import numpy as np from scipy.interpolate import bisplrep, bisplev from ..base import Base from ..utils import find_closest class Spline(Base): """ Class to use a bivariate B-spline to interpolate values. https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.interpolate.bisplrep.html#scipy.interpolate.bisplrep Parameters ---------- kx, ky: int, int, optional The degrees of the spline (1 <= kx, ky <= 5). Third order (kx=ky=3) is recommended. s : float, optional A non-negative smoothing factor. If weights correspond to the inverse of the standard-deviation of the errors in z, then a good s-value should be found in the range `(m-sqrt(2*m),m+sqrt(2*m))` where `m=len(x)`. """ def __init__( self, kx=3, ky=3, s=None, resolution="standard", coordinate_type="Euclidean", ): super().__init__(resolution, coordinate_type) self.kx = kx self.ky = ky self.s = s def _fit(self, X, y): """The function call to fit the spline model on the given data. This function is not supposed to be called directly. """ # fitting the curve # bisplrep returns details of the fitted curve # read bisplrep docs for more info about it's return values. self.tck = bisplrep( X[:, 0], X[:, 1], y, kx=self.kx, ky=self.ky, s=self.s ) return self def _predict_grid(self, x1lim, x2lim): """The function to predict grid interpolation using the BSpline. This function is not supposed to be called directly. """ # getting the boundaries for interpolation x1min, x1max = x1lim x2min, x2max = x2lim # interpolating over the grid # TODO Relook here, we might expect the result to be transpose return bisplev( np.linspace(x1min, x1max, self.resolution), np.linspace(x2min, x2max, self.resolution), self.tck, ) def _predict(self, X): """The function to predict using the BSpline interpolation. This function is not supposed to be called directly. """ results = [] for ix in range(X.shape[0]): interpolated_y = bisplev( X[ix, 0], X[ix, 1], self.tck ).item() # one value returned results.append(interpolated_y) return np.array(results) # # form a grid # x1 = np.linspace(self.x1min_d, self.x1max_d, self.resolution), # x2 = np.linspace(self.x2min_d, self.x2max_d, self.resolution), # X1, X2 = np.meshgrid(x1, x2) # # be default run grid interpolation on the whole train data # interpolated_grid = bisplev( # x1, x2, # self.tck, # ) # # find the closest points on the interpolated grid # ix = find_closest(grid=(X1, X2), X) # return interpolated_grid[ix] # TODO this can be wrong, must depend on