|
from ..constants import RESOLUTION |
|
|
|
|
|
class Base: |
|
"""A class that is declared for performing Interpolation. |
|
This class should not be called directly, use one of it's |
|
children. |
|
""" |
|
|
|
def __init__(self, resolution="standard", coordinate_types="Euclidean"): |
|
self.resolution = RESOLUTION[resolution] |
|
self.coordinate_type = coordinate_types |
|
self._fit_called = False |
|
|
|
def fit(self, X, y, **kwargs): |
|
"""The function call to fit the model on the given data. |
|
|
|
Parameters |
|
---------- |
|
|
|
X: {array-like, 2D matrix}, shape(n_samples, 2) |
|
The set of all coordinates, where we have ground truth |
|
values |
|
y: array-like, shape(n_samples,) |
|
The set of all the ground truth values using which |
|
we perform interpolation |
|
|
|
Returns |
|
------- |
|
|
|
self : object |
|
Returns self |
|
|
|
""" |
|
assert len(X.shape) == 2, "X must be a 2D array got shape = " + str( |
|
X.shape |
|
) |
|
|
|
assert len(y.shape) == 1, "y should be a 1d array" |
|
assert y.shape[0] == X.shape[0], "X and y must be of the same size" |
|
|
|
|
|
self._fit_called = True |
|
|
|
|
|
self.x1min_d = min(X[:, 0]) |
|
self.x1max_d = max(X[:, 0]) |
|
self.x2min_d = min(X[:, 1]) |
|
self.x2max_d = max(X[:, 1]) |
|
return self._fit(X, y, **kwargs) |
|
|
|
def predict(self, X, **kwargs): |
|
"""The function call to return interpolated data on specific |
|
points. |
|
|
|
Parameters |
|
---------- |
|
|
|
X: {array-like, 2D matrix}, shape(n_samples, 2) |
|
The set of all coordinates, where we have ground truth |
|
values |
|
|
|
Returns |
|
------- |
|
|
|
y_pred : array-like, shape(n_samples,) |
|
The set of interpolated values for the points used to |
|
call the function. |
|
""" |
|
|
|
assert len(X.shape) == 2, "X must be a 2D array got shape = " + str( |
|
X.shape |
|
) |
|
|
|
|
|
|
|
assert self._fit_called, "First call fit method to fit the model" |
|
|
|
|
|
return self._predict(X, **kwargs) |
|
|
|
def predict_grid(self, x1lim=None, x2lim=None, support_extrapolation=True): |
|
"""Function to interpolate data on a grid of given size. |
|
. |
|
Parameters |
|
---------- |
|
x1lim: tuple(float, float), |
|
Upper and lower bound on 1st dimension for the interpolation. |
|
|
|
x2lim: tuple(float, float), |
|
Upper and lower bound on 2nd dimension for the interpolation. |
|
|
|
Returns |
|
------- |
|
y: array-like, shape(n_samples,) |
|
Interpolated values on the grid requested. |
|
""" |
|
|
|
assert self._fit_called, "First call fit method to fit the model" |
|
|
|
|
|
if x1lim is None: |
|
x1lim = (self.x1min_d, self.x1max_d) |
|
if x2lim is None: |
|
x2lim = (self.x2min_d, self.x2max_d) |
|
(x1min, x1max) = x1lim |
|
(x2min, x2max) = x2lim |
|
|
|
|
|
if not support_extrapolation: |
|
assert self.x1min_d >= x1min, "Extrapolation not supported" |
|
assert self.x1max_d <= x1max, "Extrapolation not supported" |
|
assert self.x2min_d >= x2min, "Extrapolation not supported" |
|
assert self.x2max_d <= x2max, "Extrapolation not supported" |
|
|
|
|
|
pred_y = self._predict_grid(x1lim, x2lim) |
|
return pred_y.reshape(self.resolution, self.resolution) |
|
|
|
def __repr__(self): |
|
return self.__class__.__name__ |
|
|
|
def _fit(self, X, y): |
|
raise NotImplementedError |
|
|
|
def _predict_grid(self, x1lim, x2lim): |
|
raise NotImplementedError |
|
|
|
def _predict(self, X): |
|
raise NotImplementedError |
|
|