shape[1])),
                ARD=True,
            ),
            "expqd": ExpQuad(
                input_dim=self._X.shape[1],
                active_dims=list(range(self._X.shape[1])),
                ARD=True,
            ),
        }

        kernel = kern_dict[self.__kernel_name]
        params = least_squares(__obfunc, np.ones((self._X.shape[1] + 1))).x
        kernel.variance = params[0]
        kernel.lengthscale = params[1:]
        return kernel.K

    def _c_inv(self, kern_func):
        return np.linalg.pinv(kern_func(self._X))

    def __learnLocal(self):
        # self._verbose_print('Training local kernels. This may take a few moments')

        job = mp.Pool()
        self.__kernels = job.map(self._model, list(range(self._X.shape[0])))
        self.__C_inv = job.map(self._c_inv, self.__kernels)
        job.close()

        # self._verbose_print('Training complete')

    def _Kernel(self, S1, S2=None):
        """
        This function is for the NSGP Class.
        This is not expected to be called directly.
        """
        S2exists = True
        if np.all(S1 == S2) or S2 is None:
            S2exists = False
            S2 = S1

        assert S1.shape[1] == self._X.shape[1]
        assert S2.shape[1] == self._X.shape[1]

        # Calculating Weights & c_mats
        self.__v_s1 = np.zeros((S1.shape[0], self._X.shape[0]))
        self.__v_s2 = np.zeros((S2.shape[0], self._X.shape[0]))
        self.__c_mat_s1 = np.zeros(
            (self._X.shape[0], S1.shape[0], self._X.shape[0])
        )
        self.__c_mat_s2 = np.zeros(
            (self._X.shape[0], self._X.shape[0], S2.shape[0])
        )
        self.__c_mat_s1s2 = np.zeros(
            (self._X.shape[0], S1.shape[0], S2.shape[0])
        )

        for s1i, s1 in enumerate(S1):
            s_vec = self.__weight_func(s1)
            self.__v_s1[s1i, :] = s_vec / s_vec.sum()
        if S2exists:
            for s2i, s2 in enumerate(S2):
                s_vec = self.__weight_func(s2)
                self.__v_s2[s2i, :] = s_vec / s_vec.sum()
            for i in range(self._X.shape[0]):
                self.__c_mat_s1[i, :, :] = self.__kernels[i](S1, self._X)
                self.__c_mat_s2[i, :, :] = self.__kernels[i](self._X, S2)
                self.__c_mat_s1s2[i, :, :] = self.__kernels[i](S1, S2)
        else:
            self.__v_s2 = self.__v_s1
            for i in range(self._X.shape[0]):
                self.__c_mat_s1[i, :, :] = self.__kernels[i](S1, self._X)
                self.__c_mat_s2[i, :, :] = self.__c_mat_s1[i, :, :].T
                self.__c_mat_s1s2[i, :, :] = self.__kernels[i](S1)

        # Calculating main covariance function
        first_term = np.zeros((S1.shape[0], S2.shape[0]), dtype="float64")
        for i in range(self._X.shape[0]):
            for j in range(self._X.shape[0]):
                first_term += (
                    self.__c_mat_s1[i, :, :]
                    .dot(self.__C_inv[i])
                    .dot(self._Gamma)
                    .dot(self.__C_inv[j])
                    .dot(self.__c_mat_s2[j, :, :])
                ) * (
                    self.__v_s1[:, i]
                    .reshape(-1, 1)
                    .dot(self.__v_s2[:, j].reshape(1, -1))
                )

        second_term = np.zeros((S1.shape[0], S2.shape[0]))
        for i in range(self._X.shape[0]):
            second_term += np.sqrt(
                self.__v_s1[:, i]
                .reshape(-1, 1)
                .dot(self.__v_s2[:, i].reshape(1, -1))
            ) * (
                self.__c_mat_s1s2[i, :, :]
                - self.__c_mat_s1[i, :, :]
                .dot(self.__C_inv[i])
                .dot(self.__c_mat_s2[i, :, :])
            )

        return first_term + second_term

    def _fit(self, X, y, ECM):
        """
        This function is for the NSGP Class.
        This is not expected to be called directly.
        """

        self._Gamma = ECM  # Empirical Covariance Matrix
        assert type(self._Gamma) == type(
            np.zeros((1, 1))
        ), "ECM must be a numpy array"
        assert self._Gamma.shape[0] == self._Gamma.shape[1] == X.shape[0], (
            "ECM must have ("
            + str(X.shape[0])
            + ", "
            + str(X.shape[0])
            + ") shape"
        )

        self._X = X  # training fetures
        self._y = y  # Training values
        self.__param_dict["X"] = X
        self.__param_dict["y"] = y
        self.__param_dict["ECM"] = self._Gamma

        # Get closest N locations for each train location
        self.__close_locs = self.__get_close_locs()
        self.__learnLocal()  # Learning local kernels
        return self

    def _predict(self, X, return_cov=False):
        """
        This function is for the NSGP Class.
        This is not expected to be called directly.
        """
        if self._KX_inv is None:
            self._KX_inv = np.linalg.pinv(self._Kernel(self._X, self._X))
        KX_test = self._Kernel(X, self._X)
        pred_mean = (
            KX_test.dot(self._KX_inv).dot(self._y - self._y.mean())
            + self._y.mean()
        )
        if return_cov:
            pred_var = self._Kernel(X, X) - KX_test.dot(self._KX_inv).dot(
                KX_test.T
            )
            return (pred_mean, pred_var)
        return pred_mean