|
|
|
import seaborn as sns |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
|
|
from polire import CustomInterpolator |
|
import xgboost |
|
from sklearn.ensemble import RandomForestRegressor |
|
from sklearn.linear_model import LinearRegression |
|
from sklearn.neighbors import KNeighborsRegressor |
|
from sklearn.gaussian_process import GaussianProcessRegressor |
|
from sklearn.gaussian_process.kernels import Matern |
|
|
|
|
|
X = [[0, 0], [0, 3], [3, 0], [3, 3]] |
|
y = [0, 1.5, 1.5, 3] |
|
X = np.array(X) |
|
y = np.array(y) |
|
|
|
for r in [ |
|
CustomInterpolator(xgboost.XGBRegressor()), |
|
CustomInterpolator(RandomForestRegressor()), |
|
CustomInterpolator(LinearRegression(normalize=True)), |
|
CustomInterpolator(KNeighborsRegressor(n_neighbors=3, weights="distance")), |
|
CustomInterpolator( |
|
GaussianProcessRegressor(normalize_y=True, kernel=Matern()) |
|
), |
|
]: |
|
r.fit(X, y) |
|
Z = r.predict_grid((0, 3), (0, 3)).reshape(100, 100) |
|
sns.heatmap(Z) |
|
plt.title(r) |
|
plt.show() |
|
plt.close() |
|
|