import numpy as np from scipy.optimize import curve_fit from ..base import Base from .polynomials import _create_polynomial class Trend(Base): """Class to interpolate by fitting a curve to the data points available using `scipy`'s `curve_fit`. Parameters ---------- order: int, default 1 Selects the order of the polynomial to best fit. Possible values 0 <= order <= 2. custom_poly: functor, default None If you would like to fit to your custom function, _set order to None_ and then pass a functor. See Example functor passing below .. highlight:: python .. code-block:: python def func(X, a, b, c): x1, x2 = X return np.log(a) + b*np.log(x1) + c*np.log(x2) t = Trend(order=None, custom_poly=func) ... """ def __init__( self, order=1, custom_poly=None, resolution="standard", coordinate_type="Euclidean", ): super().__init__(resolution, coordinate_type) self.order = order # setting the polynomial to fit our data if _create_polynomial(order) is not None: self.func = _create_polynomial(order) else: if custom_poly is not None: self.func = custom_poly else: raise ValueError("Arguments passed are not valid") def _fit(self, X, y): """Function for fitting trend interpolation. This function is not supposed to be called directly. """ # fitting the curve using scipy self.popt, self.pcov = curve_fit(self.func, (X[:, 0], X[:, 1]), y) return self def _predict_grid(self, x1lim, x2lim): """Function for trend interpolation. This function is not supposed to be called directly. """ # getting the boundaries for interpolation x1min, x1max = x1lim x2min, x2max = x2lim # forming the grid x1 = np.linspace(x1min, x1max, self.resolution) x2 = np.linspace(x2min, x2max, self.resolution) X1, X2 = np.meshgrid(x1, x2) return self.func((X1, X2), *self.popt) def _predict(self, X): """Function for random interpolation. This function is not supposed to be called directly. """ x1, x2 = X[:, 0], X[:, 1] return self.func((x1, x2), *self.popt)