|
""" |
|
This is a module for Kriging Interpolation |
|
""" |
|
import numpy as np |
|
from ..base import Base |
|
from pykrige.ok import OrdinaryKriging |
|
from pykrige.uk import UniversalKriging |
|
|
|
|
|
class Kriging(Base): |
|
"""A class that is declared for performing Kriging interpolation. |
|
Kriging interpolation (usually) works on the principle of finding the |
|
best unbiased predictor. Ordinary Kriging, for an example, involves finding out the |
|
best unbaised linear predictor. |
|
|
|
Parameters |
|
---------- |
|
type : str, optional |
|
This parameter defines the type of Kriging under consideration. This |
|
implementation uses PyKrige package (https://github.com/bsmurphy/PyKrige). |
|
The user needs to choose between "Ordinary" and "Universal". |
|
|
|
plotting: boolean, optional |
|
This parameter plots the fit semivariogram. We use PyKrige's inbuilt plotter for the same.s |
|
|
|
variogram_model : str, optional |
|
Specifies which variogram model to use; may be one of the following: |
|
linear, power, gaussian, spherical, exponential, hole-effect. |
|
Default is linear variogram model. To utilize a custom variogram model, |
|
specify 'custom'; you must also provide variogram_parameters and |
|
variogram_function. Note that the hole-effect model is only technically |
|
correct for one-dimensional problems. |
|
|
|
require_variance : Boolean, optional |
|
This variable returns the uncertainity in the interpolated values using Kriging |
|
interpolation. If this is True, kindly call the attribute return_variance, of this class |
|
to retreive the computed variances. False is the default value.d |
|
|
|
nlags: int, optional |
|
Number of lags to be considered for semivariogram. As in PyKrige, we set default to be 6. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
type="Ordinary", |
|
plotting=False, |
|
variogram_model="linear", |
|
require_variance=False, |
|
resolution="standard", |
|
coordinate_type="Eucledian", |
|
nlags=6, |
|
): |
|
super().__init__(resolution, coordinate_type) |
|
self.variogram_model = variogram_model |
|
self.ok = None |
|
self.uk = None |
|
self.type = type |
|
self.plotting = plotting |
|
self.coordinate_type = None |
|
self.require_variance = require_variance |
|
self.variance = None |
|
|
|
if coordinate_type == "Eucledian": |
|
self.coordinate_type = "euclidean" |
|
else: |
|
self.coordinate_type = "geographic" |
|
|
|
self.nlags = nlags |
|
|
|
def _fit(self, X, y): |
|
"""This method of the Kriging Class is used to fit Kriging interpolation model to |
|
the train data. This function shouldn't be called directly.""" |
|
if self.type == "Ordinary": |
|
self.ok = OrdinaryKriging( |
|
X[:, 0], |
|
X[:, 1], |
|
y, |
|
variogram_model=self.variogram_model, |
|
enable_plotting=self.plotting, |
|
coordinates_type=self.coordinate_type, |
|
nlags=self.nlags, |
|
) |
|
|
|
elif self.type == "Universal": |
|
self.uk = UniversalKriging( |
|
X[:, 0], |
|
X[:, 1], |
|
y, |
|
variogram_model=self.variogram_model, |
|
enable_plotting=self.plotting, |
|
) |
|
|
|
else: |
|
raise ValueError( |
|
"Choose either Universal or Ordinary - Given argument is neither" |
|
) |
|
|
|
return self |
|
|
|
def _predict_grid(self, x1lim, x2lim): |
|
"""The function that is called to return the interpolated data in Kriging Interpolation |
|
in a grid. This method shouldn't be called directly""" |
|
lims = (*x1lim, *x2lim) |
|
x1min, x1max, x2min, x2max = lims |
|
x1 = np.linspace(x1min, x1max, self.resolution) |
|
x2 = np.linspace(x2min, x2max, self.resolution) |
|
|
|
if self.ok is not None: |
|
predictions, self.variance = self.ok.execute( |
|
style="grid", xpoints=x1, ypoints=x2 |
|
) |
|
|
|
else: |
|
predictions, self.variance = self.uk.execute( |
|
style="grid", xpoints=x1, ypoints=x2 |
|
) |
|
|
|
return predictions |
|
|
|
def _predict(self, X): |
|
"""This function should be called to return the interpolated data in kriging |
|
in a pointwise manner. This method shouldn't be called directly.""" |
|
if self.ok is not None: |
|
predictions, self.variance = self.ok.execute( |
|
style="points", xpoints=X[:, 0], ypoints=X[:, 1] |
|
) |
|
|
|
else: |
|
predictions, self.variance = self.uk.execute( |
|
style="points", xpoints=X[:, 0], ypoints=X[:, 1] |
|
) |
|
|
|
return predictions |
|
|
|
def return_variance(self): |
|
"""This method of the Kriging class returns the variance at the interpolated |
|
points if the user chooses to use this option at the beginning of the interpolation |
|
""" |
|
if self.require_variance: |
|
return self.variance |
|
|
|
else: |
|
print( |
|
"Variance not asked for, while instantiating the object. Returning None" |
|
) |
|
return None |
|
|