|
""" |
|
This is a module for GP Interpolation |
|
""" |
|
import numpy as np |
|
from ..base import Base |
|
from GPy.models import GPRegression |
|
from GPy.kern import RBF |
|
|
|
|
|
class GP(Base): |
|
"""A class that is declared for performing GP interpolation. |
|
GP interpolation (usually) works on the principle of finding the |
|
best unbiased predictor. |
|
|
|
Parameters |
|
---------- |
|
type : str, optional |
|
This parameter defines the type of Kriging under consideration. This |
|
implementation uses PyKrige package (https://github.com/bsmurphy/PyKrige). |
|
The user needs to choose between "Ordinary" and "Universal". |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
kernel=RBF(2, ARD=True), |
|
): |
|
super().__init__() |
|
self.kernel = kernel |
|
|
|
def _fit(self, X, y, n_restarts=5, verbose=False, random_state=None): |
|
"""Fit method for GP Interpolation |
|
This function shouldn't be called directly. |
|
""" |
|
np.random.seed(random_state) |
|
if len(y.shape) == 1: |
|
y = y.reshape(-1, 1) |
|
self.model = GPRegression(X, y, self.kernel) |
|
self.model.optimize_restarts(n_restarts, verbose=verbose) |
|
return self |
|
|
|
def _predict_grid(self, x1lim, x2lim): |
|
"""The function that is called to return the interpolated data in Kriging Interpolation |
|
in a grid. This method shouldn't be called directly""" |
|
lims = (*x1lim, *x2lim) |
|
x1min, x1max, x2min, x2max = lims |
|
x1 = np.linspace(x1min, x1max, self.resolution) |
|
x2 = np.linspace(x2min, x2max, self.resolution) |
|
|
|
X1, X2 = np.meshgrid(x1, x2) |
|
X = np.array([(i, j) for i, j in zip(X1.ravel(), X2.ravel())]) |
|
|
|
predictions = self.model.predict(X)[0].reshape(len(x1), len(x2)) |
|
|
|
return predictions.ravel() |
|
|
|
def _predict(self, X, return_variance=False): |
|
"""This function should be called to return the interpolated data in kriging |
|
in a pointwise manner. This method shouldn't be called directly.""" |
|
|
|
predictions, variance = self.model.predict(X) |
|
if return_variance: |
|
return predictions.ravel(), variance |
|
else: |
|
return predictions.ravel() |
|
|