Zeel's picture
t
9af7384
from ..constants import RESOLUTION
class Base:
"""A class that is declared for performing Interpolation.
This class should not be called directly, use one of it's
children.
"""
def __init__(self, resolution="standard", coordinate_types="Euclidean"):
self.resolution = RESOLUTION[resolution]
self.coordinate_type = coordinate_types
self._fit_called = False
def fit(self, X, y, **kwargs):
"""The function call to fit the model on the given data.
Parameters
----------
X: {array-like, 2D matrix}, shape(n_samples, 2)
The set of all coordinates, where we have ground truth
values
y: array-like, shape(n_samples,)
The set of all the ground truth values using which
we perform interpolation
Returns
-------
self : object
Returns self
"""
assert len(X.shape) == 2, "X must be a 2D array got shape = " + str(
X.shape
)
# assert X.shape[1] == 2, "X can not have more than 2 dimensions"
assert len(y.shape) == 1, "y should be a 1d array"
assert y.shape[0] == X.shape[0], "X and y must be of the same size"
# saving that fit was called
self._fit_called = True
# saving boundaries
self.x1min_d = min(X[:, 0])
self.x1max_d = max(X[:, 0])
self.x2min_d = min(X[:, 1])
self.x2max_d = max(X[:, 1])
return self._fit(X, y, **kwargs) # calling child specific fit method
def predict(self, X, **kwargs):
"""The function call to return interpolated data on specific
points.
Parameters
----------
X: {array-like, 2D matrix}, shape(n_samples, 2)
The set of all coordinates, where we have ground truth
values
Returns
-------
y_pred : array-like, shape(n_samples,)
The set of interpolated values for the points used to
call the function.
"""
assert len(X.shape) == 2, "X must be a 2D array got shape = " + str(
X.shape
)
# assert X.shape[1] == 2, "X can not have more than 2 dimensions"
# checking if model is fitted or not
assert self._fit_called, "First call fit method to fit the model"
# calling child specific _predict method
return self._predict(X, **kwargs)
def predict_grid(self, x1lim=None, x2lim=None, support_extrapolation=True):
"""Function to interpolate data on a grid of given size.
.
Parameters
----------
x1lim: tuple(float, float),
Upper and lower bound on 1st dimension for the interpolation.
x2lim: tuple(float, float),
Upper and lower bound on 2nd dimension for the interpolation.
Returns
-------
y: array-like, shape(n_samples,)
Interpolated values on the grid requested.
"""
# checking if model is fitted or not
assert self._fit_called, "First call fit method to fit the model"
# by default we interpolate over the whole grid
if x1lim is None:
x1lim = (self.x1min_d, self.x1max_d)
if x2lim is None:
x2lim = (self.x2min_d, self.x2max_d)
(x1min, x1max) = x1lim
(x2min, x2max) = x2lim
# extrapolation isn't supported yet
if not support_extrapolation:
assert self.x1min_d >= x1min, "Extrapolation not supported"
assert self.x1max_d <= x1max, "Extrapolation not supported"
assert self.x2min_d >= x2min, "Extrapolation not supported"
assert self.x2max_d <= x2max, "Extrapolation not supported"
# calling child specific _predict_grid method
pred_y = self._predict_grid(x1lim, x2lim)
return pred_y.reshape(self.resolution, self.resolution)
def __repr__(self):
return self.__class__.__name__
def _fit(self, X, y):
raise NotImplementedError
def _predict_grid(self, x1lim, x2lim):
raise NotImplementedError
def _predict(self, X):
raise NotImplementedError