""" A module to have different distance metrics for spatial interpolation """ import numpy as np from scipy.spatial.distance import cdist def haversine(X1, X2): """ Arguments --------- One test point Multiple Train Points Long Lat Order """ # Non-vectorized version # X1 = X1.reshape(1, 2) # difference = (X1 - X2) * np.pi / 180 # test_point_lat = X1[:, 1] * np.pi / 180 # training_locations_lat = X2[:, 1] * np.pi / 180 # a = np.sin(difference[:, 0] / 2)**2 * np.cos(test_point_lat) * np.cos(training_locations_lat) +\ # np.sin(difference[:, 1] / 2)**2 # radius = 6371 # c = 2 * np.arcsin(np.sqrt(a)) # return radius * c # Vectorized code lon1, lat1, lon2, lat2 = map( np.radians, [X1[:, 0, None], X1[:, 1, None], X2[:, 0, None], X2[:, 1, None]], ) dlon = lon2.T - lon1 dlat = lat2.T - lat1 a = ( np.sin(dlat / 2.0) ** 2 + np.cos(lat1) @ np.cos(lat2.T) * np.sin(dlon / 2.0) ** 2 ) c = 2 * np.arcsin(np.sqrt(a)) km = 6371 * c return km def euclidean(X1, X2): # return np.linalg.norm(X1 - X2, 2, axis=1) return cdist(X1, X2)