|
import numpy as np |
|
from ..idw.idw import IDW |
|
from ..utils.distance import haversine, euclidean |
|
|
|
|
|
class SpatialFeatures: |
|
"""Generate spatial features from N-closest locations |
|
|
|
Args: |
|
n_closest : 'N' closest locations |
|
|
|
idw : To use idw output as one of the feature |
|
|
|
idw_exponent : Exponent to be used in idw (if idw is False, ignore) |
|
|
|
coordinate_type : 'Eucleadian' or 'Geographic' (if idw is False, ignore) |
|
|
|
resolution : 'low', 'standard' or 'high' (if idw is False, ignore) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
n_closest: int = 5, |
|
idw: bool = True, |
|
idw_exponent: float = 2, |
|
coordinate_type: str = "Euclidean", |
|
resolution: str = "standard", |
|
) -> None: |
|
self.n_closest = n_closest |
|
self.idw = idw |
|
self.idw_exponent = idw_exponent |
|
self.coordinate_type = coordinate_type |
|
self.resolution = resolution |
|
if self.coordinate_type == "Eucledian": |
|
self.distance = euclidean |
|
elif self.coordinate_type == "Geographic": |
|
self.distance = haversine |
|
else: |
|
raise NotImplementedError( |
|
'"' |
|
+ self.coordinate_type |
|
+ '" is not implemented yet or invalid' |
|
) |
|
|
|
def fit(self, X: np.ndarray, y: np.ndarray) -> object: |
|
"""[summary] |
|
|
|
Args: |
|
X : Reference X data (longitude, latitude, time, ...) |
|
y : Reference y data |
|
|
|
Returns: |
|
self |
|
""" |
|
self.X = X |
|
self.y = y |
|
|
|
def transform(self, X: np.ndarray) -> np.ndarray: |
|
"""Transform features |
|
|
|
Args: |
|
X (np.ndarray): (longitude, latitude, time, ...) |
|
|
|
Raises: |
|
Exception: If not already fitted |
|
|
|
Returns: |
|
np.ndarray: Transformed features |
|
""" |
|
try: |
|
self.X |
|
except AttributeError: |
|
raise Exception("Not fitted yet. first call the 'fit' method") |
|
|
|
Xflag = False |
|
if np.all(X == self.X): |
|
Xflag = True |
|
|
|
F = ( |
|
np.empty( |
|
(X.shape[0], (X.shape[1] - 3) + self.n_closest * 2 + self.idw) |
|
) |
|
* np.nan |
|
) |
|
for t in np.unique(X[:, 2]): |
|
mask = X[:, 2] == t |
|
trn_mask = self.X[:, 2] == t |
|
X_local = X[mask] |
|
self_X_local = self.X[trn_mask] |
|
|
|
lonlat = X_local[:, :2] |
|
self_lonlat = self_X_local[:, :2] |
|
dst = self.distance(lonlat, self_lonlat) |
|
if Xflag: |
|
idx = dst.argsort()[:, 1 : self.n_closest + 1] |
|
else: |
|
idx = dst.argsort()[:, : self.n_closest] |
|
|
|
|
|
f1 = dst[np.arange(lonlat.shape[0])[:, None], idx] |
|
|
|
self_y_local = self.y[trn_mask] |
|
ymat = self_y_local[:, None].repeat(lonlat.shape[0], 1).T |
|
|
|
f2 = ymat[np.arange(lonlat.shape[0])[:, None], idx] |
|
|
|
if self.idw: |
|
|
|
def for_each_row(i): |
|
i = i[0] |
|
model = IDW(exponent=self.idw_exponent) |
|
model.resolution = self.resolution |
|
model.coordinate_type = self.coordinate_type |
|
model.fit(self_lonlat[idx[i]], self_y_local[idx[i]]) |
|
return model.predict(lonlat[i][None, :]) |
|
|
|
|
|
f3 = np.apply_along_axis( |
|
for_each_row, |
|
axis=1, |
|
arr=np.arange(lonlat.shape[0]).reshape(-1, 1), |
|
) |
|
F[mask] = np.concatenate([X_local[:, 3:], f1, f2, f3], axis=1) |
|
else: |
|
F[mask] = np.concatenate([X_local[:, 3:], f1, f2], axis=1) |
|
|
|
return F |
|
|
|
def fit_transform(self, X: np.ndarray, y: np.ndarray): |
|
self.fit(X, y) |
|
return self.transform(X) |
|
|