import numpy as np from scipy.spatial.distance import cdist from ..base import Base from ..utils.distance import euclidean, haversine class SpatialAverage(Base): """ Class to interpolate by fitting a XGBoost Regressor to given data. Note that radius you specify must be in kilometres if you are passing latitude and longitude as inputs """ def __init__( self, radius=100, resolution="standard", coordinate_type="Euclidean", **kwargs ): super().__init__(resolution, coordinate_type) self.radius = radius if self.coordinate_type == "Geographic": self.distance = haversine elif self.coordinate_type == "Euclidean": self.distance = euclidean else: raise NotImplementedError( "Only Geographic and Euclidean Coordinates are available" ) def _fit(self, X, y): """Function for fitting. This function is not supposed to be called directly. """ self.X = X self.y = y return self def _predict_grid(self, x1lim, x2lim): """Function for grid interpolation. This function is not supposed to be called directly. """ # getting the boundaries for interpolation x1min, x1max = x1lim x2min, x2max = x2lim # building the grid x1 = np.linspace(x1min, x1max, self.resolution) x2 = np.linspace(x2min, x2max, self.resolution) X1, X2 = np.meshgrid(x1, x2) return self._predict(np.asarray([X1.ravel(), X2.ravel()]).T) def _predict(self, X): """Function for interpolation on specific points. This function is not supposed to be called directly. """ return self._average(X) def _average(self, X): dist = self.distance(X, self.X) mask = self.radius >= dist return (self.y * mask).sum(axis=1) / mask.sum(axis=1)